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ABSTRACT

Detailed cache simulation can be useful to both system de-
velopers and application writers to understand an applica-
tion’s performance. However, measuring long running pro-
grams can be extremely slow. In this paper we present a
technique to use dynamic sampling of trace snippets through-
out an application’s execution. We demonstrate that our
approach improves accuracy compared to sampling a few
timesteps at the beginning of execution by judiciously choos-
ing the frequency, as well as the points in the control flow,
at which samples are collected. Our approach is validated
using the SIGMA tracing and simulation framework for the
IBM Power family of processors.

Categories and Subject Descriptors
C.4 [Performance of Systems|: Measurement Techniques;
1.6.3 [Simulation and Modeling]: Applications

General Terms

Measurement, Performance

1. INTRODUCTION

As the depth and complexity of memory hierarchies continue
to grow, it is becoming increasing important for application
developers and tuners to be able to understand the interac-
tion of their program with the memory system. Hardware
counters are widely used to provide insight into these is-
sues. However, hardware counters are limited in the level
of detail that they can provide. For example, only limited
support is available to associate memory system events with
data structures in the application. Alternatively, execution
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driven simulation has been effectively used for years to study
performance as part of architectural studies. However, due
to the significant slowdowns required for high fidelity sim-
ulations (1000-10,000x are common), this approach has not
been widely used for tuning full applications.

Previously, we developed the SIGMA[4] framework to allow
efficient collection of trace data from scientific applications.
The SIGMA system also permits detailed simulation of ar-
chitecture features. While this approach has proved useful,
gathering trace data for long running programs (hours to
days of running time) still requires too much time to be
practical. Moreover, for many programs their performance
varies during execution, and gathering data for only a few
early timesteps does not provide an accurate picture of the
application’s performance. For example, adaptive mesh re-
finement (AMR) applications can have very different perfor-
mance as the mesh evolves during the program’s execution.

In this paper, we present a new technique that permits gath-
ering detailed trace data based on sampling of timesteps
throughout a program’s execution. Our approach uses the
Dyninst runtime code re-writing system to allow us to in-
strument only those timesteps we wish to sample. Using this
approach, un-instrumented timesteps run at native speed,
yet we are able to gather full address traces for selected
timesteps.

The rest of this paper reviews the SIGMA tracing system,
and then introduces dynSIGMA, our dynamic adaptive trac-
ing system. We show that for one common benchmark,
sampling only a few timesteps at the beginning of its ex-
ecution results in an inaccurate characterization of the over-
all performance. We then present a validation study that
shows that sampling only a few percent of the timesteps
throughout the execution of an application provides repre-
sentative information about the entire application. Finally,
we present a case study that demonstrates the process of
using dynSIGMA to identify and correct a TLB problem in
a real program.



2. SIGMA

SIGMA [4, 5, 12] is a data-collection framework that gath-
ers memory references using software-based instrumentation
and provides a family of tools that simulate caches and pro-
vide detailed information on variables and functions. This
data can be employed by programmers to improve cache
performance. Typical tuning operations that programmers
can perform include padding of data structures to improve
cache alignment, blocking of their code to improve cache
reuse, and loop fusion to increase cache and register reuse.
The SIGMA infrastructure guides programmers in the tun-
ing process by highlighting the precise memory references
that are causing poor utilization of the memory system.

The SIGMA environment consists of a pre-execution binary
instrumentation tool that locates and instruments all the
instructions that refer to memory locations, a runtime data
collection and compression engine that performs a highly
efficient lossless compression of the memory stream, and a
simulator of the memory subsystem. Users can choose to
only monitor selected data structures and functions. Fur-
thermore, SIGMA presents performance metrics expressed
in terms of functions as well as data structures defined in
the source code. For this purpose, SIGMA implements a
runtime symbolic mapping engine, which associates each
instruction address to the source line in the program that
made the reference, and each data address to the symbolic
name of the data structure that corresponds to the refer-
ence. The symbolic mapping engine supports both local
and global variables as well as dynamically allocated data
structures.

