Parallel Parameter Tuning for Applications with
Performance Variability

Vahid Tabatabaee
Dept. of Computer Science,
University of Maryland,
College Park, MD 20742

vahid@cs.umd.edu

ABSTRACT

In this paper, we present parallel on-line optimization algo-
rithms for parameter tuning of parallel programs. We em-
ploy direct search algorithms that update parameters based
on real-time performance measurements. We discuss the
impact of performance variability on the accuracy and effi-
ciency of the optimization algorithms and propose modified
versions of the direct search algorithms to cope with it. The
modified version uses multiple samples instead of single sam-
ple to estimate the performance more accurately.

We present preliminary results that the performance vari-
ability of applications on clusters is heavy tailed. Finally,
we study and demonstrate the performance of the proposed
algorithms for a real scientific application.

1. INTRODUCTION

Software today makes extensive use of libraries that are hard
to tune to specific application requirements. The problem
becomes even more complex when we realize that the ap-
plication requirements and characteristics are functions of
the application input, computing system architecture, and
other applications running simultaneously on the same sys-
tem. Under these conditions, it is practically impossible to
manually tune the parameters and optimize the application
performance; therefore, on-line automated parameter tuning
is the only plausible solution. In addition, on most cluster
based parallel computing platforms, program execution time
is somewhat variable, due to the activities such as house
keeping processes running, and other transient disruptions.

Active Harmony [18] is an infrastructure that provides a
mechanism for applications to become tunable with mini-
mal changes to the application structure. The user provides
Active Harmony with a list of the tunable parameters, and
their type and range. Active Harmony iteratively runs the
program, monitors its performance (running time) and tunes

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SCI05 November 12-18, 2005, Seattle, Washington, USA
(c) 2005 ACM 1-59593-061-2/05/0011...$5.00.

Ananta Tiwari
Dept. of Computer Science,
University of Maryland,
College Park, MD 20742

tiwari@cs.umd.edu

Jeffrey K. Hollingsworth
Dept. of Computer Science,
University of Maryland,
College Park, MD 20742

hollings@cs.umd.edu

the parameters to optimize the performance.

In this paper, we focus on the design and characteristics
of suitable optimization algorithms for on-line tuning sys-
tems such as Active Harmony. On-line tuning problems have
some distinct characteristics and requirements that must be
considered when designing the optimization algorithm.

The characteristics that we consider and discuss in this pa-
per are:

1-Performance Metrics: The final result and the conver-
gence time (in number of evaluation of the objective func-
tion) are two common performance metrics for optimization
algorithms. However, for the on-line tuning problem, these
are not the most appropriate ones. In the on-line tuning, the
overall performance of the system from the start to the end
are equally important for us. Therefore, the appropriate
performance metric should consider and capture the tran-
sient behavior and performance of the intermediate visited
points in the path to the final solution as well.

2-Unstructured Optimization Space: Many of the op-
timization algorithms work appropriately on well structured
problems. For instance, gradient based algorithms are ap-
propriate for continuous convex optimizations. In Harmony,
we are often dealing with integer restricted parameters and
an unknown non-convex function with multiple local mini-
mums. Therefore, we have to resort to a class of optimiza-
tion algorithms that work under these conditions.

3-Parallel Processing: We are primarily interested in
high performance computing applications, where multiple
instances of the same code are simultaneously running on
multiple processors (i.e. SPMD problems). In this case, it
is desirable to employ parallel optimization algorithms that
can take advantage of the underlining parallel structure to
converge faster.

4-Performance Variability: The on-line tuning process
monitors performance of the application for different param-
eter values and based on the observed performances modifies
parameters. The goal is to ultimately find the parameter
values that has optimal, or at least, near optimal perfor-
mance. Most algorithms are designed and studied assuming
perfect and accurate monitoring, which is not the case in
real systems. In other words, the observed performance for

a fixed set of parameters is not always the same. Therefore,
it is desirable to develop algorithms that are resilient and
able to converge to good solutions, even in the presence of
performance variability.

The contribution of this paper are: (1) Parallel optimiza-
tion algorithms that are resilient to performance variability,
(2) a simple stochastic model and monitoring mechanism
for performance variability in HPC systems. We present a
simple two priority queue system to model the performance
variability. Based on this model, we propose to use multiple
observations with a simple minimization operator to esti-
mate the performance more accurately. We show that the
minimization operator is very effective, even when the per-
formance variability is a heavy tail stochastic process with
infinite variance.

The rest of the paper is organized as follows: Section 2 de-
fines the problem and introduces the performance metrics
for the optimization algorithms. Section 3 describes the di-
rect search algorithms for optimization and introduces the
parallel algorithms that we developed for on-line tuning.
Section 4 elaborates on stochastic modeling of the perfor-
mance variability. Section 5 describes how to use multiple
sampling to cope with performance variability, and proper-
ties of the minimization operator. We present the simulation
results and discuss them in section 6. Section 7 reviews re-
lated works, and section 8 concludes the paper.

2. PROBLEM DEFINITION AND PERFOR-
MANCE METRIC

We consider software applications with an iterative structure
using SPMD style computation. After finishing each iter-
ation on all processors, information is exchanged between
nodes and the next iteration starts. We consider that the
application should run for a fixed number of iterations or
time steps, say K, to get the ultimate result. Our objec-
tive is to minimize Total Time(K), which is the time that
it takes to run the program for the desired number of time
steps, K. Suppose that we want to run the application for
K time steps on P parallel processors. Let T} be the time
that it takes to run the kth iteration, and ¢, be the time
that it takes to run kth iteration on the pth processor. We
have,

Ti= max (i) (1)
and
K
Total Time(K) = ZTk. (2)
k=1

Our main performance metric is T'otal Time(K). Two typi-
cal performance metrics for optimization algorithms are the
final solution after convergence and the convergence speed.
These asymptotic metrics could be misleading for on-line
tuning, since the number of iterations is fixed to K and the
algorithm may not have enough time to converge. Even if
K is large enough that the algorithm converges, the overall
performance could be dominated by the performance of the
algorithm at the initial time steps before convergence.

