
Parallel Programmer Productivity:
A Case Study of Novice Parallel Programmers

Lorin Hochstein1, Jeff Carver3, Forrest Shull2, Sima Asgari1, Victor Basili1,2,
Jeffrey K. Hollingsworth1, Marvin V. Zelkowitz1,2

1University of Maryland, College Park 2Fraunhofer Center Maryland 3Mississippi State University

{sima,hollings,lorin}@cs.umd.edu {basili,fshull,mvz}@fc-md.umd.edu carver@cse.msstate.edu

Abstract
In developing High-Performance Computing (HPC) software,
time to solution is an important metric. This metric is com-
prised of two main components: the human effort required
developing the software, plus the amount of machine time re-
quired to execute it. To date, little empirical work has been
done to study the first component: the human effort required
and the effects of approaches and practices that may be used
to reduce it. In this paper, we describe a series of studies that
address this problem. We instrumented the development proc-
ess used in multiple HPC classroom environments. We ana-
lyzed data within and across such studies, varying factors
such as the parallel programming model used and the applica-
tion being developed, to understand their impact on the devel-
opment process.

1 Introduction
Historically, the major metric of success of computation

in the HPC community has been speed of program execution.
Recently the community has recognized the importance of the
time required to develop programs as well as run them. How-
ever, since HPC applications must, by definition, be high per-
formance, it is critical to study programmer productivity and
application performance together. The goal of this work is to
better understand and quantify software development for high
performance computers, to augment the existing work on im-
proving performance time, and to take a more complete view
of the total time to solution. Currently there is little empirical
evidence to support or refute the utility of specific program-
ming models, languages, and practices within the HPC com-
munity.

While there is a rich body of literature in the Software
Engineering community about programmer productivity,
much of it was developed with assumptions that do not neces-
sarily hold in the HPC community. For example, while the SE
community expects software specifications to evolve over the

lifetime of the system, this evolution is expected to be in re-
sponse to external factors such as customer-specified requests
for new or changed functionality. However, in scientific com-
putation, it is often insights culled from results of one program
version that drive the needs for the next. This is because the
software itself is helping to push the frontiers of understanding
rather than automate well-understood tasks. Due to these
unique requirements, traditional software engineering ap-
proaches for improving productivity may be adapted for the
HPC community, but are not appropriate without changes.

With these challenges in mind, we have been developing
and debugging a set of tools and protocols to study program-
mer productivity in the HPC community. In this paper, we
present both the methodology we have developed to investi-
gate programmer productivity issues in the HPC domain, and
some initial results of studying productivity of novice HPC
programmers.

The interest in the effectiveness of novice developers is
justified by the nature of the traditional HPC context. Many of
the applications in which high performance computers are
used are quite complex and understood only by domain ex-
perts. Those domain experts will often be novice HPC pro-
grammers, at least when they are beginning their careers. Use-
ful, evidence-based heuristics about how novice HPC devel-
opers can best be brought up to speed hold out the promise of
being able to address a significant obstacle to the goal of mak-
ing correct HPC solutions feasible for more problems.

As the first phase of this work, we are beginning with an
observational approach, observing HPC code development
practices and describing the results in terms of overall effort,
performance, and cost. There is little previous empirical work
on this topic, so this work will be used to generate a series of
well-grounded hypotheses that can then be tested explicitly in
later studies.

2 Related Work
Two main components make up the time to solution met-

ric. The first component is the human effort (calendar time)
required to develop and tune the software. The second compo-
nent is the amount of machine time required to execute the
software to produce the desired result.

Metrics and even predictive models have already been
developed for measuring the code performance part of that
equation, under various constraints (e.g. [9, 11]). However,

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permis-
sion and/or a fee.
SC|05 November 12-18, 2005, Seattle, Washington, USA
(c) 2005 ACM 1-59593-061-2/05/0011…$5.00

 2

little empirical work has been done to date to study the human
effort required to implement those solutions. Only a handful of
empirical studies have been run to examine factors influencing
variables such as development time [2] or the difficulties en-
countered during HPC development [12]. Some authors have
commented that "little work has been done to evaluate HPC
systems' usability, or to develop criteria for such evaluations"
[12]. As a result, many of the practical decisions about devel-
opment language and approach are currently made based on
anecdote, “rules of thumb,” or personal preference.

