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Abstract 
In developing High-Performance Computing (HPC) software, 
time to solution is an important metric. This metric is com-
prised of two main components: the human effort required 
developing the software, plus the amount of machine time re-
quired to execute it. To date, little empirical work has been 
done to study the first component: the human effort required 
and the effects of approaches and practices that may be used 
to reduce it. In this paper, we describe a series of studies that 
address this problem. We instrumented the development proc-
ess used in multiple HPC classroom environments. We ana-
lyzed data within and across such studies, varying factors 
such as the parallel programming model used and the applica-
tion being developed, to understand their impact on the devel-
opment process. 

1 Introduction 
Historically, the major metric of success of computation 

in the HPC community has been speed of program execution. 
Recently the community has recognized the importance of the 
time required to develop programs as well as run them. How-
ever, since HPC applications must, by definition, be high per-
formance, it is critical to study programmer productivity and 
application performance together. The goal of this work is to 
better understand and quantify software development for high 
performance computers, to augment the existing work on im-
proving performance time, and to take a more complete view 
of the total time to solution. Currently there is little empirical 
evidence to support or refute the utility of specific program-
ming models, languages, and practices within the HPC com-
munity.  

While there is a rich body of literature in the Software 
Engineering community about programmer productivity, 
much of it was developed with assumptions that do not neces-
sarily hold in the HPC community. For example, while the SE 
community expects software specifications to evolve over the 

lifetime of the system, this evolution is expected to be in re-
sponse to external factors such as customer-specified requests 
for new or changed functionality.  However, in scientific com-
putation, it is often insights culled from results of one program 
version that drive the needs for the next.  This is because the 
software itself is helping to push the frontiers of understanding 
rather than automate well-understood tasks.  Due to these 
unique requirements, traditional software engineering ap-
proaches for improving productivity may be adapted for the 
HPC community, but are not appropriate without changes.  

With these challenges in mind, we have been developing 
and debugging a set of tools and protocols to study program-
mer productivity in the HPC community.  In this paper, we 
present both the methodology we have developed to investi-
gate programmer productivity issues in the HPC domain, and 
some initial results of studying productivity of novice HPC 
programmers. 

The interest in the effectiveness of novice developers is 
justified by the nature of the traditional HPC context. Many of 
the applications in which high performance computers are 
used are quite complex and understood only by domain ex-
perts. Those domain experts will often be novice HPC pro-
grammers, at least when they are beginning their careers. Use-
ful, evidence-based heuristics about how novice HPC devel-
opers can best be brought up to speed hold out the promise of 
being able to address a significant obstacle to the goal of mak-
ing correct HPC solutions feasible for more problems. 

As the first phase of this work, we are beginning with an 
observational approach, observing HPC code development 
practices and describing the results in terms of overall effort, 
performance, and cost. There is little previous empirical work 
on this topic, so this work will be used to generate a series of 
well-grounded hypotheses that can then be tested explicitly in 
later studies. 

2 Related Work 
Two main components make up the time to solution met-

ric. The first component is the human effort (calendar time) 
required to develop and tune the software. The second compo-
nent is the amount of machine time required to execute the 
software to produce the desired result.  

Metrics and even predictive models have already been 
developed for measuring the code performance part of that 
equation, under various constraints (e.g. [9, 11]).  However, 
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little empirical work has been done to date to study the human 
effort required to implement those solutions. Only a handful of 
empirical studies have been run to examine factors influencing 
variables such as development time [2] or the difficulties en-
countered during HPC development [12]. Some authors have 
commented that "little work has been done to evaluate HPC 
systems' usability, or to develop criteria for such evaluations" 
[12]. As a result, many of the practical decisions about devel-
opment language and approach are currently made based on 
anecdote, “rules of thumb,” or personal preference.  

Several prior studies[4, 6] have used lines of code as the 
principal metric to determine effort required to compare paral-
lel programming models with the assumption that fewer lines 
of code implies less effort. While this metric might have merit, 
we feel it is important to quantify the effort required to pro-
duce different lines of code.  Even if it turns out that the tech-
nologies that require more code always require more effort, 
the ratio of lines of code doesn't necessarily equal the ratio of 
efforts, so you can not use LOCs to do your tradeoff analysis. 