Single Iteration Time for 3 Algorithms
T T T

T T T T T T
—— Algorithm 1
—— Algorithm 2

10° Algorithm 3 4

Iteration Time

Time step
(a) Single Iteration Time plot for 3 algorithms

Total Time for 3 Algorithms
15000 : . .

—— Algorithm 1
—— Algorithm 2
Algorithm 3

o
5]
5]
S
L

Total Time

5000 B

L L L L L L L L L
o 100 200 300 400 500 600 700 800 900 1000

Time Step.
(b) Total Time plot for 3 algorithms

Figure 1: Single Iteration time and Total Iteration
Time for 3 different algorithms. Fig.1-(a) shows the
Iteration Time, where it is clear that Algorithm 3
converges to a better solution ultimately. Fig.1-b
shows the Total Time from which it is clear that
Algorithm 1 performs better.

Furthermore, for every iteration k, the worst case perfor-
mance (maximum value) is used for Tj. This is again dif-
ferent from common practice, where the best performance
is considered in every iteration. Note that in our on-line
tuning model all processors should wait for the last proces-
sor before starting the next iteration; hence, the worst case
performance is the bottle neck.

To clarify the performance metric issues, consider three opti-
mization algorithms whose performance are plotted in Fig.1.
These algorithms are different variants of direct search op-
timization methods that we discuss later. Fig.1-a shows
each iteration’s worst case performance, Tk, versus itera-
tion. This plot is closer to the plots that are typically used
for comparison of the optimization algorithms, where the
best case performance is usually used. However, for the
on-line tuning the Total Time plot of Fig.1-b is more ap-
propriate. Note that the Total Time curve of Fig.1-b is the
integral of the worst case performance given in Fig.1-a. By
looking at Fig.1-a, one may conclude that Algorithm 3 is the
best, where as from Fig.1-b, we can conclude that Algorithm
1 is more appropriate for on-line tuning. The main reason

'Our actual tuning system works for applications that do
not have this synchronization requirement, but for the pur-
pose of algorithm analysis it is useful to include.

behind the discrepancy is the transient behavior of Algo-
rithm 1 in the first 100 time steps, where it has significant
fluctuations.

In summary, for on-line tuning, initial transient behavior of
the algorithm can be more significant than the final value at
the convergence point of the algorithm. This fact should be
taken into account in selecting the appropriate optimization
algorithm. For instance, randomized scheduling algorithms
such as Simulated Annealing and Genetic Algorithms that
are often considered suitable for unstructured optimization
problems are not appropriate for on-line tuning, since even
though they can ultimately converge to the optimal solution,
they have very poor initial performance.

3. DIRECT SEARCH ALGORITHMS

Direct search methods are a class of optimization algorithms
that do not explicitly use function derivatives. Consider the
problem of finding a local minimum of a real-valued function
f(X). If f is differentiable and V f(X) can be computed or
estimated, there is a plethora of gradient-based algorithms
to solve this problem. However, if Vf(X) is not available
or if f is not differentiable, we have to rely on alternative
algorithms such as direct search methods. The on-line tun-
ing problem is a very good example for the latter group,
since in most cases the performance function is not differen-
tiable, and if it is differentiable, its gradient is not explicitly
computable.

The Nelder and Mead Simplex algorithm [13] is one of the
most commonly used direct search methods. In fact, the
Simplex algorithm has been used in the Active Harmony sys-
tem [18]. Despite its popularity, the Simplex algorithm has
several shortcomings for on-line tuning applications, which
motivated us to consider Rank Ordering algorithms. The
Rank Ordering algorithms are an alternative group of direct
search algorithms. In the following we briefly review the
Simplex and Rank Ordering algorithms, and then describe
our Parallel Rank Ordering implementation for on-line tun-
ing.

3.1 Simplex Algorithm

The Nelder-Mead Simplex method is a direct search algo-
rithm for minimizing a function of multiple variables. For
a function of IV variables, the algorithm maintains a set of
N +1 points forming the vertices of a simplex or polytope in
N-dimensional space. This simplex is successively updated
at each iteration by discarding the vertex having the highest
function value and replacing it with a new vertex having a
lower function value.

Let vo, - ,vn be the vertices of the corresponding simplex
and vn be the point with the highest function value among
them. We first compute ¢, the centroid of the other simplex
vertices:

c= (2) /N (3)

The point vx will be replaced by a point on the line vy +
a(c —vn). Typically, a € {0.5,2,3}, but the « selection
process depends on implementation. Usually, the first step

is to compute the function value at the reflection point (a =
2). Depending on the result we either check for expansion
(a = 3) or contraction (o = 0.5). If none of the computed
values is less than the function value at vnx, we contract the
whole simplex around the best point.

The simplex algorithm works well, when there is only 1 tun-
able parameter [12]. However, its performance becomes un-
predictable when the number of variables increases. One of
the basic problems with the Simplex algorithm is the abil-
ity to deform the simplex, which may eventually lead to a
degenerate simplex that does not span the /N-dimensional
space. Furthermore, the Simplex algorithm is inherently a
sequential algorithm and is not able to fully take advantage
of parallel infrastructures. In the on-line tuning applica-
tions that we consider, often there are multiple processors
that are executing the same or very similar code and after
each iteration they exchange information. Therefore, it is
desirable to use different parameter values on different pro-
cessors and evaluate their performance concurrently. Rank
Ordering algorithms can take advantage of the concurrent
performance evaluation to speedup convergence.