Several prior studies[4, 6] have used lines of code as the
principal metric to determine effort required to compare paral-
lel programming models with the assumption that fewer lines
of code implies less effort. While this metric might have merit,
we feel it is important to quantify the effort required to pro-
duce different lines of code. Even if it turns out that the tech-
nologies that require more code always require more effort,
the ratio of lines of code doesn't necessarily equal the ratio of
efforts, so you can not use LOCs to do your tradeoff analysis.

Previous work done to study more general software de-
velopment processes will provide a starting point for this
work, but in the end contributes little in the way of directly
transferable results due to the significant differences in con-
text. For example, one of the major differences between HPC
software development and traditional software development is
the amount of effort devoted to tuning HPC code for perform-
ance. It is widely believed that more time spent tuning the
code will result in shorter execution times. Therefore, under-
standing the tradeoff between time spent in development and
execution time is crucial. For large-scale systems, the extra
development time can lead to orders of magnitude reduction in
execution time.

3 Methodology
Quantifying programmer productivity is a much more dif-

ficult task than measuring program performance. Many exter-
nal factors such as the inherent difference in the productivity
of programmers, to seemingly mundane questions of measur-
ing exactly when a programmer is working on a problem,
make it difficult to accurately measure programming effort,
and thus productivity. If the goal is to compare different pro-
gramming models, additional factors such as the program-
mer’s familiarity with the programming model must be con-
trolled for. Given these sets of challenges, we set out to de-
velop data collection mechanisms and experimental protocols
to evaluate programmer productivity in the HPC domain.

It is possible to get interesting and meaningful results
about effort by doing human-subject experiments. While there
is great variation across subjects, carefully conducted studies
can both control for this phenomenon and even quantify it. In
many of our studies we conduct within-subject comparisons,
which mitigate the variation problem somewhat. Also, in do-
ing these studies when multiple subjects conduct the same
exercise, you can actually observe and quantify what the

variation across programmers looks like. One of our goals in
this project is to quantify the degree of difference in effort
required for various programming models and paradigms.
When conducting these studies, we specifically seek a variety
of programming ability because we want to quantify not only
what is possible for the best programmers, but also quantify
the degree to which a specific technique increases the depth of
programmers that are able to make effective use of HPC re-
sources.

Our initial studies have been focused on classroom studies
of students taking introductory graduate courses in high per-
formance computing. Although it, introduces its own set of
challenges, the classroom setting provides several useful fea-
tures as an environment to conduct this research[5]. First, mul-
tiple students are routinely given the same assignment to per-
form, and thus we are able to conduct experiments in a way to
control for the skills of specific programmers. Second, gradu-
ate students in a HPC class are fairly typical of a large class of
novice HPC programmers who may have years of experience
in their application domain but very little in HPC-style pro-
gramming. Finally, due to the relatively low costs, student
studies are an excellent environment to debug protocols that
might be later used on practicing HPC programmers. Limita-
tions of student studies include the relatively short program-
ming assignments possible due to the limited time in a semes-
ter and the fact these assignments must be picked for the edu-
cational value to the students as well as their investigative
value to the research team.

In each class, we obtained consent from students to be
part of our study. The nature of the assignments was left to the
individual instructors for each class. However, based on pre-
vious communication and discussions as part of this project,
many of the instructors happen to use the same assignments.
To ensure that the data from the study would not impact stu-
dents’ grades, our protocol quarantined the data collected in a
class from professors and teaching assistants for that class
until final grades had been assigned.

To conduct these studies, we needed a way to measure
how much time students spent working on programming as-
signments, and some idea of what they were doing during this
time (e.g. serial coding, parallelization, debugging, tuning).
Historically, there have been two ways used to gather this type
of information: explicit recording by subject in diaries (either
paper or web-based) and implicit recording by instrumenting
the development environment. Both of these approaches have
strengths and limitations. After conducting a series of tests
using variations on these two techniques, we have settled on a
hybrid approach that combines diaries with an instrumented
programming environment that captures a time-stamped re-
cord of every program the student compiles along with the
program compiled. In another paper[8], we describe the de-
tails of how we gather this information and convert it into a
record of programmer effort.

 3

The classroom studies are the first part of a larger series
of studies we are conducting as part of this project. Figure 1
shows the process we are using. It is an iterative process that
starts by extracting hypotheses from folklore among the HPC
community. We then develop ways to test these hypotheses
and run pilot studies. We next conduct classroom studies, and
then move onto controlled studies with experienced program-
mers, and finally conduct experiments with in situ studies with
development teams. Each of these steps contributes to our
testing of hypothesizes by exploiting the unique aspects of
each environment (i.e., replicated experiments in classroom
studies, and, multi-person development with in situ teams).