Previous work done to study more general software de-
velopment processes will provide a starting point for this 
work, but in the end contributes little in the way of directly 
transferable results due to the significant differences in con-
text. For example, one of the major differences between HPC 
software development and traditional software development is 
the amount of effort devoted to tuning HPC code for perform-
ance. It is widely believed that more time spent tuning the 
code will result in shorter execution times. Therefore, under-
standing the tradeoff between time spent in development and 
execution time is crucial. For large-scale systems, the extra 
development time can lead to orders of magnitude reduction in 
execution time. 

3 Methodology 
Quantifying programmer productivity is a much more dif-

ficult task than measuring program performance. Many exter-
nal factors such as the inherent difference in the productivity 
of programmers, to seemingly mundane questions of measur-
ing exactly when a programmer is working on a problem, 
make it difficult to accurately measure programming effort, 
and thus productivity.  If the goal is to compare different pro-
gramming models, additional factors such as the program-
mer’s familiarity with the programming model must be con-
trolled for.   Given these sets of challenges, we set out to de-
velop data collection mechanisms and experimental protocols 
to evaluate programmer productivity in the HPC domain. 

It is possible to get interesting and meaningful results 
about effort by doing human-subject experiments. While there 
is great variation across subjects, carefully conducted studies 
can both control for this phenomenon and even quantify it. In 
many of our studies we conduct within-subject comparisons, 
which mitigate the variation problem somewhat. Also, in do-
ing these studies when multiple subjects conduct the same 
exercise, you can actually observe and quantify what the 

variation across programmers looks like.  One of our goals in 
this project is to quantify the degree of difference in effort 
required for various programming models and paradigms.  
When conducting these studies, we specifically seek a variety 
of programming ability because we want to quantify not only 
what is possible for the best programmers, but also quantify 
the degree to which a specific technique increases the depth of 
programmers that are able to make effective use of HPC re-
sources. 

Our initial studies have been focused on classroom studies 
of students taking introductory graduate courses in high per-
formance computing.  Although it, introduces its own set of 
challenges, the classroom setting provides several useful fea-
tures as an environment to conduct this research[5]. First, mul-
tiple students are routinely given the same assignment to per-
form, and thus we are able to conduct experiments in a way to 
control for the skills of specific programmers.  Second, gradu-
ate students in a HPC class are fairly typical of a large class of 
novice HPC programmers who may have years of experience 
in their application domain but very little in HPC-style pro-
gramming.  Finally, due to the relatively low costs, student 
studies are an excellent environment to debug protocols that 
might be later used on practicing HPC programmers.  Limita-
tions of student studies include the relatively short program-
ming assignments possible due to the limited time in a semes-
ter and the fact these assignments must be picked for the edu-
cational value to the students as well as their investigative 
value to the research team. 

In each class, we obtained consent from students to be 
part of our study. The nature of the assignments was left to the 
individual instructors for each class.  However, based on pre-
vious communication and discussions as part of this project, 
many of the instructors happen to use the same assignments. 
To ensure that the data from the study would not impact stu-
dents’ grades, our protocol quarantined the data collected in a 
class from professors and teaching assistants for that class 
until final grades had been assigned.  