The SIGMA trace of execution captures the control flow
as well as the memory addresses generated. The machine
code of the program is divided into basic blocks, numbered
sequentially so that each instruction can be uniquely iden-
tified with a pair (blockNumber, blockOffset). The trace
file consists of a sequence of block-instances of the form:

(block Number, entryOf fset, memoryAddressesAccessed).

Each block instance completely specifies the sequence of in-
structions executed from the block and the addresses of lo-
cations accessed during that instance. The application can
also inject markers into the SIGMA trace file. Markers are
used to identify certain locations in the source code (like
the beginning or end of a code segment or a function), to
record the occurrence of certain events or to issue signals to
the memory simulator. Signals can be employed for activat-
ing/deactivating certain controls, such as dumping/resetting
caches and other counters.

Regular loops represented in the trace are in a very com-
pact form. Pattern matching is performed to determine if
control flow has caused a backward edge to be taken - that
is, if a loop has been traversed. This is performed without
any actual control flow analysis, relying solely on matching
basic block numbers, thereby obviating the need for intra-
procedural analysis. A linear regression is performed on
each set of memory accesses within a matching sequence
of basic blocks, and if a sequence of memory accesses can
be represented as a linear relation, only the coefficients of
the relation are output. This leads to a simple yet efficient
compression of regular memory accesses. This approach has
been used with up to 4 levels of nested loops.

The SIGMA cache simulator takes two inputs: a SIGMA
trace and a specification of the memory system. It simu-
lates the memory subsystem for the sequence of references
made in the trace and provides summary statistics on the
cache performance. The simulation results are expressed in
terms of source level functions and data structures and a
condensed repository of statistics is prepared. The repos-
itory is organized in such a manner that statistics can be
displayed based on functions or data structures. An inter-
active interface allows the user to query the repository, com-
pute derived metrics and create tables and bar charts.

3. SAMPLING TECHNIQUE

To illustrate the results of the above apparatus, we choose
the following crude, but effective, metric to gauge the mem-
ory performance of the application. The Sigma simulator
provides the counts of hits/misses at various levels of the
caches and TLB. The machine architecture manual provides
estimates of average latencies at each of these components.
Ignoring the concurrent behavior of the components of the
memory system, we can estimate the total time spent in the
memory subsystem by multiplying the miss counts with the
respective latencies, thus yielding the following metric:

memtime = Z (hi - ;) + T'miss - Tlatency (1)

i=1

where n denotes the number of cache levels, h; the num-
ber of hits at level ¢, [; the latency of the cache level ¢,
T'miss the number of TLB misses and T'latency the penalty
associated with a TLB miss. This metric represents an ap-
proximation of the time spent in memory operations. While
cache concurrency is ignored in this metric, we observed that
memtimes compared reasonably well with wall clock times
on several NERSC codes.

There are two sets of statistics that we utilize. First, we
observe the results of the simulation for each global memory
object. This includes C static and extern variables that are
contained within the executable proper (static variables in
and extern variables imported from shared libraries are not
included). For Fortran, we include the variables that are
defined within a common block, even if that common block
is never shared between functions.

In an orthogonal view, we can gather the statistics for loads
and stores on a per-function basis. Similar to our criteria for
data objects, we only consider functions that reside within
the executable itself. The choice of view, data-centric or
function-centric, is one that is be determined by the analyst.

For each memory object, we gather the statistics used in
equation (1) and calculate the memtime. This represents
the total amount of time spent, within the simulation, for all
accesses to that object. Each object is then given a canon-
ical name (we chose variable for global variables and vari-
able@function for local variables), alphabetically sorted, and
an array of memory times is output for the program. We
consider this the characteristic data object pattern. A char-
acteristic function pattern is generated in a similar fashion.
Since neither view is more or less important, for the re-
mainder of this section we use the characteristic data object
pattern in our examples.



This process, however, is not without its drawbacks. Most
significantly, instrumenting every load and store results in a
dramatic increase in runtime of the application. Slowdowns
of 6000x, just in trace generation alone, are not uncommon.
Of secondary interest is the size of the trace file, which can
grow to significant size for short-running (as measured by
uninstrumented execution time) applications. For instance,
seis_s, which runs in 8 seconds uninstrumented, generates a
trace file of 1.9G.