In addition to hypotheses about the effort required, we are
also studying the workflow of programmers as they program.
For example, do programmers start with a serial version of the
program and then proceed to a parallel program? Do pro-
grammers code, debug for correctness, and then proceed to
tune for performance? Like many aspects of HPC develop-
ment, there is a wealth of beliefs about what programmers do
(or should do), but relatively little in the way of studies to
validate these beliefs.

4 Description of the Studies
To achieve some coverage of the various problem types

and HPC solution approaches, a collaborative team, including
the University of Maryland, the University of Southern Cali-
fornia, the University of California Santa Barbara, and the
Massachusetts Institute of Technology, is conducting a series
of classroom studies. Table 1 provides an overview of the

problem space and the studies run to date. The values along
the dimensions of the matrix are explained further in the fol-
lowing sections. Each individual study is labeled as “CxAy,”
with codes corresponding to the course (C), a specific
class/semester pair (x,y) and the assignment (A).

4.1 Independent Variables
By replicating multiple variations on assignments at dif-

ferent universities, we can vary the type of application being
developed (vertical axis in Table 1). The 10 assignments given
as classroom assignments so far can be grouped into 4 distinct
problem types based on their communication requirements:
nearest neighbor, broadcast, embarrassingly parallel, and mis-
cellaneous. As we accumulate more data, we will be able to
investigate whether there are characteristic patterns observable
within and among the various problem types.

The data sets described in this paper were generated for
two specific applications: The “game of life” posits a two-
dimensional grid where every cell can be either on or off; over
a series of turns the grid evolves with the behavior of each cell
determined according to a set of rules about the state of the
cells surrounding it. The “grid of resistors” requires the com-
putation of the voltage and effective resistance of a 2n+1 by
2n+1 grid of 1 ohm resistors with a battery connected to the
two center points.

A second key factor that will vary across assignments is
the Parallel Programming Model (e.g., message passing or
shared memory). The two instances of parallel programming
models about which we have collected the most data are MPI

Experimental designs
Hypotheses

Single
programmer

Heroic scale
applications

Blue collar
applications

Folklore/
Results

Folklore/
Results

Folklore/
Results

Quantitative insights
Models in context

DECISION SUPPORT BASE

Insights
Models
Results

Insights
Models
Results

Insights
Models
Results

scale

Figure 1: Process of Refining and Evaluating HPC Programmer Productivity Hypotheses.

 4

(message passing) and OpenMP (shared memory). Some of
the researchers whose classes we observed are also using new
HPC approaches which they have developed. These include
StarP, a parallel extension to the Matlab environment [10], and
Explicit Multi-Threading (XMT), a conceptual framework
with language extensions to C that implement parallel ran-
dom-access algorithms [13].

A final important independent variable is programmer
experience. In the studies reported here, the majority of sub-
jects were novice HPC developers (not surprisingly, as the
studies were run in a classroom environment).

4.2 Dependent Variables
Our studies measured the following as outcomes of the

HPC development practices applied:
A primary measure of the quality of the HPC solution was

the speedup achieved, that is, the relative execution time of a
program running on a multi-processor system compared to a
uniprocessor system. In this paper, all values reported for
speedup were measured when the application was run on eight
processors, as this was the largest number of processors that
was feasible for use in our classroom environments.

A primary measure of cost was the amount of effort re-
quired to develop the final solution, for a given problem and
given approach. The effort undertaken to develop a serial solu-
tion included the following activities: thinking/planning the
solution, coding, and testing. The effort undertaken to develop
a parallel solution included all of the above as well as tuning
the parallel code (i.e. improving performance through optimiz-

ing the parallel instructions). HPC development for the studies
presented in this paper was always done having a serial ver-
sion available.

Another outcome variable studied was the code expansion
factor of the solutions. In order to take full advantage of the
parallel processors, HPC codes can be expected to include
many more lines of code (LOC) than serial solutions. For ex-
ample, message-passing approaches such as MPI require a
significant amount of code to deal with communication across
different nodes. The expansion factor is the ratio of LOC in a
parallel solution to LOC in a serial solution of the same prob-
lem.