In summary the major problems with the Simplex algorithm
for on-line tuning are:

1. It may converge to a degenerate simplex; therefore,
it would not be able to search the parameter space
effectively.

2. Its performance is very sensitive to the initialization
and implementation details.

3. It can not fully take advantage of parallel infrastruc-
ture to speedup the process.

4. It is not stable in the presence of performance variabil-
ity and measurement errors.

3.2 Rank Ordering Algorithm for Parameter

Tuning

Our discussion on the Simplex algorithm clarifies that not
all the direct search algorithms reliably converge to a local
minimum. The Simplex algorithm can sometimes work effi-
ciently, but it can also fail unpredictably. Kolda, et al. [7]
introduces a class of reliable direct search algorithms, Gener-
ating Set Search (GSS). they also prove that if the objective
function f is continuously differentiable, then GSS produces
a sequence of points X}, such that,

lim inf [V F(X)l| = 0. (4)

This result is similar to the convergence results for gradient
based algorithms, since it guarantees that the GSS algo-
rithms converge to a stable point of the objective function
f- Therefore, compared to non-GSS direct search methods,
the GSS algorithms have predictable and more reliable per-
formance.

In this paper, we use Rank Ordering direct search algorithms
[11], which are in the GSS class and constitute all necessary
conditions for convergence. The Rank ordering algorithms

Algorithm 1 : Sequential Rank Ordering

1: Start with initial simplex with vertices {v3,--- ,v3} and eval-
uate f(U(J))i j=0,---,n
k=0

2: k=
3: while Stopping criteria not valid do
4: Reorder simplex vertices so that f(v9) <--- < f(vF)
5 = 21}2 — v, evaluate f(rg) {Reflection checking step}
6: if f(ry) < f(v?) then
T: er = 3112 — 2u7, evaluate f(ex) {Ezpansion checking
step}
8: if f(er) < f(rx) then {Accept expansion}
9: vi_'_l = 3v) — 20}, evaluate f(vfc_'_l) j=1,---,n
{Ezpansion steps}
10: else {Accept reflection}
11: fo_l = 209 — vJ, evaluate f(”2+1) j=1,---,n
{Reflection steps}
12: end if
13: else {Accept shrink}
14: Ujyy = 0.5(0Q +v}), evaluate f(vj ;) j=1,--,n
{Shrink steps}
15: end if
16: k = k+1

17: end while

can leverage parallelism [5] to speedup convergence. For
clarity and brevity, we explain Rank Ordering algorithms in
the basic form appropriate for our application and not in
the most general form.

Rank Ordering algorithms start with an initial simplex with
vertices {v,---,v5} and evaluate f at all vertices. The
initial simplex should span the optimization space, hence
n > N. At every iteration, the simplex is either reflected,
expanded or shrunk around its best vertex (the vertex with
the least function value).

Algorithm 1 is the basic Sequential Rank Ordering (SRO)
algorithm given in [11]. At each iteration, one of the three
possible steps of reflection, expansion, or shrink will be ac-
cepted. Examples for each one of these steps are shown in
Fig. 2 for a 2-dimensional space and a 3 point simplex.

At each iteration ry, the reflection point of the worst vertex,
v} around the best vertex, vQ is computed. Intuitively, the
direction from the point with lowest function value to the
point with highest function value approximates the gradient
direction. If f(ry) is less than f(v}), i.e., the best perfor-
mance point on the simplex, we compute e, the expansion
of the worst point. If the expansion point performance is
better than the reflection point, we accept the expansion,
otherwise we accept the reflection. Note that reflection and
expansion are only accepted if their performance is better
than the best point discovered so far (otherwise we shrink
the simplex). This is different from the Simplex algorithm
approach, where the reflection is accepted if its performance
is better than the worst vertex of the simplex.

We considered and tested alternative parallel variants of the
SRO algorithm. However, for brevity, we only explain the
version selected, which had the best overall performance.

The proposed Parallel Rank Ordering (PRO) for on-line tun-
ing is given in Algorithm 2. Function II(.) that is used in

Original Simplex

Reflected Simplex

Shrink Simplex Expanded Simplex

Figure 2: Original 3 point simplex in 2-dimensional
space and the transformed simplexes after reflec-
tion, shrink and expansion around the point v)

PRO description is projection mapping. We will give a pre-
cise definition for II(.) later, but its purpose is to make sure
that the computed points always belong to the admissible
region. After initialization steps the main loop starts in line
3. In the main loop, performance (function value) at all the
reflection points are found in parallel on n processors (line
5). If reflection is successful, which means that there is at
least one reflected point with better performance than the
best point of the simplex, we check for expansion (line 8).
Recall that in the SRO, we only compute one point in the
reflection checking step (line 5 of Algorithm 1). Therefore,
the PRO criteria for reflection and expansion, since it relies
on performance of n points, is more reliable and improves
the performance.

Before, computing all n expansion points in line 10, we check
the outcome of expansion in line 8 for one point that has the
highest chance. This seems to be counter-intuitive at first
glance, since we are not taking full advantage of parallelism.
However, in our simulations, we realized there are some ex-
pansion points with very poor performance that can slow
down the algorithm. Therefore, to avoid these time consum-
ing instances, we are better off to calculate the expansion
point performance for the most promising case first, and if
it is successful then perform the expansion for other points.

If reflection is not successful and there is no reflected point
performing better than the best point of the simplex, shrink-
ing of the simplex is accepted. All the shrinking points and
their performance are computed in parallel.

If we have at least n parallel processors (we will talk later
about the value of n), each iteration of the PRO algorithm

Algorithm 2 : Parallel Rank Ordering

1: Start with initial simplex with vertices {vg, s

,v3 } and eval-

) zateof(vé), j=0,---,n in parallel on n processor.

3: while Stopping Criteria Not Valid do

4: Reorder simplex vertices, so that f(v) <--- < f(v})

5: Compute n reflection points ri =1 (21}2 - v,’c‘) , and func-
tion values f(ri), j =1,---,n in parallel on n processors.
{Reflection step}

6: | =argmin; f(r},)

7:if f(rl) < f(vQ) then

8: e =11 (3112 - 2112), evaluate f(er) { Ezpansion checking

step}

9: if f(eg) < f(r}) then {Accept ezpansion}

10: Compute n expansion points e, = II (3v? —v7), and
function values f(e},), j = 1,---,n in parallel on n
processors. {Ezpansion step}

11: 'ufc_l_l:e{c j=1,---,n

12: else {Accept reflection}

13: vﬁﬂ_l:ri j=1,-+,n

14: end if

15: else {Accept shrink}

16: Compute II (U§e+1 = 0.51)2 + O.Svi) , and f(”i:+1) ji=

1,---,n in parallel on n processor. {Shrink step}

17: end if

18: k = k+1

19: end while

takes at most 3 time steps (reflection, expansion checking,
and expansion steps). In the following, we will go over some
PRO implementation issues.