We therefore propose that a sampled trace may approxi-
mate a full trace to a good degree. Instead of recording
all memory accesses, we only record those inside the work
loop. Additionally, we record work loops only periodically.
That is, although we record all memory accesses from the
beginning of the outermost work loop to the end of that
same loop, we only record every M (mod 100) loops, giv-
ing an M% sampled trace. As we demonstrate in section 5,
these sampled traces are good representations of the actual
memory behavior of an application.

4. IMPLEMENTATION

Dyninst[2] is an Application Program Interface to a library
that permits the insertion of code into a running program.
The library provides a machine-independent interface to per-
mit the creation of tools and applications that use run-
time code patching. The application being modified is able
to continue execution without recompilation, relinking or
restarting. This is accomplished by direct manipulation of
the application’s user space. Although we only consider
POWER-based executables here, Dyninst supports several
architectures and operating systems. Because the interface
to the developer is machine-independent, very little modi-
fication is needed to extend runtime modifications to other
platforms.

We use Dyninst to enumerate every load and store instruc-
tion, as well as every call to heap allocation functions, and
to replace them with wrapper routines that insert the mem-
ory access or memory allocation/deallocation into the Sigma
trace. All compression and file I/O is done entirely within
the process space of the instrumented application to elimi-
nate additional execution time resulting from context switch-
ing.

We modify the source of the application to be measured
with calls to functions sample_begin and sample_end, which
delineate the timestep boundaries. Currently, these mod-
ifications must be done by hand by analyzing the control
flow of the application, identifying the outermost section of
the main work loop, adding these two additional function
calls, and recompiling the binary. Note that these functions
are initially empty - that is, while we have modified the ap-
plication at the source level, all we have done is insert two
function calls that immediately return. We also place mark-
ers around calls to memory allocation/deallocation routines,
if they are performed outside the work loop. This is done so
as to track ownership of dynamic memory allocations. All
major modification is performed at runtime.

Under Dyninst, to insert instrumentation, a separate con-
trolling application called a mutator is invoked that exe-
cutes the application to be instrumented (mutatee) and adds

or removes instrumentation by manipulating the mutatee’s
process space. When the application to be instrumented is
first loaded, a shared library, sigmatra.so, is also loaded into
the mutatee’s process space. Then, calls to these dummy
functions, which have no code in the executable itself, are
replaced inline with calls to corresponding functions within
the shared library. This allows different sampling algorithms
to be run without recompilation of the instrumented exe-
cutable.

As stated previously, instrumentation of the application is
controlled by the mutator. Dyninst also allows, in addition
to insertion and deletion of instrumentation, deactivation
and reactivation of that instrumentation. Those operations
are also performed by the mutator. To perform trace sam-
pling, we deactivate and reactive instrumentation on a pe-
riodic basis, whenever the application reaches sample_begin
or sample_end. To alert the mutator that one of these points
have been reached, the instrumented application sends a sig-
nal (SIGSTOP) to itself, which alerts the mutator and as a
side effect also pauses execution of the application. When
the mutator sees that the application has paused, it toggles
the tracing activation state of the instrumentation, inserts
a marker containing the current sample iteration into the
trace, and then continues the application’s execution. The
periodicity at which these signals are emitted is controlled
via the environment variable DYNSIGMA_PERIOD.

5. EVALUATION OF SAMPLING

We chose five benchmarks on which to perform our analysis,
three from the NAS Parallel Benchmark suite v3.0 (bt.W,
lu.W, sp.W), one from the SPECFP2000 suite (swim), and
one from the SPECHPC2000 suite (seis_s). We limited the
benchmarks we analyzed to those with at least 300 itera-
tions, so that a 1.0% sampling rate would provide at least
3 timesteps. Each benchmark was compiled using the IBM
native compiler (xIf or xlc), with an optimization level of
-03. All experiments were performed on an IBM p670 with
8 POWERA4 processors, running AIX 5.2 with 8.0G of mem-
ory, and used SIGMA 2.1.4 and a modified version of Dyninst
4.1.