Finally, we look at the cost per LOC of solutions in each
of the various approaches. This value is another measure (in
person-hours) of the relative cost of producing code in each of
the HPC approaches.

4.3 Studies Described in this Paper
To validate our methodology, we selected a subset of the

cells in the table for which we have already been able to
gather sufficient data to draw conclusions (i.e., the gray-
shaded cells in Table 1), where the majority of our data lies at
this time

Studies analyzed in this paper include:
C0A1. This data was collected in Fall 2003, from a

graduate-level course with 16 students. Subjects were asked to
implement the “game of life” program in C on a cluster of
PCs, first using a serial solution and then parallelizing the so-
lution with MPI.

 Serial MPI OpenMP Co-Array
Fortran

StarP XMT

Nearest-Neighbor Type Problems
Game of Life C3A3 C3A3

C0A1
C1A1

C3A3

Grid of Resistors C2A2 C2A2 C2A2 C2A2
Sharks & Fishes C6A2 C6A2 C6A2
Laplace’s Eq. C2A3 P2A3
SWIM C0A2
Broadcast Type Problems
LU Decomposition C4A1
Parallel Mat-vec C3A4
Quantum Dynamics C7A1
Embarrassingly Parallel Type Problems
Buffon-Laplace Nee-
dle

 C2A1
C3A1

C2A1
C3A1

 C2A1
C3A1

(Miscellaneous Problem Types)
Parallel Sorting C3A2 C3A2 C3A2
Array Compaction C5A1
Randomized Selection C5A2

Table 1: Matrix describing the problem space of HPC studies being run. Columns show the parallel program-
ming model used. Rows show the assignment, grouped by communication pattern required. Each study is indi-
cated with a label CxAy, identifying the participating class (C) and the assignment (A). Studies analyzed in this
paper are grey-shaded.

 5

C1A1. This data was from a replication of the C0A1 as-
signment in a different graduate-level course at the same uni-
versity in Spring 2004. 10 subjects participated.

C2A2. This data was collected in Spring 2004, from a
graduate-level course with 27 students. Subjects were asked to
parallelize the “grid of resistors” problem in a combination of
Matlab and C on a cluster of PCs. Given a serial version, sub-
jects were asked to produce an HPC solution first in MPI and
then in OpenMP.

C3A3. This data was collected in Spring 2004, from a
graduate-level course with 16 students. Subjects were asked to
implement the “game of life” program in C on a cluster of
PCs, first as a serial and then as an MPI and OpenMP version.

5 Hypotheses Investigated
The data collected from the classroom studies allow us to

address a number of issues about how novices learn to develop
HPC codes, by looking within and across cells on our matrix.
In Sections 5.1-5.4 we compare the two parallel programming
models, MPI and OpenMP, to serial development to derive a
better understanding of the relationship between serial devel-
opment and parallel development. Then in Section 5.5 we
compare MPI and OpenMP to each other to get a better under-
standing of their relationship with regard to programmer pro-
ductivity.

In the analysis presented in Sections 5.2-5.5, we used the
paired t-test [7] to compare MPI to OpenMP. For example, we
used a paired t-test to investigate whether there was any dif-
ference in the LOC required to implement the same solution in
different parallel programming models for the same subject.
This statistical test calculates the signed difference between
two values for the same subject (e.g. the LOC required for an
OpenMP implementation and an MPI implementation of the
same problem). The output of the test is based on the mean of
the differences for all subjects: If this mean value is large it
will tend to indicate a real and significant difference across the
subjects for the two different approaches. Conversely, if the
mean is close to zero then it would tend to indicate that both
approaches performed about the same (i.e. that there was no
consistent effect due to the different approaches). By making a
within-subject comparison we avoid many threats to validity,
by holding factors such as experience level, background, gen-
eral programming ability, etc., constant.

5.1 Achieving Speedup
A key question was whether novice developers could

achieve speedup at all. It is highly relevant for characterizing
HPC development, because it addresses the question of
whether the benefits of HPC solutions can be widely achieved
or will only be available to highly skilled developers. A survey
of HPC experts (conducted at the DARPA-sponsored HPCS
project meeting in January 2004) indicated that 87% of the
experts surveyed felt that speedup could be achieved by nov-
ices, although no rigorous data was cited to bolster this asser-
tion. Based on this information, we posed the following hy-
pothesis:

H1 Novices are able to achieve speedup on a parallel ma-
chine
To evaluate this hypothesis, we evaluated speedup in two

ways: 1) Comparing the parallel version of the code to a serial
version of the same application, or 2) comparing the parallel
version of the code run on multiple processors to the same
version of the code run on one processor.