3.2.1 Projection Operator

On-line tuning is a constrained optimization problem. There-
fore, in each step we have to make sure that the computed
points are admissible, i.e. they satisfy the constraints. The
projection operator II(.) takes care of this problem by map-
ping points that are not admissible to admissible points.
We consider two types of parameter constraints: boundary
constraints and internal discontinuity constraints.

Boundary constraints are upper and/or lower limits for the
parameters. If the computed value for a parameter is less
(greater) than the lower (upper) limit, the projected value
for that parameter would be equal to the lower (upper) limit.

Some tuning parameters can only have admissible discrete
values. For instance, many of the variables are finite inte-
ger numbers. The projection operator makes sure that the
computed parameters are rounded to an admissible discrete
value. Consider the point z = (x(1),--- ,z(N)) € RY that
is computed after a transformation (reflection, extraction, or
shrink) around the point vy in PRO. For every parameter
1, if x(7) is admissible it will remain the same. Otherwise,
if 1(4) < z(i) < u(?), for two consecutive admissible values
1(7) and (i), then projection of z(3) is () if v (i) < z(3),
and is (i) if v2(7) > 2(4). In other words, every parameter
is rounded to its lower or higher discrete value, whichever is
closer to the transformation center v2(i). In this way, after
a finite number of consecutive shrinking transformations,
all discrete parameters x(k) become equal to vy (i). This
property will be used to check convergence in the stopping

criteria.

3.2.2 Stopping Criteria

After every iteration, the algorithm checks to see if all sim-
plex vertices are the same (for discrete parameters) or very
close (for continuous parameters). If that is the case, the al-
gorithm checks for convergence. To that end, a 2N-dimensional
simplex around the v with vertices {v2+use;, v°—lie; 1 4 =
1,---,N} is generated, where e; is the unit vector with 1 in
its 7th index and zero for other indexes. If ith parameter is
continuous, u; and l; are sufficiently small numbers, and if
it is discrete, u; and I; are selected such that vp (i) + u; and
v9(i) — I; are discrete neighbors of v (7). If v2(3) is a lower
(upper) boundary value, then I; (u;) is zero.

Performance at all 2V generated points are computed; if
none of them outperforms v2, then v2 is a local minimum
and we can stop, otherwise we can continue PRO with the
generated simplex.

3.2.3 Initial Simplex

The initial simplex needs to be non-degenerate so that it can
span the whole parameter space; therefore it should have at
least N + 1 vertices. However, for dealing with discrete
parameters this may not be sufficient. In fact, this was con-
firmed in our simulations, where we observed a simplex with
2N vertices performs much better than a minimal simplex
with NV + 1 vertices. Vertices of the initial simplex in PRO
are: {II(c+b;.e;), @ =1,---,N}, where c is the center
point of the admissible region.

Optimal value for vector b = (b1,--- ,bn) elements, which
controls size of the initial simplex, is problem dependent.
In general, if b is too small, the algorithm may trap in a
low performance local minimum close to the center. On the
other hand, if it is too large, performance may suffer from
poor performance of marginal parameter values [3]. As a
compromise, we set b; to,

bi = 0.1(u(3) — 1(3)),

where /(i) and u(i) are the lower and upper limits for pa-
rameter ¢ respectively. We plan in the future to investigate
this and develop adaptive methods for computing b.

4. PERFORMANCE VARIABILITY ANDITS
IMPACT ON PARAMETER TUNING

Besides the tunable parameters, there are many other fac-
tors affecting a program’s performance. Therefore, even
for a fixed set of tunable parameters, the application per-
formance varies in time. Other applications running on
the same processor, network performance, operating sys-
tem, and memory architecture are common sources of per-
formance variability. We are not attempting to minimize or
control the variability here, but our goal is to design opti-
mization algorithms that are resilient to performance vari-
ability. In this section, we first provide a simple stochastic
model for performance variability and present some primary
data, based on measurements from a real cluster, indicating
the presence of a heavy tail component in the probability
distribution function (pdf).

4.1 Two job Model

We model the computing system as a single machine with a
strict priority scheduler serving two set of jobs. The tunable
application is the second priority job and all sources of per-
formance variability are modelled as the first priority job.
The computing system processes (serves) the application,
whenever there is no first priority request. First priority
job arrival is a random process; therefore, the application
performance (finishing time of the second priority job) is a
random variable (r.v.).

Let f(v) be the application performance for parameter v,
when there is no first priority job in the system. The appli-
cation performance, y is:

y = f(v) + n(v). (5)

The random variable n(v) is the time the system spends
processing first priority jobs, while the application is in the
system. It will shortly become clear why n(-) is a function
of v in our model. Let p, the idle system throughput, be the
system throughput when there is no second priority job in
system. In other words, p is the average processing time of
the first priority jobs. From the application perspective, the
effective system throughput is 1 —p. The average (expected)
system performance is:

5) = 1. ©)
From equations (5)-(6) we have:
B(n(v)) = £ f(v). (7)

Now, it should be clear that the expected variability is a
linear function of f(v); hence, the r.v. n(-) is a function of
the application parameters v.

4.2 Heavy Tail Model

In the previous section, using the two job model, we showed
that the expected performance is a linear function of the
idle system throughput. In this section, we go one step
further and introduce an appropriate distribution for the
performance. Derivation of an accurate model requires fur-
ther research and study; however, at this stage, our goal
is to capture those characteristics that are critical for the
optimization process.

Previous studies of the performance variability indicate that
there is a non-negligible probability of observing large vari-
ations in the finishing time of an application [9,15]. This
feature can be captured through the use of so-called heavy
tail models. Heavy tail distributions exhibit tails that decay
as a hyperbolic function, which is in contrast to the typical
exponential decay in other models such as a Gaussian dis-
tribution.