To conduct these studies, we needed a way to measure 
how much time students spent working on programming as-
signments, and some idea of what they were doing during this 
time (e.g. serial coding, parallelization, debugging, tuning).  
Historically, there have been two ways used to gather this type 
of information: explicit recording by subject in diaries (either 
paper or web-based) and implicit recording by instrumenting 
the development environment.  Both of these approaches have 
strengths and limitations.  After conducting a series of tests 
using variations on these two techniques, we have settled on a 
hybrid approach that combines diaries with an instrumented 
programming environment that captures a time-stamped re-
cord of every program the student compiles along with the 
program compiled.  In another paper[8], we describe the de-
tails of how we gather this information and convert it into a 
record of programmer effort. 
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The classroom studies are the first part of a larger series 
of studies we are conducting as part of this project.  Figure 1 
shows the process we are using.  It is an iterative process that 
starts by extracting hypotheses from folklore among the HPC 
community.  We then develop ways to test these hypotheses 
and run  pilot studies.  We next conduct classroom studies, and 
then move onto controlled studies with experienced program-
mers, and finally conduct experiments with in situ studies with 
development teams. Each of these steps contributes to our 
testing of hypothesizes by exploiting the unique aspects of 
each environment (i.e., replicated experiments in classroom 
studies, and, multi-person development with in situ teams).   

In addition to hypotheses about the effort required, we are 
also studying the workflow of programmers as they program.  
For example, do programmers start with a serial version of the 
program and then proceed to a parallel program?  Do pro-
grammers code, debug for correctness, and then proceed to 
tune for performance?  Like many aspects of HPC develop-
ment, there is a wealth of beliefs about what programmers do 
(or should do), but relatively little in the way of studies to 
validate these beliefs.  

4 Description of the Studies 
To achieve some coverage of the various problem types 

and HPC solution approaches, a collaborative team, including 
the University of Maryland, the University of Southern Cali-
fornia, the University of California Santa Barbara, and the 
Massachusetts Institute of Technology, is conducting a series 
of classroom studies. Table 1 provides an overview of the 

problem space and the studies run to date. The values along 
the dimensions of the matrix are explained further in the fol-
lowing sections. Each individual study is labeled as “CxAy,” 
with codes corresponding to the course (C), a specific 
class/semester pair (x,y) and the assignment (A). 

4.1  Independent Variables 
By replicating multiple variations on assignments at dif-

ferent universities, we can vary the type of application being 
developed (vertical axis in Table 1). The 10 assignments given 
as classroom assignments so far can be grouped into 4 distinct 
problem types based on their communication requirements: 
nearest neighbor, broadcast, embarrassingly parallel, and mis-
cellaneous. As we accumulate more data, we will be able to 
investigate whether there are characteristic patterns observable 
within and among the various problem types. 

The data sets described in this paper were generated for 
two specific applications: The “game of life” posits a two-
dimensional grid where every cell can be either on or off; over 
a series of turns the grid evolves with the behavior of each cell 
determined according to a set of rules about the state of the 
cells surrounding it. The “grid of resistors” requires the com-
putation of the voltage and effective resistance of a 2n+1 by 
2n+1 grid of 1 ohm resistors with a battery connected to the 
two center points. 

A second key factor that will vary across assignments is 
the Parallel Programming Model  (e.g., message passing or 
shared memory). The two instances of parallel programming 
models about which we have collected the most data are MPI 
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Figure 1: Process of Refining and Evaluating HPC Programmer Productivity Hypotheses. 
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(message passing) and OpenMP (shared memory). Some of 
the researchers whose classes we observed are also using new 
HPC approaches which they have developed. These include 
StarP, a parallel extension to the Matlab environment [10], and 
Explicit Multi-Threading (XMT), a conceptual framework 
with language extensions to C that implement parallel ran-
dom-access algorithms [13].  

A final important independent variable is programmer 
experience. In the studies reported here, the majority of sub-
jects were novice HPC developers (not surprisingly, as the 
studies were run in a classroom environment). 

4.2 Dependent Variables 
Our studies measured the following as outcomes of the 

HPC development practices applied: 
A primary measure of the quality of the HPC solution was 

the speedup achieved, that is, the relative execution time of a 
program running on a multi-processor system compared to a 
uniprocessor system. In this paper, all values reported for 
speedup were measured when the application was run on eight 
processors, as this was the largest number of processors that 
was feasible for use in our classroom environments. 

A primary measure of cost was the amount of effort re-
quired to develop the final solution, for a given problem and 
given approach. The effort undertaken to develop a serial solu-
tion included the following activities: thinking/planning the 
solution, coding, and testing. The effort undertaken to develop 
a parallel solution included all of the above as well as tuning 
the parallel code (i.e. improving performance through optimiz-

ing the parallel instructions). HPC development for the studies 
presented in this paper was always done having a serial ver-
sion available. 