First, each benchmark was instrumented with the static
SIGMA tool. The instrumentation itself was performed of-
fline via binary rewriting; that is, after the instrumentation
phase of program foo, a separate program foo.inst was pro-
duced that contained the instrumented code. All load and
store instructions were instrumented, with the exception of
loads into R2 (the Table of Contents pointer), which is in-
tentionally ignored by SIGMA. Then the rewritten, instru-
mented program is run which produces a trace file for each
thread of execution. While the architecture is present to
capture memory references on a per-thread basis in both the
static and Dyninst based SIGMA, for simplicity all bench-
marks analyzed were single-threaded.

Next, the trace file was input into the SIGMA cache sim-
ulator, which recorded statistics such as accesses, hits, and
misses differentiated by access type (load or store), cache
level (L1, L2, L3, or TLB), function, and data structure.
While the SIGMA simulator allows for modeling of different
cache architectures, we chose as our model the same archi-
tecture we ran the simulator on, that is the POWERA4. The



results were then output into a human-readable file and an
XML-based file for further processing. For statistics gener-
ated by binaries instrumented with the static SIGMA tool,
we refer to these as the “Full” versions, as the static instru-
mentation performed no sampling.

To achieve sampling, we instrumented the benchmarks with
our Dyninst-based version of SIGMA. Unlike the static ver-
sion, our instrumentation is all performed online, with no in-
termediate binary produced. The instrumented in-memory
image produces a trace file in the same format as the rewrit-
ten executable, so the results of the sampled instrumentation
were fed directly into the simulator as in the Full case.

To compare a sampled trace with the output from a full pro-
gram, the characteristic data object patterns of both sets
of traces are examined. We perform a simple linear corre-
lation using Pearson’s r[11] between the two arrays. This
computes a weighted variation difference between vectors of
values. The goodness of the sample is then given by the lin-
ear correlation coefficient obtained (Pearson’s r). For values
r ~ 1, we can say that the sampled trace is nearly repre-
sentative of the program’s execution. This means that the
access pattern for the data objects approximates the true
execution relative to each object. In particular, the infor-
mation provided to an analyst about the weighted ranked
order of data (either functions or data structures) is identical
if the correlation coefficient is 1.

5.1 Sampling of One Timestep isNot Enough
Of course, it is logical to ask at this point if sampling of
1%, 5%, 10%, etc. is even necessary. After all, boundaries
of the work loop do not change throughout the lifetime of
the execution. It is tempting to choose a single timestep
as representative of every loop iteration. And for appli-
cations with regular memory accesses and regular control
flow behavior, this may be an acceptable strategy. We shall
see, however, that an application with irregular control flow
within a timestep requires more than a single sample.

Let us consider the seis_s benchmark. Its work loop consists
of a variable pipelined sequence of processing steps. The se-
quence is variable because, during the lifetime of the simula-
tion, as processing steps at the head of the pipeline complete
they are removed from the work queue. This results in an
irregular control flow structure for the application. Because
of this irregularity, sampling just a single timestep or even
a few early ones) is not sufficient to represent the charac-
teristics of the application. To show this, we consider three
single timestep samples taken at the beginning, middle, and
end of the seis_s application. It happens that the memory
behavior of the first and last timesteps are identical.

In Table 1, we see the top five memtime data structures
for the full trace, a 2.5% sampled trace, and the three sin-
gle timesteps (with the first and last timesteps presented
together). Some of the data points are labeled as “un-
knownDtQfunction” These correspond to memory accesses
within a function that, because of optimization (or addition-
ally, in the case of sampling, stack-based variables created
outside the scope of the sample), cannot be attributed to a
particular data object. Those variables without an ’Q’ in
them are global variables.

Full | 2.5% | B8/ | Middle
End

sa | 65 64 0 0

otr | 19 24 0 5
unknownDt@r8syn | 8 7 0 9
unknownDt@ord2 2 1 0 3
ra 1 1 0 72

unknownDt@r8tr | <1 | <1 <1 8
unknownDt@seisproc | <1 | <1 55 <1
name | <1 | <1 16 <1
unknownDt@Qcproc | <1 | <1 16 <1
unknownDt@sysproc | <1 | <1 9 <1

Table 1: Percentage of memtime for data structures
for full trace, sampled, and single timesteps in seis_s

Note that the set of data structures referenced in the first
and last timesteps are almost completely different from ones
taken throughout the entire execution. A timestep taken in
the middle of the execution has more similarities with the
full trace, but even then its data reference pattern is skewed
more towards the structure ra than sa. This is reflected
in Table 2, where the correlation is extremely poor for the
beginning/end timestep and middle timestep compared to a
2.5% sample.