For the game of life application, we have data from 3
classroom studies for both MPI and OpenMP approaches.
These data are summarized in Table 2, which shows the paral-
lel programming model, the application being developed, and
the programming language used in each study for which data
was collected. The OpenMP programs were ran on shared
memory machines. The MPI programs were run on clusters.

Data
set

Programming
Model

Speedup on
8 processors

Speedup w.r.t. serial version
C1A1 MPI mean 4.74, sd 1.97, n=2
C3A3 MPI mean 2.8, sd 1.9, n=3
C3A3 OpenMP mean 6.7, sd 9.1, n=2
Speedup w.r.t. parallel version run on 1 processor
C0A1 MPI mean 5.0, sd 2.1, n=13
C1A1 MPI mean 4.8, sd 2.0, n=3
C3A3 MPI mean 5.6, sd 2.5, n=5
C3A3 OpenMP mean 5.7, sd 3.0, n=4

Table 2: Mean and standard deviation of speedup are shown
along with the number of subjects for each assignment. All
data sets are for C implementations of the Game of Life.

Although there are too few data points to say with much

rigor, the data we do have supports our hypothesis H1. Nov-
ices seem able to achieve about a 4.5x speedup (on 8 proces-
sors) for the game of life application over the serial version.
Speedup on 8 processors is consistently about 5 compared to
the parallel version run on one processor, for this application.

In addition to the specific hypothesis evaluated, we also
observed that OpenMP seemed to result in speedup values
near the top of that range, but too few data points are available
to make a meaningful comparison and too few processors
were used to compare the parallelism between programming
models.

5.2 Code expansion factor
Although the number of lines of code in a given solution

is not important on its own terms, it is a useful descriptive
measure of the solution produced. Different programming
paradigms are likely to require different types of code trans-
formations; for example, OpenMP typically seems to require
adding only a few key lines of code to a serial program, while
MPI typically requires much more significant changes to pro-
duce a working solution. Therefore we can pose the following
hypotheses:
H2 An MPI implementation will require more code than its

corresponding serial implementation

 6

H3 An OpenMP implementation will require more code than
its corresponding serial implementation.
We can use the data from both C2A2 and C3A3 (the first

and second rows of the matrix) to investigate how the size of
the solution (measured in LOC) changes from serial to various
HPC approaches. A summary of the datasets is presented in
Table 3. (In the C2A2 assignment, students were given an
existing serial solution to use as their starting point. It is in-
cluded here to allow comparison with the OpenMP and MPI
solutions to the same application.)

Data
set

Program
Model Program LOC

C3A3 Serial Life 173/90 (10)
C3A3 MPI Life 433/485 (13)
C3A3 OpenMP Life 195/154 (13)
C2A2 Serial Resistors 42 (given)
C2A2 MPI Resistors 174/75 (9)
C2A2 OpenMP Resistors 49/3.2 (10)

Table 3: Mean, standard deviation, and number of subjects for
computing code size (Lines of Code). All program were writ-
ten in the C programming language.

For the game of life application, the number of LOC for

the MPI solution was significantly greater than in the serial
version (p = 0.02), but the number of LOC in OpenMP was
not significantly greater than the serial (p = 0.06).

For the grid of resistors application, the number of SLOC
for the MPI solution was significantly greater than in the serial
version (p = 0.0004), as was the number of SLOC in the
OpenMP version (p = 8.5e-5).

Thus, H2 is supported for both problem domains, that is,
MPI required significantly more code to express the solution
than in serial. H3 was supported in only one of the two do-
mains. OpenMP on average required many fewer SLOC than
MPI.

5.3 Effort required
Any study of HPC development productivity will focus

on developer effort as a key measure. For any given develop-
ment project, developer effort will be a significant contributor
to the final cost as well as being a useful indicator of the
amount of time required before a solution can be available.
Furthermore, the code that is written to parallelize an applica-
tion is generally thought of as being more difficult to write
than the underlying serial code. These two points led us to
propose the following hypotheses:
H4 A parallel code (MPI or OpenMP) will require more de-

velopment effort than its underlying serial code
As in Section 5.2, we can use the data from C3A3 (the

second row of the matrix) to investigate any differences in the
effort subjects required to implement the same solution using
various HPC approaches. The data is summarized in Table 4.