A distribution is said to have a heavy-tail if:

PX>z|~z %asz 00, 0<a<?2 (8)

This means that regardless of the distribution for small val-
ues of the random variable, if the asymptotic shape of the
distribution is hyperbolic, it is heavy-tailed [4]. The simplest
heavy-tailed distribution is the Pareto distribution which is

hyperbolic over its entire range and its cumulative distribu-
tion function (cdf) is given by:

Fx(z) =P[X <z]=1-(8/x)°, (9)

where is the smallest value the r.v. can take. For 1 < a <
2, Pareto distribution has finite mean and infinite variance,
and for 0 < a <1, both mean and variance are infinite.

Heavy-tailed distributions have properties that are qualita-
tively different from commonly used distributions such as
Exponential, Normal or Poisson distributions. Therefore, it
is important to figure out if the performance variability dis-
tribution is heavy tail. In the next section, we will try to
answer this question.

4.3 Performance Variability for GS2 Applica-
tion:

GS2 [6, 8] is a physics application program, developed to
study low-frequency turbulence in magnetized plasma. In
this section, we use GS2 to study the performance variabil-
ity, when the application parameters are fixed. In section
6, we use GS2 to study performance of the PRO algorithm
in tuning application parameters. GS2 has several tunable
parameters, which can be set to represent the appropriate
conditions for different modes. We considered three major
parameters in our study: ntheta (number of grid points per
2 pi segment of field line), negrid (energy grid), and nodes
(number of nodes).

Fig. 3 shows the running time of the GS2 with fized param-
eters for 800 time steps on 4 processors from a 64 processor
run.? Clearly, there are two distinct type of spikes in the
plots: big and small. There is also high correlation and
similarity between the curves. Currently, we are examining
whether the high cross-processor correlation is repeated in
other applications. Regardless of the cross-processor cor-
relation, existence of spikes is an evidence for a heavy tail
component.

At this point, we do not know if the source of the observed
variation in runtime between time steps is due to the appli-
cation, or due to the system it runs on. For the purposes
of designing a robust online tuning algorithm, the source of
this variability is not important, but its properties (i.e. is it
heavy tailed) is what matters.

Fig. 4 is the pdf of all 64 processors performance data. As
we expect, the last three bars are not negligible, which indi-
cates existence of a heavy tail component in the distribution.

One systematic way for checking heavy tails is to draw the
log-log scale plot of 1-cdf, which is P[X > z]. For the heavy
tail r.v., tail of the log-log plot should be approximately
linear. Fig. b is the corresponding plot for the GS2 data
and the last part of the graph approximately forms a line.

In order, to study characteristic of the small spikes in fig. 3,

2The cluster used has 64 nodes. Each node is equipped with
dual Intel Xeon 2.66 GHz processors. Nodes are connected
via Myrinet network, and used the PBS batch scheduler to
admit at most one application per node at a time.

Performance of 4 out of 64 processors running GS2 in parallel
T T

7 T T T
Y
ESF]
4 I I I I I I I
0 100 200 300 . 400 500 600 700 800
iteration
7 T T T T T T T
2 f
5
= ek DT R B | | L
4 I I I I I I I
0 100 200 300 . 400 500 600 700 800
iteration
7 T T T T T T T
& f
= Lk T T | J L
4 I I I I I I I
0 100 200 300 . 400 500 600 700 800
iteration
7 T T T T T T T
& f
= Lk DT N B N L
4 I I I I I I I
0 100 200 300 . 400 500 600 700 800
iteration

Figure 3: Running time for 800 iterations of the GS2
program on 4 out of 64 parallel processors

we truncate the GS2 data and remove all samples that are
larger than 5. The pdf and 1-cdf plot for the truncated data
is shown in fig. 6 and 7 respectively. Evidence for heavy
tail component, which is due to the small spikes this time,
is present in the plots.

In summary, the data presented in this section suggests that
the performance variability is heavy tailed. As we show in
the next section, the heavy tail assumption has profound
impact on the characteristics and performance of the esti-
mation and optimization algorithms.

S. VARIABILITY RESILIENT METHODS

In this section, we provide an optimization algorithm that
is resilient to both heavy and non-heavy tail performance
variability distributions. Before proceeding further, we have
to review some properties of the random variables that we
will use throughout this section.

Let z1,- -,z be a sequence of i.i.d. random variables with
cdf function Fx(z). Let Qx () be defined as below:
Qx(z) =1— Fx(z) = P[X > z|. (10)
Let LY = min (z1,--- ,zx). For L™ we have:
QLgck)(l) = P [LS“) >1
= Pmin(x1,---,2%) >] (11)
= [@x ()]

5.1 Multiple Sampling and Minimization Op-
erator

Probability

P(X>=Time)

Probability

0.07

e

o

R
T

o

o

5]
T

0.07

0.06

o
=3
K

=4
9
=)

0.02

0.01

Histogram for GS2 Run Time
T

<+~ (0.9342)

Heavy tail component

l

4 4.5 5 55 6 6.5 7
Time

Figure 4: pdf of the GS2 data

1-cdf for GS2 Run Time in a log-log scale
T

7N

Heavy tail component

Time

Figure 5: 1-cdf of the GS2 data

Histogram for Truncated GS2 Run Time

Time

Figure 6: pdf of the truncated GS2 data

1-cdf for Truncated GS2 Run Time in a log-log scale
10 * T T T

062

10 10 10

Time

Figure 7: 1-cdf of the truncated GS2 data

The conventional method for dealing with stochastic vari-
ability in the direct search methods is to use multiple sam-
ples to estimate the function value at each desired point [19].
If we know the performance variability distribution, we can
design an optimal estimator. However, in reality such infor-
mation is not available, and we have to rely on more general
estimators.

A natural choice for estimator is an average operator. If
we take the average of multiple performance measurements,
y in (5), one may ezpect that the average converges to the
expected value of y. However, this is only true if y has
finite variance. Recall that a heavy tail random variable
does not have finite variance; therefore if y contains a heavy
tail component we can not rely on the average operator.

