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Abstract 

Active Harmony is an automated runtime 
performance tuning system. In this paper we describe a 
parameter prioritizing tool to help focus on those 
parameters that are performance critical. Historical data is 
also utilized to further speed up the tuning process. We 
first verify our proposed approaches with synthetic data 
and finally we verify all the improvements on a real 
cluster-based web service system. Taken together, these 
changes allow the Active Harmony system to reduce the 
time spent tuning from 35% up to 50% and at the same 
time, reduce the variation in performance while tuning. 

 
1. Introduction 

Active Harmony helps programs adapt themselves to 
the execution environment to achieve better performance. 
In previous work [17, 21, 29], we showed performance 
tuning is useful and even critical in many applications 
including scientific libraries and e-commerce web 
applications. When tuned, programs can achieve better 
results such as running faster, better precision, higher 
resolution or the ability to use a larger data set. When the 
environment for the systems or the applications changes 
rapidly, there is frequently no single configuration good 
for all situations. Manually tuning may not be a feasible 
since it can be extremely time consuming and the system 
or the environment may have changed before the manual 
tuning is completed.  

After working with a cluster-based web service 
system and a scientific simulation program, we saw the 
need to speed up the tuning process – especially to make 
use of the experience we learned in the previous program 
executions and to avoid unnecessary bad performance 
oscillations during configuration exploration. In this paper, 
we explain how the Active Harmony tuning server may 
make use of information such as historical data about the 
system or application to be tuned. 

In addition, scalability becomes a critical issue as the 
problem complexity increases (i.e., more tunable 
parameters). The search space increases exponentially 
when the number of parameters increases. This makes the 
tuning process potentially longer than the program 
execution. We present techniques to improve the process 
when tuning numerous parameters together. Our approach 
discovers the relative importance of the parameters in 
advance (prior to a specific execution) so that Active 

Harmony can focus on performance critical parameters 
first. 

To understand the effectiveness of the Active 
Harmony tuning system, we use synthetic data to evaluate 
the improvements made to the system. We show that the 
parameter prioritizing tool is robust to perturbations (noise) 
in the performance output. We also demonstrate that 
focusing on the performance critical parameters helps to 
reduce the tuning time. Also we show that it takes less 
time to tune the system when the characteristics of the 
experience (historical data) are close to the current 
workload. We then verify all the improvements on a real 
application, a cluster-based web service system, to show 
the usefulness of the proposed techniques. 

The structure of this paper is organized as follows: 
Section 2 gives an overview of Active Harmony system. 
Section 3 describes the concept for prioritizing tunable 
parameters and its impact on the performance tuning. 
Section 4 shows the mechanisms we have developed to 
speed up the tuning process and their evaluations. Section 
5 demonstrates the experiments we conduct by applying 
Active Harmony to synthetic data.  We verified all the 
improvements on a cluster-based web service system in 
Section 6. Related work is given in Section 7 and Section 
8 concludes the paper. 

 
2. Active Harmony 

To provide automatic performance tuning, we 
developed the Active Harmony system [17, 21, 29]. 
Active Harmony is an infrastructure that allows 
applications to become tunable by applying minimal 
changes to the application and library source code. This 
adaptability provides applications with a way to improve 
performance during a single execution based on the 
observed performance. The types of things that can be 
tuned at runtime range from parameters such as the size of 
a read-ahead buffer to what algorithm is being used (e.g., 
heap sort vs. quick sort). 

The Adaptation Controller is the main part of the 
Harmony server. The adaptability component manages the 
values of the different tunable parameters provided by the 
applications and changes them for better performance. The 
kernel of the adaptation controller is a tuning algorithm. 
The algorithm is based on the simplex method for a 
finding a function's minimum value [23]. In the Active 
Harmony system, we treat each tunable parameter as a 
variable in an independent dimension. The algorithm 
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makes use of a simplex, which is a geometrical figure 
defined by k+1 connected points in a k-dimensional space. 
In 2-dimensions, the simplex is a triangle, and for the 3-d 
space the simplex is a non-degenerated tetrahedron.  

The original simplex algorithm assumes a well-
defined function and works in a continuous space.  
However, neither of these assumptions holds in our 
situation. Thus we have adapted the algorithm by simply 
using the resulting values from the nearest integer point in 
the space to approximate the performance at the selected 
point in the continuous space. 

The major challenge when users apply Active 
Harmony to a large-scale system is the time it takes for 
tuning. A lengthy tuning process will make the tuning 
results unusable since the system or the environment may 
have changed by the time the algorithm finishes. In this 
paper, we improve Active Harmony by utilizing known 
information such as previous tuning experience to speed 
up the tuning process. Also, by investing a small cost 
testing the tunable parameters, Active Harmony can focus 
on the performance sensitive parameters and achieve 
competitive performance results.  

 
3. High-dimensional Search Spaces 

When we apply the Active Harmony system to real 
systems, a practical issue is scalability. As we noted in the 
previous work [12], tuning can be time-consuming due to 
the numerous parameters at each node in an application.  
As expected, it takes a long time for the Active Harmony 
tuning server to adjust numerous parameter values based 
on one performance result (e.g., throughput). In order to 
make the Active Harmony system capable of tuning 
numerous parameters, we improved the tuning by 
prioritizing the parameters.  

One major problem for tuning numerous parameters 
together is the size of the search space. For a system with 
10 parameters where each parameter has 2 possible values, 
the size of the search space would be 210. In the previous 
implementation of the Active Harmony system, it takes 11 
initial explorations before it starts to improve the 
performance. Imagine a system with 1,000 parameters, the 
size of the search space would be 21,000 and it would take 
1,001 initial explorations. This makes the tuning less 
practical since it takes an extremely long time to converge. 
In other words, it is not easy to adjust each of the 1,000 
parameters to the “appropriate” value after few 
configuration explorations. Even if the values of the 
parameters will eventually converge, the configuration 
found may be out of date and thus useless. Also when 
tuning some applications, even exploring one 
configuration could take a significant amount of time. For 
example, it may take 5 to 10 minutes to explore one 
configuration for a scientific simulation program, since 
each exploration requires running one or more time steps 
of the application. 