Another outcome variable studied was the code expansion 
factor of the solutions. In order to take full advantage of the 
parallel processors, HPC codes can be expected to include 
many more lines of code (LOC) than serial solutions. For ex-
ample, message-passing approaches such as MPI require a 
significant amount of code to deal with communication across 
different nodes. The expansion factor is the ratio of LOC in a 
parallel solution to LOC in a serial solution of the same prob-
lem. 

Finally, we look at the cost per LOC of solutions in each 
of the various approaches. This value is another measure (in 
person-hours) of the relative cost of producing code in each of 
the HPC approaches. 

4.3 Studies Described in this Paper 
To validate our methodology, we selected a subset of the 

cells in the table for which we have already been able to 
gather sufficient data to draw conclusions (i.e., the gray-
shaded cells in Table 1), where the majority of our data lies at 
this time 

Studies analyzed in this paper include: 
C0A1. This data was collected in Fall 2003, from a 

graduate-level course with 16 students. Subjects were asked to 
implement the “game of life” program in C on a cluster of 
PCs, first using a serial solution and then parallelizing the so-
lution with MPI. 

 Serial MPI OpenMP Co-Array 
Fortran 

StarP XMT 

Nearest-Neighbor Type Problems 
Game of Life C3A3 C3A3 

C0A1 
C1A1 

C3A3    

Grid of Resistors C2A2 C2A2 C2A2  C2A2  
Sharks & Fishes  C6A2 C6A2 C6A2   
Laplace’s Eq.  C2A3   P2A3  
SWIM   C0A2    
Broadcast Type Problems 
LU Decomposition   C4A1    
Parallel Mat-vec     C3A4  
Quantum Dynamics  C7A1     
Embarrassingly Parallel Type Problems 
Buffon-Laplace Nee-
dle 

 C2A1 
C3A1 

C2A1 
C3A1 

 C2A1 
C3A1 

 

(Miscellaneous Problem Types) 
Parallel Sorting  C3A2 C3A2  C3A2  
Array Compaction      C5A1 
Randomized Selection      C5A2 

 
Table 1: Matrix describing the problem space of HPC studies being run. Columns show the parallel program-
ming model used. Rows show the assignment, grouped by communication pattern required. Each study is indi-
cated with a label CxAy, identifying the participating class (C) and the assignment (A). Studies analyzed in this 
paper are grey-shaded. 
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C1A1. This data was from a replication of the C0A1 as-
signment in a different graduate-level course at the same uni-
versity in Spring 2004. 10 subjects participated. 

C2A2. This data was collected in Spring 2004, from a 
graduate-level course with 27 students. Subjects were asked to 
parallelize the “grid of resistors” problem in a combination of 
Matlab and C on a cluster of PCs. Given a serial version, sub-
jects were asked to produce an HPC solution first in MPI and 
then in OpenMP. 

C3A3. This data was collected in Spring 2004, from a 
graduate-level course with 16 students. Subjects were asked to 
implement the “game of life” program in C on a cluster of 
PCs, first as a serial and then as an MPI and OpenMP version. 

5 Hypotheses Investigated 
The data collected from the classroom studies allow us to 

address a number of issues about how novices learn to develop 
HPC codes, by looking within and across cells on our matrix. 
In Sections 5.1-5.4 we compare the two parallel programming 
models, MPI and OpenMP, to serial development to derive a 
better understanding of the relationship between serial devel-
opment and parallel development. Then in Section 5.5 we 
compare MPI and OpenMP to each other to get a better under-
standing of their relationship with regard to programmer pro-
ductivity. 