Results in the previous section for GS2 data as well as data
presented in [9,15] suggest that performance variability dis-
tribution is heavy tailed. Consequently, we propose to use
the min(-) operator.

Let yx be the kth sample for f(v). From (5), we have:
yr(v) = f(v) + nk(v). (12)

The min value is:

L) = min(n), -, yx() (13)
= f(v) +min(ni(v), - ,nx(v)).

Let nmin(v) be the smallest value for n(v) with non-zero
probability. It is easy to show that for any € > 0,

P[L?(IK)(U) > f(v) + nmin(v) +€] = 0as K = co. (14)

Note that nmin(v) is a deterministic function of f(v). There-
fore, if we can express nmin(v) as a function of f(v), for suf-
ficiently large k, L'; (v) can be approximated as a function

of f(v),
L{ (v) = f(v) + nmin(v) = G (£(v)). (15)

Conversely, after computing L (v), we can use the inverse
function G~ (L, (v)) to estimate f(v).

In reality, we do not have G(-), but on the other hand, we
do not need to estimate f(v) either. For the optimization
algorithm, we only need to order the performance of the
two alternative configurations. To that end, it is reasonable
to assume that nmin(v) is an increasing function of f(v).
In that case, if we want to compare performance of two
alternative parameter sets v1 and v2 we can use the following
property:

f(v1) is greater(less) than f(v2), iff f(vi)+
Nmin(v1) s greater(less) than f(v2) + nmin(v2).

In other words, for comparing performance of two alterna-
tive parameter configurations v; and v2 in the PRO algo-
rithm, if we take enough samples so that the min(-) operator

converges, it is sufficient to compare Lj(,K) (v1) and Lg(,K) (v2).

As an example, let’s assume that n(v) has Pareto distribu-
tion and the system idle throughput is p. For the Pareto
distribution we have,

E(n(v)) = af/(a —1) (16)
From (7), (16):
_(a=Vp..
p= 0= 1) ()

Note that nmin = 8, which from (17) is a linear function of
f(v). Next, we compute the 1-cdf function for each sample
y = f(v) + n, using relation (9) for Pareto distribution:

Ply> =Pl z-fo) = (50) a9

and using relation (11) for the minimum of K samples LgK) (v):

P[L;K)(U) >z]=Pln>z— f(”)]K = (z—L;(U)>) '
(19)

Interestingly enough the minimum of K samples have Pareto
distribution with parameter K. Therefore, even when 0 <
a < 1 and samples have infinite mean and variance, for
K > o', the minimum has finite mean and variance and
is not heavy tailed. This is a very interesting and appealing
characteristic, which guarantees convergence of the min op-
erator, even when samples are very unpredictable and have
infinite mean and variance. The average operator does not
have this property and that is the main reason for its failure.
Moreover,

PILIO (0) > F(v) + namin(v) + €] = (ﬂﬁg> a’ o0

which satisfies (14).

5.2 Multiple-Sample Parallel Algorithms

In this section, we introduce a modification to the PRO al-
gorithm that is more resilient to the performance variability.
The modification is based on the previous section. Basically,
instead of evaluating f(v) only once, we evaluate it K times,
where K is a fixed pre-determined integer. Then, we use the

minimum of K evaluation instead of f(v) in the PRO algo-
rithm. Basically, in Algorithm 2, we are replacing f(-) with
L)

The main question is how to set the parameter K. In the
PRO algorithm, we do not need to estimate the function
value exactly, but we need to order function values at two
alternative points v; and ve with minimal error. Suppose
that the parameter space is discrete and finite. Define,

A(vi,v2) = |f(v1) + 2min(v1) = f(v2) = Pmin(v2)] . (21)

Let A > 0 be small enough so that if A(vi,v2) > 0, then
A(v1,v2) > A for all admissible v1 and v2. Intuitively, A is
less than the least possible non-zero performance difference
between two points.

From (14), we know that for any € > 0 there exists Ko > 0
such that

P[LgKO)(U) > f(v) + Pmin(v) + A] < e (22)

If we know A, we can start with a desirable error probability
€ > 0, and compute sufficient number of samples Ky. In
practice, it is not easy to find a fixed value for K. Currently,
we are working on optimization algorithms that update K
adaptively. In a parallel setup, depending on the number
of parallel processors and tunable parameters, we might be
able to calculate multiple samples in parallel without any
additional time burden.® For instance, for the GS2, there are
three tunable parameters. Therefore, we need to evaluate
the performance at 6 different points for each time step. If
there are 64 parallel processors running GS2 concurrently,
we can set K = 10 with no additional cost.

6. SIMULATION RESULTS

In this section, we present simulation results for the PRO
algorithm. First, we explore the effect of initial simplex size
and shape on the performance. In the second part, we study
performance of the modified PRO with multiple samples for
different levels of idle throughput. To conduct a controlled
study, we used a data base that contains the performance of
the GS2 application for different parameter values, and sim-
ulated various optimization algorithms. There are 3 tunable
parameters, however the data base does not contain all pos-
sible combinations. If a point is not in the data base, we use
weighted average of its closest neighbors performance val-
ues to estimate its performance. Fig. 8 shows performance
of the GS2 data base when one of the parameters is fixed.
Clearly, the optimization surface is not smooth and contains
multiple local minimums.

6.1 Initial Simplex

In this section, we study how the initial simplex size and
shape affects the performance. We consider two alterna-
tive shapes for the simplex. The first simplex is a mini-
mal simplex with V + 1 vertices. The first NV vertices are
{II(c+bi.e;), ©=1,---,N}, where c is the center of the
admissible region and b; = w Recall that u(7) and

3For the analysis to be valid, we would need independence
of the variability on multiple processors during a single time
step.

GS2 Performance as a function of two tunable parameters when the third parameter is fixed

2500

2000

1500

1000

Performance

fA“‘“
[2 “:‘).
{"' = 0"(=

‘:‘A,“

500

parameter 2

parameter 1

Figure 8: GS2 performance plot as a function of
two tunable parameters, when the third parameter
is fixed.