Prioritizing Parameters 
When tuning a system or application, it is important 

to identify those parameters that are affecting the 
performance from those that are not. For a large system or 
application with numerous parameters, it would be helpful 
to focus on the parameters that have greater impact on the 
performance rather than tuning all parameters altogether.  

We have developed a standalone software tool that 
provides the data required for prioritization. It takes all the 
possible parameters indicated by the user as input. Each 
parameter is specified with four values: minimum, 
maximum, default value and distance between two 
neighbor values. The distance between two neighbor 
values decides the number of sample points the software 
will test. The software tool tests the sensitivity of each of 
the parameters. For each parameter, the software tool will 
explore possible values  (based on the 
distance given) while the rest of the parameters are fixed 
with the default value. Assume  are the 
performance results with those different parameter values. 

We defined the sensitivity of a parameter to be 
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with a wide range of values are not given excessive weight.  
The idea of this sensitivity test is to understand the 
performance impact when changing one parameter. If the 
sensitivity value for a parameter is large, we expect that 
changing the value of this parameter will affect the 
performance directly. Hence it should be considered with 
higher priority when considering changes to a 
configuration at runtime. On the other hand, if the 
sensitivity value is small, we consider it has lower priority 
and may be discarded or used later in the tuning.  

The design for such a parameter prioritizing tool is 
based on an assumption that the interaction among 
parameters is relatively small. The goal for using such a 
parameter prioritizing tool is to help Active Harmony 
identify performance critical parameters quickly. If this 
case is not true, the user may need to use full or fractional 
factorial experiment design [18, 24] to further investigate 
the relation among parameters when deciding the 
importance of parameters. 

Assume a large system or program with n parameters 
and k different possible values for each parameter that 
needs to be tuned. The search space for such a system or 
program will be huge (i.e., ). With help from parameter 
prioritizing, the Active Harmony system can focus on the 
performance critical parameters and discard or leave the 
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less important ones for later. The parameter prioritizing is 
done once per new workload and therefore the overhead 
can be amortized over many runs of the application. 

 
4. Smarter Tuning 

From our previous work we found that there are 
several drawbacks in our original tuning process in the 
Active Harmony system. First, in the original 
implementation, some of the initial configuration 
explorations test extreme values for the parameters. The 
performance for this initial stage is usually poor and the 
time spent in this period may dominate the overall tuning 
process. Unless the program being tuned is expected to  
run for a very long time, the benefit from the tuning may 
thus be limited. Also, the tuning experience is not 
preserved across executions. In other words, when Active 
Harmony starts to tune a system, it does not utilize the 
experience gained from tuning similar requests or 
workloads before. Finally, the original Active Harmony 
has little or no knowledge about the system or the 
parameters to be tuned. This makes the tuning process 
lengthy since searching starts from scratch every time. In 
order to overcome these problems, we try to identify some 
key issues and introduce solutions to improve the tuning. 

4.1. Improved Search Refinement 
The original Active Harmony tuning server does a 

decent job in performance tuning. With a few explorations, 
it can help the system or program being tuned find a fairly 
good configuration for operation. One problem for the 
original Active Harmony tuning kernel is what 
configuration to use for initial exploration. In the original 
implementation of the Active Harmony system, it takes 
k+1 iterations to explore the values for each of the k 
parameters. It will start to improve the system to be tuned 
at the k+2th iteration. The configurations used for those 
k+1 iterations are predefined. This is due to the 
characteristics of the Nelder-Mead simplex method. 
However, from the experience we had in our previous 
work, we found out that the system usually performs 
poorly with the parameters at the extreme values. Trying 
configurations with extreme values often causes the 
performance of the system to oscillate. Furthermore, for a 
lot of systems or applications to be tuned, the tuning 
results for the parameter values are far from the extreme 
values. Consider the maximum number of connections for 
a web server, allowing only one process will make the 
system inefficient; allowing too many processes will cause 
thrashing. Only the number of connections that is 
compatible with the system’s capacity will yield the best 
performance. Another example is in a climate simulation 
program. The computing nodes are divided into groups. 
Each group of machines is responsible for part of 
simulation task (e.g., land, ocean, atmosphere). Using a 
fixed number of nodes for each task will often cause a 

load imbalance and thus make the simulation inefficient. 
Instead, balancing the number of nodes to mach the 
computational complexity of each task will provide the 
best performance. 

 

 
(a) 

 
(b) 

Figure 1: Improved search refinement for 
configuration with two parameters (a) Original (b) 

Improved 

In order to solve this problem, we modified the tuning 
algorithm to replace predefined configurations with 
parameters at extreme values with values that are closer to 
the current configuration but which will evenly cover the 
search space, as shown in Figure 1. The rectangle 
represents the allowed range for the parameter values. The 
circle represents a single configuration and the number 
inside is the order of the configuration to be explored. As 
shown in the Figure 1(a), original Active Harmony 
implementation tries the extreme values for the parameters 
for the initial exploration. Figure 1(b) shows one possible 
alternative initial exploration configuration. In the current 
implementation, we are using configurations that are 
equally distributed in the whole search space. In other 
words, for each of n parameters, we increase 1/n of its 
extreme values every time in the first n explorations. 
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Reducing the magnitude of the performance 
oscillation is important because what we care about in the 
tuning process is not just getting the best configuration, 
but also the performance of the system while getting there. 
In other words, the efforts or cost when searching for a 
desirable configuration versus the performance at the 
desirable configuration should be taken into consideration. 
Note this is different than most optimization literature. For 
online performance tuning, we are always looking for a 
mechanism that not only makes the tuning fast but also 
makes the tuning process more stable with less 
performance oscillation. 