Programming
Model

Effort (person-hrs)

Serial mean 4.4, sd 4.3, n=15
MPI mean 10.7, sd 8.9, n=16
OpenMP mean 5.0, sd 3.5, n=16

Table 4: The Mean and standard deviation of the total effort
along with the number of subjects is shown for each pro-
gramming model. All data sets are for C implementations of
the Game of Life for data set C3A3.

As explained in Section 5.2, we used one-sided paired t-
tests to test for differences between the solutions implemented
with various HPC approaches by the same subject.

For the game of life application in C3A3, the effort re-
quired to implement the solution in MPI was significantly
greater than required for the serial (p = 0.002), but is not the
case for OpenMP (p = 0.3). For MPI, H4 is supported with a
statistically significant result, although the variation from one
subject to another was very high.

5.4 Cost per LOC
The cost per LOC measure is useful for estimating the

relative difficulty of various HPC approaches – that is, how
much effort is expended per line of the final solution.

Most experts seem to believe that almost any approach to
parallel development will result in a higher cost per line of
code than serial development of the same problem. (In the
January 2004 survey at the DARPA expert meeting, 73% of
respondents felt this was a true statement, while 19% dis-
agreed.) Based on this survey result, we posed the following
hypothesis:
H5 The cost per line of code for parallel code (MPI or

OpenMP) will be greater than the cost per line of code for
serial code
We use the effort data from C3A3, described in Section

4.3, to investigate the cost of HPC code in terms of the amount
of effort required per line of code. Specifically, we compared
the cost to develop a serial version from scratch to the cost to
develop an HPC version starting from an existing serial im-
plementation. As before, we rely on the one-sided paired t-test
to test the differences in mean values for statistical signifi-
cance.

Analysis showed that HPC development was in fact statis-
tically significantly more expensive than serial development,
both for MPI (p = 0.006) and for OpenMP (p = 0.005) sup-
porting hypothesis H5. Note that one sample was excluded
from this analysis because for that single case the OpenMP
implementation was smaller than the corresponding serial ver-
sion.

 7

Programming
Model

Effort (person minutes/LOC)

Serial mean 1.8, sd 1.3, number 10
MPI mean 5.5, sd 4.2, number 9
OpenMP mean 24.8, sd 21.0, number 9

Table 5: The mean and standard deviation of the effort per
line of code, and the number of subjects is shown for three
programming models. All data sets are for C implementations
of the Game of Life for data set C3A3.

5.5 Effects of different HPC approaches
A central question of importance to HPC research is, what

are the strengths and weaknesses of the given HPC ap-
proaches? That is, if an HPC solution is going to be applied,
what are the tradeoffs between cost and benefits for different
problem types?

Based on the discussions above and the generally held be-
liefs about the relationship between MPI and OpenMP, we
posed the following hypotheses:
H6 More effort will be required to write an MPI code than

will be required to write an OpenMP code for the same
application

H7 MPI code requires more effort per line of code than
OpenMP code
We use the effort data from C3A3, described in Section

5.3, to investigate the cost of HPC code in terms of the amount
of effort required per line of code. (As in 5.3, the HPC effort
represents the effort needed to produce a parallel version start-
ing from an existing serial implementation, not to develop an
HPC solution from scratch.) Also as before, we rely on the
paired t-test to test the differences in mean values for statisti-
cal significance.

In evaluating hypothesis H6, the data show that total MPI
effort was significantly greater than total OpenMP effort (p =
0.005). However, for hypothesis H7,the cost per line of code
was not significantly greater for MPI than for OpenMP (p =
0.96).

If we view the results discussed in the previous sections
together, we can draw some deeper conclusions. Recall that in
the speedup data, Section 5.1, OpenMP seemed to produce
slightly better speedup on average, although there were not
enough data points to make a statistically rigorous compari-
son. This result also shows that the number of LOC in a given
code is not a useful proxy for developer effort by itself. That
is, the amount of effort that is spent per LOC will vary from
one solution to another depending on the HPC approach used.

5.6 Threats to validity
The fact that these studies were run, not only in a class-

room environment, but across several classroom environ-
ments, means that there are threats to the validity of our con-
clusions that should be kept in mind when interpreting the
results. Here we discuss the internal and external threats to
validity for the studies described in this paper [3].