In the analysis presented in Sections 5.2-5.5, we used the 
paired t-test [7] to compare MPI to OpenMP. For example, we 
used a paired t-test to investigate whether there was any dif-
ference in the LOC required to implement the same solution in 
different parallel programming models for the same subject. 
This statistical test calculates the signed difference between 
two values for the same subject (e.g. the LOC required for an 
OpenMP implementation and an MPI implementation of the 
same problem). The output of the test is based on the mean of 
the differences for all subjects: If this mean value is large it 
will tend to indicate a real and significant difference across the 
subjects for the two different approaches. Conversely, if the 
mean is close to zero then it would tend to indicate that both 
approaches performed about the same (i.e. that there was no 
consistent effect due to the different approaches). By making a 
within-subject comparison we avoid many threats to validity, 
by holding factors such as experience level, background, gen-
eral programming ability, etc., constant. 

5.1 Achieving Speedup 
A key question was whether novice developers could 

achieve speedup at all. It is highly relevant for characterizing 
HPC development, because it addresses the question of 
whether the benefits of HPC solutions can be widely achieved 
or will only be available to highly skilled developers. A survey 
of HPC experts (conducted at the DARPA-sponsored HPCS 
project meeting in January 2004) indicated that 87% of the 
experts surveyed felt that speedup could be achieved by nov-
ices, although no rigorous data was cited to bolster this asser-
tion. Based on this information, we posed the following hy-
pothesis: 

H1 Novices are able to achieve speedup on a parallel ma-
chine 
To evaluate this hypothesis, we evaluated speedup in two 

ways: 1) Comparing the parallel version of the code to a serial 
version of the same application, or 2) comparing the parallel 
version of the code run on multiple processors to the same 
version of the code run on one processor.  

For the game of life application, we have data from 3 
classroom studies for both MPI and OpenMP approaches.  
These data are summarized in Table 2, which shows the paral-
lel programming model, the application being developed, and 
the programming language used in each study for which data 
was collected. The OpenMP programs were ran on shared 
memory machines. The MPI programs were run on clusters.  

 
Data 
set 

Programming  
Model 

Speedup on  
8 processors 

Speedup w.r.t. serial version 
C1A1 MPI mean 4.74, sd 1.97, n=2 
C3A3 MPI mean 2.8, sd 1.9, n=3 
C3A3 OpenMP mean 6.7, sd 9.1, n=2 
Speedup w.r.t. parallel version run on 1 processor 
C0A1 MPI mean 5.0, sd 2.1, n=13 
C1A1 MPI mean 4.8, sd 2.0, n=3 
C3A3 MPI mean 5.6, sd 2.5, n=5 
C3A3 OpenMP mean 5.7, sd 3.0, n=4 

 
Table 2: Mean and standard deviation of speedup are shown 
along with the number of subjects for each assignment. All 
data sets are for C implementations of the Game of Life. 

 
Although there are too few data points to say with much 

rigor, the data we do have supports our hypothesis H1. Nov-
ices seem able to achieve about a 4.5x speedup (on 8 proces-
sors) for the game of life application over the serial version. 
Speedup on 8 processors is consistently about 5 compared to 
the parallel version run on one processor, for this application.  

In addition to the specific hypothesis evaluated, we also 
observed that OpenMP seemed to result in speedup values 
near the top of that range, but too few data points are available 
to make a meaningful comparison and too few processors 
were used to compare the parallelism between programming 
models. 

5.2 Code expansion factor 
Although the number of lines of code in a given solution 

is not important on its own terms, it is a useful descriptive 
measure of the solution produced. Different programming 
paradigms are likely to require different types of code trans-
formations; for example, OpenMP typically seems to require 
adding only a few key lines of code to a serial program, while 
MPI typically requires much more significant changes to pro-
duce a working solution. Therefore we can pose the following 
hypotheses: 
H2 An MPI implementation will require more code than its 

corresponding serial implementation 



 6

H3 An OpenMP implementation will require more code than 
its corresponding serial implementation. 
We can use the data from both C2A2 and C3A3 (the first 

and second rows of the matrix) to investigate how the size of 
the solution (measured in LOC) changes from serial to various 
HPC approaches. A summary of the datasets is presented in 
Table 3. (In the C2A2 assignment, students were given an 
existing serial solution to use as their starting point. It is in-
cluded here to allow comparison with the OpenMP and MPI 
solutions to the same application.) 