4.2. Using Historical Data  
During the tuning process, Active Harmony will keep 

a record of all the parameter values together with the 
associated performance results. When the system restarts, 
those parameter values and performance results can be fed 
into the Active Harmony tuning server. This is similar to a 
“review” or “training” stage. Therefore, the Active 
Harmony tuning server may save time by not retrying all 
those configurations again from scratch. This is important 
since for many applications or systems, it may take a long 
time to measure the performance results for a single 
configuration. We separate this stage from the actual 
tuning stage and make the normal tuning process two 
stages.  

In order to utilize the experience from the historical 
data, we must take the associated characteristics of the 
request into consideration.  In other words, the 
characteristics of the request are also affecting the 
performance and historical data usage. It will be ideal if 
the characteristic of the request that the system is currently 
serving is the same as the historical data that was used for 
training. However, it is unlikely to have an exact match. 
Our approach tries to use historical data with 
characteristics closest to those the system is currently 
serving. For example, in a cluster-based web service 
system we use a statistical method to count the frequency 
for each requested web page. The frequency distribution 
for the web pages is used to characterize the workload. If 
the input characteristic is similar to previous runs, the 
system should use previous data layout as the starting 
point for tuning and this may help to reduce the tuning 
time. 

Besides, one of the important ways to speed up the 
tuning process is to use knowledge about the 
characteristics of the input data. The more we understand 
the characteristics of the input data, the better we can 
“prepare” the system to be tuned. In the original Active 
Harmony system implementation, the input data is fed into 
the system directly. The Active Harmony system tries to 
change the system configuration to achieve better 
performance based on the measured performance.  It has 
no knowledge about the input and thus treats the system to 
be tuned as a “black box”. This makes the tuning process 

time consuming since it spends a tremendous amount of 
time trying different configurations. 

We introduced a new component, the data analyzer, 
into the Active Harmony system so the system will be able 
to know the characteristics of the input data. The tuning 
experience with associated input request characteristics 
will be accumulated in the database for future reference. 
When the input data is fed into the system, the data 
analyzer will first examine or observe a small number of 
sample requests to probe the characteristics of the input 
data. In order to accomplish such a task, the system to be 
tuned has to provide the method (function) that the data 
analyzer can use to characterize the input requests. By 
using the method provided, the data analyzer can decide 
the characteristics of the input requests. For example, 
calling a function with the input matrix as the argument; 
the function might return the matrix structure (e.g., 
triangular, sparse … etc.). Based on the known experience 
from the data characteristics database, the data analyzer 
can make the Active Harmony tuning server adjust the 
system more efficiently than a blind system. For example, 
a function is first called to detect matrix structure in the 
request and later Active Harmony can decide which 
version of a mathematical library to use. In a cluster-based 
web service system the data analyzer may use a statistical 
method to count the frequency for each requested web 
page. Later based on the frequency distribution for the 
web pages and previous experience, Active Harmony can 
adjust the parameters more properly.  

For those input data with characteristics that have 
never been seen before, the Active Harmony tuning server 
may simply use the default tuning mechanism (i.e., no 
training stage). The tuning results may be treated as a new 
experience and used to update the data characteristics 
database for future reference.  

 
 

 
 
 
 
 
 
 
 
 
 

Figure 2: Data Analyzer 

The details of the data analyzer are shown in Figure 2. 
The data analyzer will first extract the characteristics 
using the given characteristics definitions and testing 
procedures (provided by the user for the system to be 
tuned) for the input data. After the characteristics of the 
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input data are gathered, the data analyzer then applies a 
machine learning clustering approach using predefined 
methods (such as a decision tree together with known 
classes defined in the data characteristics database). In the 
current implementation, we use least square error [14] as 
the classification mechanism. In this approach, a vector 
Ci=(ci1,ci2,…) represents the ith workload characteristics 
stored in the experience database and Co=(co1,co2,…) the 
observed workload characteristics. The classification 

algorithm returns j such that ∑ −
k

okjk cc 2)( is the 

minimum. Other classification mechanisms can easily be 
substituted depending on the requirements of the 
application. The classification output is used as the key to 
retrieve the configurations from previous experience 
stored in the database. Then Active Harmony uses those 
configurations to setup the system being tuned. 

4.3. Performance Estimation 
Another important issue is what to do when the 

configurations and associated performance results needed 
for Active Harmony tuning server training are not 
available. In other words, if the parameter values in the 
historical data do not match those in the current 
configuration. In this case, it would be necessary to 
estimate the performance results at the target configuration 
that tuning server requires based on those known historical 
data.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Triangulation estimation for configuration 
with two parameters 

In order to conquer this difficulty, we use 
triangulation with interpolation or extrapolation to 
estimate the performance at those “missing” configuration 
points. The idea of the triangulation is that: we first select 
vertices to form a simplex. A vertex in an N dimensional 
space represents a configuration with N parameters. The 
projection of the vertex on ith axis is the value for the ith 

parameter. A simplex in an N dimensional space consists 
of N+1 vertices. For example, a simplex in a two 
dimensional space is a triangle; a simplex in a three 
dimensional space is a pyramid. We then put the simplex 
in an N+1 dimensional space where the N+1th dimension 
is the associated performance for each vertex 
(configuration). We then use those N+1 vertices on the 
simplex to estimate the performance of the target vertex in 
a N+1 dimensional space.  

The example in the Figure 3 shows how to use 
triangulation to estimate a configuration with two 
parameters. First we need to find three configurations C1, 
C2, C3 and use their associated performance to form a 
plane in the three dimensional space. Then we use this 
plane to estimate the performance Pt at the target 
configuration Ct. 