We have already characterized the major context vari-
ables that may vary from one classroom environment to an-
other, such as the programming language being used or the
specific application assigned to the students. We have argued
that the experience level of subjects was rather similar and
thus comparable across studies: Before conducting the study,
we asked the students how much experience they had in paral-
lel programming. Table 6 shows the distribution of the re-
sponses for each class. The distributions suggest that the
classes are comparable: nearly all of the students had either no
experience or only classroom experience in parallel program-
ming. Therefore, comparing data across classes is less danger-
ous than if the subject populations had been more heterogene-
ous.

Prior Experience Class None Classroom Professional

C0 56% 33% 11%
C1 63% 38% 0%
C2 100% 0% 0%
C3 50% 50% 0%

Table 6: Reported parallel programming experience.

In terms of internal validity, we faced two main threats to
validity: instrumentation and learning. We used performance
data that was reported by the subjects. This falls into the cate-
gory of an instrumentation threat, since the students may not
have reported their data truthfully or consistently across the
entire population. They may have also made errors while re-
cording execution time data (e.g. recording execution time
when the machine is heavily loaded).

An additional instrumentation threat is that all effort data
was collected through a combination of automatic time stamp
logs, generated by instrumenting the compiler and batch
scheduler on the development machines, and of self-reported
logs kept by the students (which were emailed directly to our
research group rather than to the class instructor, to avoid fear
of data collection influencing grades). Our process for recon-
ciling both types of data has been described in some detail
elsewhere [1]. However, we should note that it is possible that
the serial development effort has been underestimated: While
students were constrained to use the HPC machines assigned
for OpenMP or MPI development (getting access to parallel
machines outside of the classroom environment is highly dif-
ficult), students could develop the serial component of an as-
signment on almost any machine. If students both worked on
an un-instrumented machine and under-reported their effort
spent on the assignment on the manual forms, we may have
under-counted their effort.

Finally, there is the possibility that students experienced a
learning effect where solving the problem using one approach
affected their ability to solve the problem using another ap-
proach. The results may be confounded by the order in which
the subjects solved the problem using the different program-
ming models. This threat can be addressed by enforcing an
ordering on the subjects, where half of them solve the problem

 8

in one order and another half solve it in a different order. Un-
fortunately, we were not able enforce ordering in these studies.

There are several external threats to validity which are
common to software engineering studies that involve subjects
solving relatively small tasks. We have focused on small prob-
lems, which have been run on only a small number of proces-
sors. The code profile of a small problem is qualitatively dif-
ferent form the code profile of “real life” computational sci-
ence codes (e.g. much more of the code will be devoted to
issues other than the core parallel algorithms that are the focus
of smaller problems). Therefore, any conclusions that relate to
lines of code (e.g. total size, effort per line of code) may not
generalize to larger codes in their entirety. In terms of per-
formance, achieving good speedup on 8 processors is quite
different from achieving performance on 800 processors. This
work does not address the issues that arise when trying to
scale to a large number of processors.

6 Future Work
There have been some questions about whether graduate

students in parallel programming classes are representative of
typical HPC programmers. We plan on observing expert HPC
programmers as they solve the same problems that were in-
volved in this assignment. This would give us some indication
of how different graduate students are from experts.

Through these studies, we have learned much about cap-
turing programmer effort throughout development of parallel
programs. For the next stage of our research, we plan on
studying programming problems on a larger scale than class-
room assignments. We will be conducting case studies on par-
allel programming projects in government research labs (e.g.
porting a parallel code from one architecture to another).

We also plan on leveraging the knowledge of the HPC
community on parallel programming issues by conducting
surveys about HPC folklore and defects related to parallel
programming.

7 Conclusions
We have so far been successful at forging collaborations

among researchers in software engineering as well as high-
performance computing, as well as adapting an empirical ap-
proach to the study of how HPC codes are engineered effec-
tively.

Our analyses have indicated a number of lessons learned
for measurement in this area, including:
• SLOC alone is not a good proxy for effort, especially for

comparisons across different HPC approaches. Our data
showed that a typical line of code has an associated cost
that will vary from one approach to another.

• Code expansion rates highlight differences in the strate-
gies imposed by different HPC approaches. For example,
there is a statistically significant difference between the
code expansion rates for MPI and OpenMP, which re-
flects differences in the programming strategies employed
in each of those approaches.

These lessons will be useful for contributing to a more
comprehensive view of the time to solution metric, taking into
account both the development and performance time.