Begin./ .
‘ 2.5% End ‘ Middle

Linear correlation | 0.997124 | -0.043267 | 0.009820

Table 2: Linear correlation of memtime for data
structures in seis_s for 2.5% sampling compared to
single timesteps

5.2 Accuracy of Sampling

We now expand our analysis to include the remaining ap-
plications, and examine the effect of sampling rates on our
accuracy. For every application, we varied the sampling rate
between 1%, 2.5%, 5%, and 10%. Although we used the data
from all the data structures for our calculations, in our anal-
ysis we were particularly focused on the top consumers of
memtime, as would typically be the case for any application
tuner.

Figures 1, 2, 3, 4 and 5 show the data structures that consti-
tute the majority of the memtime in each of the benchmarks
(with respect to the full trace), and their associated mem-
time percentages. Each series represents a sampling rate (or
Full for the static instrumentation traces). As can be seen
in each of the figures, the sampled traces are quite represen-
tative of the memory access patterns.

To quantitatively show the correctness of our sampling tech-
nique, first we consider different sampling rates. We take the
memtimes for all variables in each sampling run and calcu-
late the linear correlation against the respective memtimes
of the full simulation. Variables with no data (i.e. variables
that are only accessed outside the boundaries of a timestep)
are given a zero memtime. The results in Table 3 show
these linear correlation coefficients for four different sam-
pling rates, as compared to the total memtime (all cache
levels) for every data structure.
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| BT | LU | SP | seis | swim
1.0% | 0.999994 | 0.999969 | 0.999812 | 0.996139 | 0.999382
2.5% | 0.999998 | 0.999957 | 0.999812 | 0.997124 | 0.999888
5.0% | 0.999999 | 0.999965 | 0.999811 | 0.997307 | 0.999964
10.0% | 0.999999 | 0.999980 | 0.999811 | 0.997131 | 0.999985

Table 3: Linear correlation of sampling at various rates
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Figure 5: Top 5 memtime data structures, swim

We believe that 2.5% represents a good tradeoff between
trace size and accuracy. To demonstrate that we examined
the correlation of memtime for various cache levels, includ-
ing L1, L1 plus contributions from L2, L1 plus L2 and L3,
and all cache levels including TLB and main memory. These
results are summarized in Table 4.

| L1 | L14L2 | L14L24L3| Al
BT | 0.999998 | 0.999999 | 0.999997 | 0.999998
LU | 0.999944 | 0.999986 | 0.999940 | 0.999957
SP | 0.999994 | 0.999994 | 0.999790 | 0.999812
seis | 0.988851 | 0.997133 | 0.997130 | 0.997124
swim | 0.997257 | 0.999766 | 0.997296 | 0.999888

Table 4: Linear correlation of 2.5% sampling for var-
ious levels of memory heirarchy

5.3 Space and Time Gainsfrom Sampling
Finally, we consider the gains in trace size and running time
(of both the instrumentation phase and subsequent simula-
tion) from sampling timesteps. First, we examine the reduc-
tion in storage space for memory reference traces, as given
in Table 5. A couple of points of explanation need to be
made here. Note that for LU and SP, all the sampled traces
are roughly the same size. This is because the regularity
of the computations performed during the timesteps allow
the memory references to compress extremely well in the
SIGMA trace format. In fact, the only reason the file sizes
are not the same for each trace is the additional markers
that are inserted to track the boundary of each sample. Ad-
ditionally, for these benchmarks, the sampled traces are only
roughly 1% of the Full trace size. Again this comes from the
fact that we only examine memory accesses within timesteps
- thereby excluding initialization, finalization, and reporting
or I/O. As can be seen from earlier tables, these phases do
not constitute a significant portion of memtime for the over-
all application, but they can contribute significantly to the
size of the generated trace.