 
The algorithm is described as follows: 
 
1. For a configuration with N parameters, find the 

“appropriate” k configurations (vertices) with 
associated performance results in the historical 
data.1  

2. Let [ ]iNiii cccC L21=  be the ith 
configuration, where cij represents the jth parameter 
value of the ith configuration. 
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5. Synthetic Data Experiment 
Due to the complexity of measuring real applications 

and possible anomalies due to execution, we initially 
evaluated our search heuristic using synthetic data 
designed to mimic many attributes of measured data. We 
then proceeded to evaluate the search process using a real 
application. We use this synthetically generated data to 
help us to evaluate aspects of the Active Harmony tuning 
                                                 
1  Here the appropriate configurations depend on the actual situation: 
those vertices may be close to the target vertex in the distance in the 
search space; or close to the target vertex in terms of the time recorded in 
the historical data. This step is challenging since many issues need to be 
taken into consideration. For example, if the execution environment is 
static or does not change frequently, vertices close to the target vertex 
may be used for estimation; when the execution environment is changing 
frequently, we may need to use the latest vertices to estimate the target 
vertex. Currently our implementation uses vertices that are close to the 
target vertex. 
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Ct 

Performance 
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system that are difficult to measure using data from a live 
system. 

5.1. Performance Modeling 
In order to understand the tuning process and further 

test Active Harmony, we used DataGen[2]  to generate 
synthetic data with the desired attributes. The software 
generates a set of conjunctive normal form rules based on 
the constraints we specified. Each rule is in the form of  Pi 
← Ca(vj) & Cb(vk) & Cc(vl)…, where Pi  represents the 
performance result; vj, vk, vl,… are the input variables that 
represent a set of tunable parameters (i.e., one 
configuration) and workload characteristics. Ca, Cb, Cc… 
are Boolean functions that test its input variable (e.g., if vj 
= 3 or if  2≦ vk < 8). A rule is satisfied and performance 
Pi is returned when all its Boolean function results in the 
rule are true. The set of rules are carefully generated so 
that no more than one rule will be satisfied for all possible 
combinations of input variables (i.e., no conflicts). When 
no rule is satisfied, it will return the performance result 
from the closest rule. 

We choose to generate synthetic data that is similar to 
an existing e-commerce web application. Three extra 
parameters are used to mimic the characteristics of the 
input workloads: browsing, shopping and ordering. The 
performance is decided by both the input characteristics 
and the tunable parameter values. 
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Figure 4: Performance distribution 

By comparing the performance obtained through 
exhaustive search from a clustered-based web service 
system with a shopping workload (described in the 
Appendix A) and the synthetic data; we can assess how 
well our synthetic data emulates a real measured system. 
Figure 4 shows the closeness of the two performance 
distributions. The normalized performance (1 to 50, 1 is 
the worst and 50 is the best) is divided into 10 buckets in 
the x-axis. The bars show the percentage of points in the 
search space (y-axis). This shows that the distribution of 
different performance values. The performance 
distribution for the synthetic data is approximately the 
same to its of the real cluster-based web service system.  

5.2. Sensitivity Experiment 
To evaluate parameter prioritization we ran the 

parameter prioritizing tool using our synthetic data. This 
provides a controlled environment to evaluate our 
approach. When the data was generated, we specified two 
out of the fifteen parameters to be performance irrelevant. 
In other words, changing the values of those two 
parameters will not affect the performance. We also 
perturb the performance output from 0% to ±25% with a 
uniform random distribution. This is because in real 
systems, given exactly the same environment and input, 
the performance output will not always be the same for 
two different runs. We first consider the sensitivity of our 
parameter prioritization with regard to this run to run 
variation in application performance. 
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Figure 5: Parameters sensitivity of the synthetic data  

The result is shown in Figures 5 and 6. In Figure 5, 
the parameter prioritizing technique helps the user to 
identify that parameter H and M are less relevant to the 
performance. This matches the parameter specification of 
the synthetic data.  
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In Figure 6, based on the parameter sensitivity 
obtained, we let the system tune the n most sensitive 
parameters while leaving the rest of the parameters with 
their default values. The bars in the figure show the time it 
takes for the tuning and the lines indicate the tuning 
results. The figure shows that a larger performance output 
perturbation (10%, 25%) does affect the tuning process. 
For  those cases with less perturbation, the results show 
that only tuning a few “performance-critical” parameters 
will save a dramatic amount of tuning time (up to 85%) 
while compromising little of the performance (less than 
8%). 

Another interesting point is tuning more sensitive 
parameters does not increase the tuning time linearly (e.g. 
comparing tuning time for n=12 and n=15). This may be 
simply because those added parameters are less sensitive 
to the performance and thus converge faster compared to 
more sensitive parameters. 

5.3. Historical Data Experiment 
In order to test the effectiveness for performance 

tuning using historical data, we carefully design the 
experiment as follows: the system is facing a workload A. 
The data analyzer in the Active Harmony server first 
spends a few iterations to characterize the incoming 
workload and decides to use historical data workload A’ 
where A’ is the closest experience to A in terms of the 
characteristics (computed using techniques described in 
Section 4.2).  
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Figure 7 : Tuning using different experiences 

Figure 7 shows the relation between the experience 
workload A’ and current workload A. In this figure, the x-
axis shows the distance between the current configuration 
A and the stored workload A'. The distance between two 
workload characteristics is calculated using distance in 
Euclidean space. This data is again taken from synthetic 
data generated for a system like the cluster-based web 
service system presented in Appendix A. When the 
characteristics of the historical data are close to those of 
the current workload, it takes less time to tune the system. 

The more they differ from each other, the longer it takes 
for Active Harmony to tune the system to achieve similar 
performance (tuning result). Not surprisingly, this result 
suggests that when tuning a system with historical data 
(experience), one should choose to use historical data that 
is similar to the current workload.  

 
6. Cluster-Based Web Service Application 

We verify our proposed tuning approaches described 
in previous sections on a large-scale real application with 
many parameters. In this study, we apply the improved 
Active Harmony system to a cluster-based web service 
system from our previous work [12].  