 
Data 
set 

Program 
Model Program LOC 

C3A3 Serial Life 173/90 (10) 
C3A3 MPI Life 433/485 (13) 
C3A3 OpenMP Life 195/154 (13) 
C2A2 Serial Resistors 42 (given) 
C2A2 MPI Resistors 174/75 (9) 
C2A2 OpenMP Resistors 49/3.2 (10) 

 
Table 3: Mean, standard deviation, and number of subjects for 
computing code size (Lines of Code). All program were writ-
ten in the C programming language. 

 
For the game of life application, the number of LOC for 

the MPI solution was significantly greater than in the serial 
version (p = 0.02), but the number of LOC in OpenMP was 
not significantly greater than the serial (p = 0.06).  

For the grid of resistors application, the number of SLOC 
for the MPI solution was significantly greater than in the serial 
version (p = 0.0004), as was the number of SLOC in the 
OpenMP version (p = 8.5e-5). 

Thus, H2 is supported for both problem domains, that is, 
MPI required significantly more code to express the solution 
than in serial. H3 was supported in only one of the two do-
mains. OpenMP on average required many fewer SLOC than 
MPI. 

5.3 Effort required 
Any study of HPC development productivity will focus 

on developer effort as a key measure. For any given develop-
ment project, developer effort will be a significant contributor 
to the final cost as well as being a useful indicator of the 
amount of time required before a solution can be available. 
Furthermore, the code that is written to parallelize an applica-
tion is generally thought of as being more difficult to write 
than the underlying serial code. These two points led us to 
propose the following hypotheses: 
H4 A parallel code (MPI or OpenMP) will require more de-

velopment effort than its underlying serial code 
As in Section 5.2, we can use the data from C3A3 (the 

second row of the matrix) to investigate any differences in the 
effort subjects required to implement the same solution using 
various HPC approaches. The data is summarized in Table 4.  

Programming 
Model 

Effort (person-hrs) 

Serial mean 4.4, sd 4.3, n=15 
MPI mean 10.7, sd 8.9, n=16 
OpenMP mean 5.0, sd 3.5, n=16 

 
Table 4: The Mean and standard deviation of the total effort 
along with the number of subjects is shown for each pro-
gramming model. All data sets are for C implementations of 
the Game of Life for data set C3A3. 

As explained in Section 5.2, we used one-sided paired t-
tests to test for differences between the solutions implemented 
with various HPC approaches by the same subject. 

For the game of life application in C3A3, the effort re-
quired to implement the solution in MPI was significantly 
greater than required for the serial (p = 0.002), but is not the 
case for OpenMP (p = 0.3). For MPI,  H4 is supported with a 
statistically significant result, although the variation from one 
subject to another was very high. 

5.4 Cost per LOC 
The cost per LOC measure is useful for estimating the 

relative difficulty of various HPC approaches – that is, how 
much effort is expended per line of the final solution.  

Most experts seem to believe that almost any approach to 
parallel development will result in a higher cost per line of 
code than serial development of the same problem. (In the 
January 2004 survey at the DARPA expert meeting, 73% of 
respondents felt this was a true statement, while 19% dis-
agreed.) Based on this survey result, we posed the following 
hypothesis: 
H5  The cost per line of code for parallel code (MPI or 

OpenMP) will be greater than the cost per line of code for 
serial code 
We use the effort data from C3A3, described in Section 

4.3, to investigate the cost of HPC code in terms of the amount 
of effort required per line of code. Specifically, we compared 
the cost to develop a serial version from scratch to the cost to 
develop an HPC version starting from an existing serial im-
plementation. As before, we rely on the one-sided paired t-test 
to test the differences in mean values for statistical signifi-
cance.  