(1) are upper and lower limits for the ith tunable param-
eter, and r, the initial simplex relative size, is a variable
that specifies the simplex size. The second simplex has 2V
vertices {II (c + b;.e;), i=1,--- ,N}

Performance for alternative simplex shapes and with differ-
ent values of r is plotted in fig. 9. The 2N vertex simplex,
clearly outperforms the IV + 1 vertex simplex. Initial size of
the simplex also has considerable effect on the performance
of the algorithm.

Next, we focus on the 2N vertex simplex and study how
its performance varies with r. We are not trying to find
the optimum value for r here, since it is obviously problem
dependent. Our intention is to come up with a general set
of rules for setting up 7. From the plot, we can infer that
neither small nor large size initial simplexes likely perform
well.

Regarding, large initial simplexes, this result is consistent
with the results reported in [3], which concluded that ex-
treme values for parameters often do not perform very well.
The small values of r, when the simplex points are very close
to each other, it may cause two problems. First, if there is
a local minimum close to the center, the algorithm may get
stuck in that neighborhood and not be able to explore other
areas. Second, even if there is no local minimum close to
the center, the simplex should go through several expan-
sions, which are very costly in terms of performance, before
finding the minimum. Based on these observations we use a
2N vertex simplex with » = 0.2 in the rest of simulations.

6.2 Multiple Sampling and Performance Vari-
ability

In this section, we study performance of the modified PRO

with multiple samples for different idle throughput values.

x10° Effect of Initial Simplex Size and Shape on the Performance

22 T T T T T T
—e— 2N vertex Simplex
=+ N+1 Vertex Simplex

-
21F ~ i

Total Time

4
0.1 0.15 02 0.25 0.3 0.35 04 0.45 05
Initial Simplex Relative Size (r)

Figure 9: Average Normalized Total Time vs. Num-
ber of Samples for Different Idle Throughput Values

Performance variability, n(v), is modelled as an i.i.d. Pareto
distribution. The appropriate value for the Pareto distribu-
tion parameter a depends on the application and system,
but for now we have set it to 1.7. The performance variabil-
ity is, therefore, heavy tailed with finite mean and infinite
variance.

The value of 8 is derived from relation (17). We assume
that multiple samples for a single point are taken in sub-
sequent time steps. Hence, we do not take advantage of
multiple parallel sampling. Obviously, this assumption may
not be true, but will create a worst case scenario for the
multiple sampling case. In each experiment, we calculate
Total_Time(100), which is the total time to run 100 time
steps. Each configuration is specified by two parameters:
idle throughput and number of samples. The number of
samples range is from 1 to 5, and the idle throughput go
from 0 to 0.4 in 0.05 steps. For each configuration, we run
2,000 simulations and compute the average Total _Time.

From relation (6), the average finish time of the system in-
creases by a factor of 1/(1—p); therefore, average T'otal_Time
for different idle throughput values are not directly compa-
rable. In order to make the Total_Time values comparable,
we use Normalized_Total Time (NTT), where:

NTT = (1 — p)Total Time. (23)

Simulation results are summarized in Fig. 10. First of all,
notice that NTT for p = 0 increases linearly with number
of samples, which is the expected result. Since there is no
performance variation in this case, multiple samples of the
same point are equal and redundant, and performance does
not improve by multiple samples. However, since samples
are taken in subsequent time steps, we are increasing the
number of time steps, which results in linear increase of
Total Time.

10

sNor(ﬁaIized Total Time fo
.

28

26F

r GS2 Data vs Number of Samples for Different Sytem Idle Throughput Levels
T T

T
+=rtho=0
= rho =0.05
— rtho=0.1
—— rho=0.15
— rtho=0.2
rho = 0.25
— rtho=03
— rho=0.35
— rtho=04

Normalized Total Time

Number of Samples

Figure 10: Average Normalized Total Time vs.
Number of Samples for Different Idle Throughput
Values

In other plots, there is an internal minimum point, which
is the optimal number of samples for the corresponding idle
throughput value. As we expect, the optimal number of
samples increases as the idle throughput, and consequently
performance variation, increases.

In general, the system performance decreases as the Per-
formance Variation increases, with a very interesting excep-
tion. The p = 0.05 curve is below the p = 0 curve, which
is counter-intuitive. This is possibly due to the complex-
ity of the optimization surface. The optimization function
has many local minimums, and therefore PRO may often
trap in a local minimum basin of attraction and fail to find
better solutions. A small value of the p can work as a con-
trolled noise level that helps the system get out of low per-
formance local minimums. This is similar to the concept
used in the design of randomized optimization algorithms
such as Simulated Annealing. So oddly enough, a little bit
of performance variability can actually improve the overall
performance when using on-line tuning.

7. RELATED WORK

Our prior work on Active Harmony [3, 18] looked at using
historic data to infer the objective function and to demon-
strate that the ideas could really improve an application per-
formance. Our main contribution, in this paper, is to con-
sider parallel optimization algorithms, study the impact of
performance variations on the optimization algorithm, and
to provide simple modifications to make the algorithm re-
silient to these variations.

Several other projects have looked at runtime tuning of ap-
plications. The Autopilot project [16, 17] allows applica-
tions to be adapted in an automated way. The AppLes
project [2] and the Odyssey project [14] focus on resource
awareness at the application level. In those systems, appli-

cations are informed of resource changes and provided with
a list of available resource sets. The ATLAS [20] project
has developed automatically tuned linear algebra libraries,
their approach is an off-line tuning for a specific platform,
rather than the Harmony approach of on-line tuning. The
Nimrod/O project [1] tries to reduce the search space for
engineering design. It applies multiple tuning algorithms
including Simplex, P-BFGS, Divide and Conquer, and Sim-
ulated Annealing.