6.1. Cluster-Based Web Service System 
A cluster-based web service system consists of a 

collection of machines. The machines are separated into 
sets (or tiers). Each tier of machines is focused on serving 
different parts of a request. The incoming requests are 
handled in a pipeline fashion by different tiers.  

In many web services today, there are (conceptually, 
at least) three tiers: presentation, middleware, and 
database. The presentation tier is the web server that 
provides the interface to the client. The middleware tier is 
what sits between the web server and the database. It 
receives requests for data from the web server, 
manipulates the data and queries the database. Then it 
generates results using existing data together with answers 
from database. Those results are presented to the client 
through the presentation tier. The third tier is the database, 
which holds the information accessible via the network. It 
is the backend that provides reliable data storage and 
transaction semantics. 

In the project, we try to improve the overall system 
performance by automatic tuning across all tiers using the 
Active Harmony system. A more detailed description of 
the environment on which we conduct the experiment is 
given in Appendix A. The application we are focusing on 
tuning is an implementation of the TPC-W benchmark [5]. 
It is a transactional web benchmark designed to emulate 
operations of an e-commerce site. The performance metric 
used in this benchmark is Web Interactions per Second 
(WIPS), where a higher WIPS value is better. A brief 
introduction to the benchmark is given in Appendix A. 

6.2. Parameter Sensitivity 
We apply our parameter prioritizing tool to 10 

parameters in the cluster-based web service system. Figure 
8 shows when the system faces different workloads; the 
value for each parameter will have different importance to 
the system performance. For example, the network buffer 
size of the MySQL database server is relatively important 
when the system is serving the ordering workload since 
most requests are placing orders and the database server is 
highly utilized. On the other hand, when the system is 
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serving the shopping workload, more browsing activities 
are coming into the server and this kind of request can be 
served more quickly with static data stored in the cache 
memory. Therefore, the size of the cache memory has 
more impact on the overall system performance. Some 
parameters like the buffer size for the HTTP web server or 
maximum number of connections allowed by the database 
server are relatively less important for the system when 
facing shopping or ordering workloads.  
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Figure 9: Tuning using only n most sensitive 
parameter(s) of the cluster-based web service system 

We now consider the question of how many 
parameters need to be tuned. We consider the top n most 
important parameters based on our sensitivity analysis. 
We vary n from 1 to 10. Figure 9 shows that only using a 
limited number of parameters can reduce tuning time 
significantly. The bars show the time it takes for the 
tuning process and the lines indicates the tuning results. 
The results show that when tuning a system with 
numerous parameters, it is helpful to first spend some 
efforts identifying performance related parameters from 
those that are less performance relevant. Only tuning those 
performance related parameters will save a significant 
amount of tuning time (up to 71.8%) while compromising 

a little of the performance in the tuning result (less than 
2.5%). 

6.3. Improved Search Refinement 
In order to verify our proposed approach to make the 

tuning process more stable, we also evaluate the 
modifications discussed in Section 4 to the Active 
Harmony tuning algorithm kernel. We hope with these 
modifications, the tuning process will be more stable and 
therefore the time spent in those iterations with poor 
performance will not dominate the tuning time.  

We apply the Active Harmony tuning server with this 
improved kernel to the cluster-based web service system.  
The summary of the tuning process is shown in the Table 
1. The performance column shows the tuning result. The 
convergence time represents the tuning time and the worst 
performance column describes how smooth the tuning 
process is. From the summary shown in the table, the 
convergence time is much shorter after the tuning kernel 
improvement while maintaining similar performance 
tuning results. For the improved search refinement, the 
results show that the proposed improvement helps to 
speed up the tuning process by reducing the convergence 
time by about 35%. We believe this is because the 
desirable configuration points are not at the boundaries of 
the parameter values. Also, when the cluster-based web 
service system is facing a shopping workload, the 
proposed configuration exploration even helps to reduce 
the magnitude of the initial bad performance oscillation. 
However, this may vary from case to case since it depends 
on the shape of the performance function. For example, 
the performance function for the ordering workload has 
more “bad performance” configurations that do not lie on 
the boundaries of parameter values. Therefore avoiding 
parameters with extreme values does not improve 
significantly in reducing the magnitude of the initial bad 
performance oscillation.  

 
Shopping workload 

 Performance 
WIPS 

Convergence 
time 

(iterations) 

Worst 
performance2 

WIPS 
Original 

implementation 63 90 20 
After 

improvement 60 58 27 
Ordering workload 

 Performance 
WIPS 

Convergence 
time 

(iterations) 

Worst 
performance 

WIPS 
Original 

implementation 79 74 29 
After 

improvement 80 46 29 

Table 1: Tuning process summary  

                                                 
2 The worst performance found in the performance oscillation stage. 
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6.4. Tuning with Experience 
In the cluster-based web service system, the data 

analyzer will first spend a small amount of time to 
characterize the requests by observing the frequency for 
different kind of web interactions. We expect different 
workloads will have different relative weights on each of 
the web interactions. By observing the frequency 
distribution for web interactions, the data analyzer can 
characterize the workload that the system is serving. 
During the actual running stage, the configuration used is 
also stored together with the associated request 
characteristics for future references. Next time when 
tuning the application, the Active Harmony system will 
first analyze the characteristics (frequency distribution of 
web interactions) of the incoming request and compare 
them with the information stored in the data characteristics 
database, and then use the appropriate historical data to 
prepare (train) the system to be tuned.  

In this experiment, we have the system serving a 
workload A with and without first training using historical 
data (which is never seen by Active Harmony server). In 
the Table 2, when the system serves shopping and 
ordering workloads, the tuning process is smoother and 
the performance converges fast (56% for the shopping 
workload and 17% for the ordering workload) when the 
tuning server is first trained using historical data recorded 
from another workload. For the shopping workload with 
prior histories, there is only one bad performance iteration 
in the tuning process compared to nine bad performance 
iterations when without prior histories. And for the 
ordering workload with prior histories, there are three bad 
performance iterations in the tuning process compared to 
eleven bad performance iterations when without prior 
histories. 