Analysis showed that HPC development was in fact statis-
tically significantly more expensive than serial development, 
both for MPI (p = 0.006) and for OpenMP (p = 0.005) sup-
porting hypothesis H5. Note that one sample was excluded 
from this analysis because for that single case the OpenMP 
implementation was smaller than the corresponding serial ver-
sion. 
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Programming 
Model 

Effort (person minutes/LOC) 

Serial mean 1.8, sd 1.3, number 10 
MPI mean 5.5, sd 4.2, number 9 
OpenMP mean 24.8, sd  21.0, number 9 

 
Table 5: The mean and standard deviation of the effort per 
line of code, and the number of subjects is shown for three 
programming models. All data sets are for C implementations 
of the Game of Life for data set C3A3. 

5.5 Effects of different HPC approaches 
A central question of importance to HPC research is, what 

are the strengths and weaknesses of the given HPC ap-
proaches? That is, if an HPC solution is going to be applied, 
what are the tradeoffs between cost and benefits for different 
problem types? 

Based on the discussions above and the generally held be-
liefs about the relationship between MPI and OpenMP, we 
posed the following hypotheses: 
H6 More effort will be required to write an MPI code  than 

will be required to write an OpenMP code for the same 
application 

H7 MPI code requires more effort per line of code than 
OpenMP code 
We use the effort data from C3A3, described in Section 

5.3, to investigate the cost of HPC code in terms of the amount 
of effort required per line of code. (As in 5.3, the HPC effort 
represents the effort needed to produce a parallel version start-
ing from an existing serial implementation, not to develop an 
HPC solution from scratch.) Also as before, we rely on the 
paired t-test to test the differences in mean values for statisti-
cal significance. 

In evaluating hypothesis H6, the data show that total MPI 
effort was significantly greater than total OpenMP effort (p = 
0.005). However, for hypothesis H7,the cost per line of code 
was not significantly greater for MPI than for OpenMP (p = 
0.96).  

If we view the results discussed in the previous sections 
together, we can draw some deeper conclusions. Recall that in 
the speedup data, Section 5.1, OpenMP seemed to produce 
slightly better speedup on average, although there were not 
enough data points to make a statistically rigorous compari-
son. This result also shows that the number of LOC in a given 
code is not a useful proxy for developer effort by itself. That 
is, the amount of effort that is spent per LOC will vary from 
one solution to another depending on the HPC approach used. 

5.6 Threats to validity 
The fact that these studies were run, not only in a class-

room environment, but across several classroom environ-
ments, means that there are threats to the validity of our con-
clusions that should be kept in mind when interpreting the 
results. Here we discuss the internal and external threats to 
validity for the studies described in this paper [3]. 

We have already characterized the major context vari-
ables that may vary from one classroom environment to an-
other, such as the programming language being used or the 
specific application assigned to the students. We have argued 
that the experience level of subjects was rather similar and 
thus comparable across studies: Before conducting the study, 
we asked the students how much experience they had in paral-
lel programming. Table 6 shows the distribution of the re-
sponses for each class. The distributions suggest that the 
classes are comparable: nearly all of the students had either no 
experience or only classroom experience in parallel program-
ming. Therefore, comparing data across classes is less danger-
ous than if the subject populations had been more heterogene-
ous. 

 
Prior Experience Class None Classroom Professional 

C0 56% 33% 11% 
C1 63% 38% 0% 
C2 100% 0% 0% 
C3 50% 50% 0% 

 
Table 6: Reported parallel programming experience. 

In terms of internal validity, we faced two main threats to 
validity: instrumentation and learning. We used performance 
data that was reported by the subjects. This falls into the cate-
gory of an instrumentation threat, since the students may not 
have reported their data truthfully or consistently across the 
entire population. They may have also made errors while re-
cording execution time data (e.g. recording execution time 
when the machine is heavily loaded).  