Characteristics and shortcomings of the Simplex algorithm
are mentioned in several papers. Lagarias et al. [10] prove
convergence for all 1-dimensional strictly convex functions.
However, even for the 2-dimensional case, McKinnon [12]
provides a family of strictly convex functions and a set of
initial conditions for which the Simplex algorithm converges
to a non-minimum. He also reports that the algorithm is
not stable against small numerical perturbations caused by
rounding errors.

Structure and convergence of the rank ordering algorithms
are discussed in [5,11]. Kolda, et al. [7] is a comprehensive
review of the direct search algorithms.

Performance variation of parallel architectures are discussed
in [9,15]. However, their objective is to provide a system-
atic mechanism to find causes of variations, and then to fix
them. Our approach is different; we model variations as a
stochastic process and develop robust algorithms that func-
tion properly, even when application performance is vari-
able.

8. CONCLUSION

We presented a Parallel Rank Ordering algorithm for tuning
of application parameters. The algorithm belongs to a class
of direct search algorithms known as GSS methods that are
proved to have more reliable and predictable performance
compared to the Simplex algorithm [7]. We discussed the
impact of the performance variability on the behavior of the
optimization algorithm. We presented preliminary results
that indicate the performance variability of applications on
clusters is heavy tailed. We explained that presence of a
heavy tail component has a profound impact on the de-
sign of optimization algorithms. In particular, we showed
that averaging multiple performance measurement will not
necessarily give a better estimate of performance. As an
alternative, we proposed to take the minimum of multiple
performance measurements and showed that this is an ef-
fective way for performance estimation. We then, employed
the minimization operator in the optimization algorithm to
improve its performance. Finally, we simulated the algo-
rithm and used data from a scientific application (GS2) with
different parameter values, in order to study the algorithm
characteristics and behavior.

9. ACKNOWLEDGMENT
This work was supported in part by NSF award EIA-0080206

and DOE Grants DE-CFC02-01ER25489, DE-FG02-01ER25510.

10. REFERENCES
[1] Abramson, D., et al., “An Automatic Design

Optimization Tool and its Application to

Computational Fluid Dynamics,” Proc. of SC’01, Nov.
2001.

[2] Berman, F.; R. Wolski, “ Scheduling from the
perspective of the application,” Proc. of IEEE Int.
Symp. on HPDC, 6-9, Aug. 1996.

[3] Chung, I.-H., J.K. Hollingsworth, “Using Information
from Prior Runs to Improve Automated Tuning
Systems,” Proc. of SC’04, Nov. 2004.

[4] Crovella, M., and A. Bestavros.,“Self-Similarity in
World Wide Web Traffic: Evidence and Possible
Causes,” IEEE/ACM Trans. on Networking, Dec. 1997.

[6] Dennis, J.E., V. Torczon, “Direct Search Methods on
Parallel Machines,” SIAM J. on Opt., 448-474, vol.1,
1991.

[6] Dorland, W., F. Jenko, M. Kotschenreuther, B.N.
Rogers, “Electron Temperature Gradient Turbulence,”
Physical Review Letters, 5579-5582, vol.85, No.26, 2000.

[7] Kolda, T.G., R.M. Lewis, V. Torczon, “Optimization by
Direct Search: New Perspectives on Some Classical and
Modern Methods,” SIAM Review, 385-482, vol.45,
No.3, 2003.

[8] Kotschenreuther, M., G. Rewoldt, W.M. Tang,“
Comparison of Initial Value and Eigenvalue Codes for
Kinetic Toroidal Plasma Instabilities,” Computer
Physics Communications, 128-140, vol.88, 1995.

[9] Kramer, W.T.C., C. Ryan, “Performance variability of
highly parallel architectures,” Lawrence Berkeley
National Laboratory, Paper LBNL-52291.
http://repositories.cdlib.org/lbnl/LBNL-52291, May,
2003.

[10] Lagarias, J.C., J.A. Reeds, M.H. Wright, P.E.
Wright, “Convergence Properties of the Nelder-Mead
Simplex Method in Low Dimensions,” SIAM Journal
on Optimization, 112-147, vol.9, No.1, 1998.

[11] Lewis, R.M., V. Torczon,“Rank Ordering and Positive
Bases in Pattern Search Algorithms,” Tech. Rep.,
Institute for Computer Applications in Science and
Engineering, NASA Langley Research Center,
Hampton, VA, 96-71, 1996.

[12] McKinnon, K.I.M, “Convergence of the Nelder-Mead
Simplex Method to a Nonstationary Point,” SIAM
Journal on Optimization, 148-158, vol.9, 1998.

[13] Nelder, J.A., R. Mead, “A Simplex Method for
Function Minimization,” Computer Journal, 308-313,
vol.7, 1965.

[14] Noble, B.D., et al., “Agile Application-Aware
Adaptation for Mobility,” ACM Symp. Operating
Systems Principals, 276-287, 1997.

[15] Petrini, F., D.J. Kerbyson, S. Pakin,“The Case of the
Missing Supercomputer Performance: Achieving
Optimal Performance on the 8,192 Processors of ASCI
Q,” Proceedings of the ACM/IEEE SC2008, Nov., 2003.

[16] Ribler, R.L., J.S. Vetter, H. Simitci, and D.A.
Reed, “Autopilot: Adaptive Control of Distributed
Applications,” Proc. of the IEEE Int. Symp. on
HPDC,p.172, 1998.

[17] Ribler, R.L., H. Simitci, and D.A. Reed,“The
Autopilot Performance-Directed Adaptive Control
System,” Future Generation Computer
Systems,175-187, vol.18, no.1, 2001.

[18] Tapus, C., I.-H. Chung, J.K. Hollingsworth, “Active
Harmony: Towards Automated Performance Tuning,”
ACM Transactions on Computer Systems, 319-352,
Nov., 2003.

[19] Trosset, M.W.,“On the Use of Direct Search Methods
for Stochastic Optimization,” Technical Report 00-20,
Department of Computational & Applied Mathematics,
Rice University, June, 2000.

[20] Whaley, R.C. and J.J. Dongarra, “Automatically
tuned linear algebra software (ATLAS),” Proc. of
S5C’98, 1-27, 1998.

12