 
Shopping workload 

 Convergence 
time 

(iteration) 

Performance 
(WIPS) 

Initial performance 
oscillation Average 
(standard deviation)

Without prior 
histories 39 56.99 53.34 (9.30) 

With prior 
histories 17 59.30 57.43 (5.72) 

 
Ordering workload 

 Convergence 
time 

(iteration) 

Performance 
(WIPS) 

Initial performance 
oscillation Average 
(standard deviation)

Without prior 
histories 23 76.26 59.66 (17.96) 

With prior 
histories 19 76.26 71.50 (10.96) 

Table 2: Tuning process with and without prior 
histories 

 

7. Related Work 
Performance contracts [30] allows the level of 

performance expected of system modules to be quantified 
and then measured during execution. The application 
includes intrinsic metrics that are solely dependent on the 
application code and problem parameters. Examples of 
such metrics include messages per byte and average 
number of source code statements per floating point 
operations. For N metrics, the trajectory through N-
dimensional metric space is called application signature. 
The execution signature reflects both the application 
demands on the resources and the response of the resource 
to those demands.  

Using application signatures together with a 
convolution method helps to model the performance more 
rapidly [28]. Snavely, A., et al. present a framework for 
performance modeling and prediction that is faster than 
cycle-accurate simulation, more informative than simple 
benchmarking, and is shown useful for performance 
investigations in several dimensions. The convolution 
method used is the computational mapping of an 
application’s signature onto a machine profile to arrive at 
a performance prediction.  

Predicting application performance on a given parallel 
system has been widely studied [6, 7, 9, 11, 15, 16, 19, 22, 
25, 26]. Thomas Fahringer [16] introduced a practical 
approach for predicting some of the most important 
performance parameters of parallel programs, including 
work distribution, number of transfers, amount of data 
transferred, network contention, transfer time, 
computation time and number of cache misses. The 
approach is based on advanced compiler analysis that 
carefully examines loop iteration spaces, procedure calls, 
array subscript expressions, communication patterns, data 
distributions and optimizing code transformations at the 
program level. It also considers machine specific 
parameters including cache characteristics, 
communication network indices, and benchmark data for 
computational operations at the machine level.  

A performance prediction study by Kapadia et al. also 
extends this work to distributed systems [20]. The paper 
evaluates the application of three local learning algorithms 
(nearest-neighbor, weighted-average, and locally-weighted 
polynomial regression) for the prediction of the 
performance for a given runtime input parameters. This 
project focuses on the accuracy of the performance 
prediction. However, perusing maximal predictive 
accuracy may not be appropriate given the variability in a 
grid computing environment.  

These performance prediction and estimation projects 
are focused on characterizing the application behavior on 
systems. Active Harmony uses performance estimation 
that is based on past experience to reduce the tuning time 
and make the tuning process more stable. 

Direction set (Powell’s) method [10] is a method used 
to find the minimum point in a N-dimensional search 
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space. The basic idea behind Powell's Method is to break 
the N dimensional minimization down into N separate 1-
dimension minimization problems. Then, for each 1-
dimension problem a binary search is implemented to find 
the local minimum within a given range. Furthermore, on 
subsequent iterations an estimate is made of the best 
directions to use for the 1D search. This enables it to 
efficiently navigate along narrow “valleys” when they are 
not aligned with the axes. This method is similar to the 
Active Harmony parameter prioritizing tool which 
explores one parameter at a time. However, this method 
does not explore the relation among parameter while the 
Nelder-Mead simplex method (Active Harmony tuning 
kernel) does.  

Linear programming and the simplex method [13] are 
commonly used in optimizations. Linear programming is a 
class of mathematical programming models in which the 
objective function and the constraints can be expressed as 
linear functions of the decision variables. The simplex 
method is a general solution method for solving linear 
programming problems. It was developed in 1947 by 
George B. Dantzig with some modification for efficiency 
by Simmons [27]. It is an iterative algorithm that begins 
with an initial feasible solution, repeatedly moves to a 
better solution, and stops when an optimal solution has 
been found. 

The major challenge when applying linear 
programming and the simplex method in performance 
tuning is the domain knowledge required for the system to 
be tuned. Active Harmony provides a general solution for 
performance tuning and little or none domain knowledge 
is required. 

 
8. Conclusion 

In order to speed up a black-box tuning process, it is 
worthwhile to utilize information from prior runs, and to 
dedicate some time running the system with test 
configurations to understand the search space. In this 
paper, we introduced and evaluated a technique, parameter 
prioritizing, when tuning large systems with numerous 
parameters. When tuning numerous parameters in a large 
system, it is critical to prioritize the parameters by their 
relative impact to the performance. This helps the tuning 
focus on the performance-related parameters. The 
experimental results show that tuning only few most 
sensitive parameters will save a dramatic amount of tuning 
time while compromising little to none of the application’s 
performance. 

We improve the Harmony tuning algorithm by 
changing the configurations used for initial explorations. 
This helps the system to be tuned reduce the time spent 
exploring extreme values with poor performance. We also 
improved the Active Harmony system by making use of 
the experience learned in previous runs. During the 
runtime, the tuning process will benefit from knowing the 
characteristics of the requests. The tuning system may 

make use of the stored information to help find the 
appropriate configurations more rapidly. The experience 
can help to speed up the tuning process since the tuning 
server may start with a better configuration rather than 
start from scratch. When tuning the cluster-based web 
service system, all these techniques help to reduce the 
time spent in the initial unstable performance stage from 
35% up to 50% and make the tuning process more stable 
and smoother (i.e., fewer configurations with bad 
performance). In the future, we plan to apply Active 
Harmony to a variety of applications to assure the quality 
of the improvements. 