An additional instrumentation threat is that all effort data 
was collected through a combination of automatic time stamp 
logs, generated by instrumenting the compiler and batch 
scheduler on the development machines, and of self-reported 
logs kept by the students (which were emailed directly to our 
research group rather than to the class instructor, to avoid fear 
of data collection influencing grades). Our process for recon-
ciling both types of data has been described in some detail 
elsewhere [1]. However, we should note that it is possible that 
the serial development effort has been underestimated: While 
students were constrained to use the HPC machines assigned 
for OpenMP or MPI development (getting access to parallel 
machines outside of the classroom environment is highly dif-
ficult), students could develop the serial component of an as-
signment on almost any machine. If students both worked on 
an un-instrumented machine and under-reported their effort 
spent on the assignment on the manual forms, we may have 
under-counted their effort. 

Finally, there is the possibility that students experienced a 
learning effect where solving the problem using one approach 
affected their ability to solve the problem using another ap-
proach. The results may be confounded by the order in which 
the subjects solved the problem using the different program-
ming models. This threat can be addressed by enforcing an 
ordering on the subjects, where half of them solve the problem 
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in one order and another half solve it in a different order. Un-
fortunately, we were not able enforce ordering in these studies. 

There are several external threats to validity which are 
common to software engineering studies that involve subjects 
solving relatively small tasks. We have focused on small prob-
lems, which have been run on only a small number of proces-
sors. The code profile of  a small problem is qualitatively dif-
ferent form the code profile of “real life” computational sci-
ence codes (e.g. much more of the code will be devoted to 
issues other than the core parallel algorithms that are the focus 
of smaller problems). Therefore, any conclusions that relate to 
lines of code (e.g. total size, effort per line of code) may not 
generalize to larger codes in their entirety. In terms of per-
formance, achieving good speedup on 8 processors is quite 
different from achieving performance on 800 processors. This 
work does not address the issues that arise when trying to 
scale to a large number of processors. 

6 Future Work 
There have been some questions about whether graduate 

students in parallel programming classes are representative of 
typical HPC programmers. We plan on observing expert HPC 
programmers as they solve the same problems that were in-
volved in this assignment. This would give us some indication 
of how different graduate students are from experts.  

Through these studies, we have learned much about cap-
turing programmer effort throughout development of parallel 
programs. For the next stage of our research, we plan on 
studying programming problems on a larger scale than class-
room assignments. We will be conducting case studies on par-
allel programming projects in government research labs (e.g. 
porting a parallel code from one architecture to another). 

We also plan on leveraging the knowledge of the HPC 
community on parallel programming issues by conducting 
surveys about HPC folklore and defects related to parallel 
programming. 

7 Conclusions 
We have so far been successful at forging collaborations 

among researchers in software engineering as well as high-
performance computing, as well as adapting an empirical ap-
proach to the study of how HPC codes are engineered effec-
tively. 

Our analyses have indicated a number of lessons learned 
for measurement in this area, including: 
• SLOC alone is not a good proxy for effort, especially for 

comparisons across different HPC approaches. Our data 
showed that a typical line of code has an associated cost 
that will vary from one approach to another.  

• Code expansion rates highlight differences in the strate-
gies imposed by different HPC approaches. For example, 
there is a statistically significant difference between the 
code expansion rates for MPI and OpenMP, which re-
flects differences in the programming strategies employed 
in each of those approaches. 

These lessons will be useful for contributing to a more 
comprehensive view of the time to solution metric, taking into 
account both the development and performance time. 

Furthermore, the studies performed to date offer experi-
mental design templates, data collection mechanisms, and 
baseline data about how novices perform on various HPC ap-
plications, which can be useful for both researchers and educa-
tors who would like to replicate those experiences. Such repli-
cations are crucial if we are to build a true body of knowledge 
that can more accurately reflect the expected contributions of 
various HPC practices in different contexts. 

This work represents a beginning in exploring the influ-
ence of context variables and understanding their effects on 
high performance technology. Such work will be guided by 
the matrix we are building to describe the problem space (Ta-
ble 1) to show where we are lacking coverage. Future studies 
will be run to generate the large and diverse data sets, cover-
ing a majority of cells in the matrix that will be required to 
address those questions in the most general case. We are also 
beginning to work with industrial and government HPC de-
velopers, to determine in what ways experience level affects 
development practices and results. 
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