While trace sizes can grow to be rather large, especially for
programs with irregular memory access patterns, often the

| 1.0% | 2.5% | 5.0% | 10.0% | Full
BT 885 | 2,213 | 4,426 | 8,852 74,221
LU 166 168 172 180 16,390
SP 192 192 192 193 21,832
seis | 13,832 | 33,929 | 67,922 | 136,370 | 1,934,667
swim 19 19 19 20 29

Table 5: Trace sizes in KB at various sampling rates

size of the trace is not the limiting factor when consider-
ing trace-based simulations. Rather, it is the amount of
additional time spent in instrumentation, trace generation,
and simulation that is the biggest burden on an applica-
tion analyst. Consider the slowdown to the uninstrumented
executable when static and dynamic SIGMA tracing takes
place, as shown in Table 6. In this table, the value in each
column represents the total running time of trace genera-
tion and simulation for each sampling level, as a factor of
the uninstrumented time, with the exception of the last col-
umn which is the running time of the uninstrumented exe-
cutable in seconds. As we have stated previously, slowdowns
in the order of magnitude of 1000 are the norm, not the ex-
ception. While the toggling of trace generation does incur
some overhead (so for instance a 10% sampling takes slightly
more than 10% of the Full time), it is small compared to the
savings in overall execution time.

1.0% | 25% | 5.0% | 10.0% | Fun || Urinst.
Runtime

BT | 00| 233 | 443 | 713 | 6000 8
LU| 63| 206| 286| 463 | 3567 215
SP| 47| 96| 231| 469 | 4400 27s
seis | 68| 300 | 546 | 1020 | 4463 8s
swim 9| 25| 66 79 | 777 3965

Table 6: Slowdowns of tracing and simulation com-
pared to uninstrumented runtime at various sam-
pling rates

6. CASE STUDY

The following example, albeit hand-picked for illustration,
highlights the dismal performance of a TLB when the size
of the data structure is in the neighborhood of a boundary
condition. The code is the standard SPEC2000 benchmark,
swim, whose structure is shown in Figure 6. The size of
the data structure is set by the parameter, IV, used in the
common-block in Figure 6. The TLB behavior is adversely
affected when the size changes from N = 1023 to N = 1024.

Using the estimates for the memory subsystem of the IBM
Power4 machine, we perform the simulation. The mem-
times are computed separately for each major data struc-
ture (u,v,p, wold, vold, pold, etc.) accessed from each of the
major subroutines (CALC1, CALC2, CALCS3, CALCS8Z).In
Figure 8, each point on the x-axis has a label of the form ar-
rayName@functionName indicating the selected array name
and function name. For each selection, two bars are shown:
one for N=1023 and the other for N=1024. The length of
the bar is the memtime calculated for the accesses made to
that array in that function. This shows remarkable increase
in memtime for N=1024 (about 40 times higher).



PROGRAM swim
IMPLICIT INTEGER (I-N)
IMPLICIT REAL*8 (A-H, 0-2)

COMMON U(N,N), V(N,N), P(N,N),
UNEW(N,N), VNEW(N,N),
PNEW (N,N), UOLD(N,N),
VOLD(N,N), POLD(N,N),
CU(N,N), CV(N,N),
Z(N,N), H(N,N), PSI(N,N)

* X X X ¥

CALL INITAL
NCYCLE = 0

90 NCYCLE = NCYCLE + 1
CALL CALC1
CALL CALC2

IF(NCYCLE .GE. ITMAX) THEN
STOP
ENDIF

IF(NCYCLE .LE. 1) THEN
CALL CALC3Z

ELSE
CALL CALC3

ENDIF

GO TO 90
END

Figure 6: SWIM Main Program

To probe further into this disparity, we break down the
memtimes into components spent in each of the caches and
TLB. Figure 9 shows the breakdowns for each value of NV
separately. Each bar is a stack of time slices estimated to
be spent in L1,1.2,L3, Memory and TLB. While on the left
(N=1023) the major portion is spent in memory access, the
right side (N=1024) shows that the major portion of the
time is spent in TLB miss latency. When the length of a
matrix column used in the inner loop exceeds the page size,
it needs a translation entry for an additional page and the
finite size of the TLB causes constant eviction of the entries
resulting in thrashing.