 With all these improvements, we demonstrated that 
the Active Harmony system is a feasible and useful tool in 
performance tuning for large parameter spaces. The 
techniques are helpful especially for long-running 
programs and systems. It is worthwhile to spend a small 
amount of time in characterizing the inputs as well as 
prioritizing the parameters (e.g., 20-30 iterations for the 
cluster-based web service system). This initial investment 
of time yields a dividend of a major reduction in the time 
spent tuning. 

 
Acknowledgement 

This work was supported in part by NSF award EIA-
0080206, DOE Grants DE-FG02-01ER25510 and DE-
CFC02-01ER254489. 

 
References 
1. The Apache Jakarta Project http://jakarta.apache.org/. 
2. DataGen 3.0 http://datasetgenerator.com. 
3. MySQL Database Server, MySQL AB 

http://www.mysql.com. 
4. Squid Web Proxy Cache http://www.squid-cache.org/. 
5. TPC Benchmark W http://www.tpc.org/tpcw. 
6. Anglano, C. Predicting parallel applications performance 

on non-dedicated cluster platforms. in International 
conference on Supercomputing. 1998. Melbourne, Australia. 

7. Bagrodia, R., et al. Performance prediction of large parallel 
applications using parallel simulations. in ACM SIGPLAN 
symposium on Principles and practice of parallel 
programming. 1999. Atlanta, Georgia, United States. 

8. Bezenek, T., et al., Java TPC-W Implementation 
Distribution http://www.ece.wisc.edu/~pharm/tpcw.shtml. 

9. Block, R.J., S. Sarukkai, and P. Mehra. Automated 
performance prediction of message-passing parallel 
programs. in ACM/IEEE conference on Supercomputing. 
1995. San Diego, California, United States. 

10. Brent, R.P., Algorithms for Minimization Without 
Derivatives. 1973, Englewood Cliffs, NJ: Prentice-Hall. 

11. Chen, P.M. and D.A. Patterson, A new approach to I/O 
performance evaluation: self-scaling I/O benchmarks, 
predicted I/O performance. ACM Transactions on 
Computer Systems (TOCS), 1994. 12(4): p. 308-339. 

12. Chung, I.-H. and J.K. Hollingsworth. Automated Cluster-
Based Web Service Performance Tuning. in HPDC-13. 
2004. Honolulu, Hawaii, USA. 

13. Dantzig, G.B., Linear programming and extensions. 1963, 
Princeton, N.J.: Princeton University Press. 

 10



14. Duda, R.O. and P.E. Hart, Pattern classification and scene 
analysis. 1973, New York: John Wiley & Sons. 

15. Faerman, M., et al. Adaptive performance prediction for 
distributed data-intensive applications. in ACM/IEEE 
conference on Supercomputing. 1999. Portland, Oregon, 
United States. 

16. Fahringer, T., Automatic Performance Prediction of 
Parallel Programs. 1996: Kluwer Academic Publishers, 
Boston. 296. 

17. Hollingsworth, J.K. and P.J. Keleher. Prediction and 
Adaptation in Active Harmony. in The 7th International 
Symposium on High Performance Distributed Computing. 
1998. Chicago. 

18. Jain, R., The Art of Computer Systems Performance 
Analysis. 1991: John Wiley & Sons, Inc. 

19. Jin, R. and G. Agrawal. Performance prediction for random 
write reductions: a case study in modeling shared memory 
programs. in ACM SIGMETRICS international conference 
on Measurement and modeling of computer systems. 2002. 
Marina Del Rey, California. 

20. Kapadia, N.H., J.A.B. Fortes, and C.E. Brodley. Predictive 
application-performance modeling in a computational grid 
environment. in The Eighth IEEE Symposium on High 
Performance Distributed Computing. 1999. Redondo Beach, 
CA ,   USA. 

21. Keleher, P.J., J.K. Hollingsworth, and D. Perkovic. 
Exposing Application Alternatives. in ICDCS. 1999. Austin, 
TX. 

22. Lim, C.-C., et al. Performance prediction tools for parallel 
discrete-event simulation. in workshop on Parallel and 
distributed simulation. 1999. Atlanta, Georgia, United 
States. 

23. Nelder, J.A. and R. Mead, A Simplex Methd for Function 
Minimization. Comput. J., 1965. 7(4): p. 308--313. 

24. Plackett, R.L. and J.P. Burman, The Design of Optimum 
Multifactorial Experiments. Biometrika, 1946. 33(4): p. 
305-325. 

25. Saavedra, R.H. and A.J. Smith, Analysis of benchmark 
characteristics and benchmark performance prediction. 
ACM Transactions on Computer Systems (TOCS), 1996. 
14(4): p. 344-384. 

26. Schumann, M. Automatic Performance Prediction to 
Support Cross Development of Parallel Programs. in 
SPDT'96: SIGMETRICS Symposium on Parallel and 
Distributed Tools. 1996. Philadelphia, PA. 

27. Simmons, D.M., Linear programming for Operations 
Research. 1972, San Franscisco: Holden-Day. 

28. Snavely, A., et al. A Framework for Application 
Performance Modeling and Prediction. in Supercomputing 
2002. 2002. Baltimore, MD. 

29. Tapus, C., I.-H. Chung, and J.K. Hollingsworth. Active 
Harmony: Towards Automated Performance Tuning. in 
SC'02. 2002. Baltimore, Maryland. 

30. Vraalsen, F., et al. Performance Contracts: Predicting and 
Monitoring Grid Application Behavior. in Grid Computing 
- GRID 2001. 2001. Denver, CO. 

 
Appendix A  

TPC-W Benchmark 

The major performance metric we use when tuning 
the cluster-based web service system is the TPC-W 
benchmark. The TPC-W is a transactional web benchmark 
designed to mimic operations of an e-commerce site. The 
workload explores a breadth of system components 
together with the execution environment. Like all other 
TPC benchmarks, the TPC-W benchmark specification is 
a written document which defines how to setup, execute, 
and document a TPC-W benchmark run.  