Furthermore, the studies performed to date offer experi-
mental design templates, data collection mechanisms, and
baseline data about how novices perform on various HPC ap-
plications, which can be useful for both researchers and educa-
tors who would like to replicate those experiences. Such repli-
cations are crucial if we are to build a true body of knowledge
that can more accurately reflect the expected contributions of
various HPC practices in different contexts.

This work represents a beginning in exploring the influ-
ence of context variables and understanding their effects on
high performance technology. Such work will be guided by
the matrix we are building to describe the problem space (Ta-
ble 1) to show where we are lacking coverage. Future studies
will be run to generate the large and diverse data sets, cover-
ing a majority of cells in the matrix that will be required to
address those questions in the most general case. We are also
beginning to work with industrial and government HPC de-
velopers, to determine in what ways experience level affects
development practices and results.

8 Acknowledgements
This research was supported in part by Department of En-

ergy contracts DE-FG02-04ER25633 and DE-CFC02-
01ER25489, and NASA Ames Research Center grant
NNA04CD05G to the University of Maryland. We thank the
faculty members and their students for their participation in
our experiments over the past 2 years. This includes Alan
Edelman (MIT), John Gilbert (University of California Santa
Barbara), Mary Hall (University of Southern California), Alan
Snavely (University of California San Diego), Alan Sussman
(University of Maryland), and Uzi Vishkin (University of
Maryland).

9 References

1. S. Asgari, V. R. Basili, J. Carver, L. Hochstein, J. K.

Hollingsworth, F. Shull, and M. V. Zelkowitz, "Chal-
lenges in Measuring HPCS Learner Productivity in an
Age of Ubiquitous Computing: The HPCS Program," In
Proceedings of ICSE Workshop on High Productivity
Computing. May 2004, Edinburgh, Scotland, pp. pp. 27-
31.

2. J. C. Browne, T. Lee, and J. Werth, "Experimental
Evaluation of a Reusability-Oriented Parallel Program-
ming Environ-ment," IEEE Transactions on Software En-
gineering, 16(2), 1990, pp. 111-120.

3. D. Campbell and J. Stanley, Experimental and Quasi-
Experimental Designs for Research. 1963, Boston:
Houghton Mifflin.

4. F. Cantonnet, Y. Yao, M. Zahran, and T. El-Ghazawi,
"Productivity Analysis of the UPC Language," IPDPS
2004 PMEO workshop. April 2004, Santa FE, NM.

5. J. Carver, L. Jaccheri, S. Morasca, and F. Shull, "Issues
Using Students in Empirical Studies in Software Engi-

 9

neering Education.," Proceedings of 2003 International
Symposium on Software Metrics (METRICS). Sep., 2003,
pp. 239-249.

6. B. L. Chamberlain, S. J. Dietz, and L. Snyder, "A com-
parative study of the NAS MG benchmark across parallel
languages and architectures," SC'2000. Nov. 2000.

7. D. D. Howell, Statistical Methods for Psychology. 5th ed.
2002, Pacific Grove: Duxbury.

8. L. Hochstein, V. Basili, M. Zelkowitz, J. K. Hollingsworth
and J. Carver, "Combining self-reported and automatic
data to improve effort measurement," Proc. Foundations
of Software Engineering (FSE), Aug. 2005.

9. A. Hoisie, O. Lubeck, H. Wasserman, F. Petrini, and H.
Alme, "A General Predictive Performance Model for
Wavefront Algorithms on Clusters of SMPs," Proc.
ICPP. 2000, pp. 219-229.

10. P. Husbands and C. Isbell, "MATLAB*P: A tool for in-
teractive supercomputing," Proceedings of The Ninth
SIAM Conference on Parallel Processing for Scientific
Computing.

11. A. Snavely, L. Carrington, N. Wolter, J. Labarta, R.
Badia, and A. Purkayastha, "A Framework for Applica-
tion Performance Modeling and Prediction," Proceedings
of SC2002. Nov. 2002, IEEE.

12. D. Szafron and J. Schaeffer, "An Experiment to Measure
the Usability of Parallel Programming Systems," Concur-
rency: Practice and Experience, 8(2), 1996, pp. 147-166.

13. U. Vishkin, S. Dascal, E. Berkovich, and J. Nuzman,
"Explicit Multi-Threading (XMT) Bridging Models for
Instruction Parallelism," Proc. 10th ACM Symposium on
Parallel Algorithms and Architectures (SPAA).