Figure 10 illustrates the same analysis using sampled traces.
Each point on the x-axis corresponds to a selected data
structure and function and shows 6 bars. Each bar corre-
sponds to different percentages of sampling, the black being
the full trace. In most of the cases, shorter traces project
performance close to the full trace. A few selection points
show poor prediction when the sampling rate is very small.

7. RELATED WORK

The technique of binary-modification for execution-driven
simulators[6, 15, 10, 7] forms the basis for SIGMA. All these
simulators were concerned with timing characteristics of pro-
gram segments. They trapped memory access instructions
and transferred control to a backend that can simulate de-
sired memory architecture. Non-memory access instructions
were run on the native processors and efficient techniques
of estimating their timing were incorporated. Unlike these
simulators, our objective is not timing characteristics, but
rather tying memory accesses to symbolic data structures
and subroutines in the source program.

Some tools provide a sampling interface via hardware coun-
ters. On Intel platforms, Vtune[8] is available. PAPI[I]
provides a multi-platform interface. However, the drawback
to using these (and any other hardware counter-based in-
terface) is that the granularity is limited to sampling across
code regions. Our work in CacheScope[3] provides data cen-
tric information related to each level in the cache. Our ap-
proach, using SIGMA, captures the actual memory address
being accessed, allowing for statistics on a per-data access
basis.

Martonosi et al.[9] present results of cache simulations on
sampled traces, where the samples are collected blindly -
that is, N samples of length L (distributed uniformly over the
whole trace) are selected and N and L are varied. They re-
port cache simulation results with less than 0.5% error com-
pared to the results from the whole trace. In contrast our
technique allows us to select more meaningful samples from
the source program that correspond to symbolic steps. To
show this, we modified a version of Sigma to emulate the be-
havior of the Martonosi technique. In Figure 7, we compare
the results of running our sampling at 10.0% (’Timestep-
aware’) and the Martonosi sampling with N= 20 and L=
1/10'" the size of a single interval ("Timestep-oblivious’)
against a full Sigma trace ("Full’). The size of 10% was cho-
sen because Martonosi asserts that this is their ideal sam-
pling rate. The results show that our timestep-aware sam-
pling technique produced increased accuracy (the colored
bars are much closer in length than the white bar). This is
also borne out quantitatively in terms of correlations, where
timestep-aware sampling results in » = 0.999985 compared
to r = 0.756358 for timestep-oblivious sampling. For this
experiment, the running time to generate the traces was 50
minutes for both sampling techniques. As stated previously,
a lower sampling rate of 2.5% results in lower overhead and
no significant loss in accuracy.

A framework similar to dynSIGMA is described by Snavely
et al.[13, 14]. In their work, they too have based their in-
strumentation on Dyninst. Their sampling technique de-
fines sample boundaries in terms of CPU cycles, similar to
the procedures employed by Martonosi et al. Additionally,
calculations of memory subsytem statistics (e.g. L1/L2 hit
ratios) are performed at the basic block level by the tracer
proper, whereas dynSIGMA’s simulator describes the per-
formance of data objects at the procedure level.

8. CONCLUSIONS

In this paper we presented a technique to use dynamic sam-
pling of trace snippets throughout an application’s execu-
tion. The technique can be used to dramatically reduce
the execution and storage overheads associated with a tra-
ditional full memory trace. Additionally, we provided a
framework for identifying boundaries of the outermost work
loop, and a method of altering sampling rates and algo-
rithms without recompilation of the target application.

We demonstrated that our approach improves accuracy com-
pared to sampling a few timesteps at the beginning of exe-
cution by judiciously choosing both the frequency as well as
the points in the control flow at which samples are collected.
We showed that, while taking a single sample is usually not
sufficient, in general only a fraction of the total execution
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needs to be monitored to provide a close representation of
the application’s performance characteristics.

Our validation results using applications from three bench-
mark suites demonstrate that periodic sampling gives results
that are comparable to full traces, with many above 0.99 lin-
ear correlation accuracy. We showed that an application’s
control flow need not be the same for every iteration of the
work loop, as in the case of the seis_s benchmark. Lastly,
we presented a case study highlighting the capabilities of
the SIGMA simulator and the need for data- and function-
centric analysis.
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Figure 9: Contributions to the memtime in SWIM for N = 1024 (above) and N = 1023 (below)
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