The two primary performance metrics of the TPC-W 
benchmark are the number of Web Interaction Per Second 
(WIPS), and a price performance metric defined as 
Dollars/WIPS. However, some shopping applications 
attract users primarily interested in browsing, while others 
attract those planning to purchase. Two secondary metrics 
are defined to provide insight as to how a particular 
system will perform under these conditions. WIPSb is 
used to refer to the average number of Web Interaction Per 
Second completed during the Browsing Interval. WIPSo is 
used to refer to the average number of Web Interaction Per 
Second completed during the Ordering Interval. 

The TPC-W workload is made up of a set of web 
interactions. Different workloads assign different relative 
weights to each of the web interactions based on the 
scenario. In general, these web interactions can be 
classified as either “Browse” or “Order” depending on 
whether they involve browsing and searching on the site 
or whether they play an explicit role in the ordering 
process.  

Environment 
 

Hardware Software 

Processor Dual AMD Athlon 
1.67 GHz 

Operating 
System Linux 2.4.18smp

Memory 1Gbyte TPC-W 
benchmark 

Modified from 
the PHARM [8] 

Network 100Mbps Ethernet Proxy Server Squid 2.5 [4] 
No. of 
machines 10 Application 

Server Tomcat 4.0.4 [1]

  Database Server MySQL 3.23.51 
[3] 

Table 3: Experiment Environment 

The summary of the environment used for our 
experiment is shown in the Table 3.  The 10 machines 
used include the ones running emulated browsers and the 
servers for proxy, application and database services. Each 
machine is equipped with dual processors, 1 Gbyte 
memory and runs Linux as the operating system. We 
select Squid as the proxy server, Tomcat as the application 
server and MySQL as the database server. All computer 
software components are open-source which allows us to 
look at source code to understand system performance. 
The TPC-W benchmark scale factor is 10,000 items. In 
other words, the number of the items that the store sells in 
the experiment is approximately 10,000. 
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Appendix B 

Parameter Restriction 
In our previous work, we developed the resource 

specification language which is used to communicate 
between the system to be tuned and Active Harmony 
tuning server. The system to be tuned specifies the 
parameters together with their value limit boundaries and 
the distance between two neighbor values for discrete 
parameter.  

 

 
Figure 10: Search space reduction by parameter 

restriction 

We improved the resource specification language so it 
can support basic functional relations among parameters. 
In other words, it allows that the value of one parameter is 
a function of another parameter value. This will help to 
reduce the search space dramatically. For example, 
assume there is a fixed number A of total processes 
running on a node; some number B of the processes are 
designated to handle the disk I/O tasks while some other 
number C of the processes are designated to handle the 
CPU computational tasks and the rest D processes are 
used to handle the network connections. Let’s assume B, 
C, and D are the three tunable parameters. When the 
relation A=B+C+D is known, we may need to tune two 
parameters B and C only, since D=A-B-C will be decided 
automatically after B and C are decided. Furthermore, we 
may set the value limit boundaries of B to be [1,A-2] and 
set the value limit boundaries of C to be [1,A-B-1] 
(assume at least one process is required for each different 
type of tasks) as shown in the Figure 10 . Whenever the 
server needs to “figure out” the next configuration, it 
decides the value for the parameter B first. And then it 
will decide the value for the parameter C based on it is of 
B. By doing this, we are able to reduce the high-
dimensional search space (the dashed area in the Figure 
10 ). 

 

If A=10 in this example, part of the resource 
specification language before parameter restriction can be: 

 
{ harmonyBundle B {  int {1 10 1}}} 
{ harmonyBundle C {  int {1 10 1}}} 
{ harmonyBundle D {  int {1 10 1}}} 
 
After we apply the parameter restriction technique to 

reduce the search space, this part of the resource 
specification language is simplified as: 

 
{ harmonyBundle B {  int {1 8 1} }} 
{ harmonyBundle C {  int {1 9-$B 1} }} 
{ harmonyBundle D {  int {10-$B-$C 10-$B-$C 1} }} 
 
The last line for parameter D specification can be 

further removed since the value for parameter D is decided 
after the values for parameter B and C are known. When 
the Active Harmony tuning server needs to decide the 
values for a new configuration, it will first decide a value 
for parameter B within the range [1, 8]. And then for the 
parameter C value, the tuning server will make sure it will 
be within the range [1, 9-$B]. By doing so, only the 
“meaningful” configurations will be explored (e.g., 
configurations that include B=6 and C=6 will be discarded 
automatically). 

We implement and apply this technique when tuning 
the number of each type of connectors on the HTTP & 
application server in the cluster-based web service system. 
On the HTTP & application server, there are different 
types of connectors that handle different kinds of requests 
(e.g., non-secured, secured … etc.) A connector is a 
process that handles incoming requests. The number of 
connectors decides the number of requests that can be 
handled concurrently. When the total number of 
connectors is decided, we can use this technique to select 
the number for each type of connectors. 

We also apply this technique when tuning a scientific 
library. When tuning the library, Active Harmony needs to 
decide how the matrix with k rows is partitioned into n 
blocks. Without knowing the relations among row 
partitions, the size for each row partition ranges from 1 to 
k. However, the search space can be significantly reduced 
if the size for row partition i is decided after previous i-1 
row partition sizes are decided. The program in the 
resource specification language would look like the 
follows:  

 
{ harmonyBundle P1 {  int {1 k-n+1 1} }} 
{ harmonyBundle P2 {  int {1 k-n+2-$P1 1} }} 
… 
{ harmonyBundle Pn-1 {  int {1 k-1-($P1+$P2+…+$Pn-2) 1} }} 
 
By observing the relations among parameters and 

eliminating infeasible configurations, this technique helps 
to reduce the search space and thus speeds up the tuning 
process. 

A-2 

1

1 A-2
B

C
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