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ABSTRACT
We present an automated software interference detection
methodology for Single Program, Multiple Data (SPMD)
parallel applications. Interference comes from the system
and unexpected processes. If not detected and corrected
such interference may result in performance degradation.
Our goal is to provide a reliable metric for software interfer-
ence that can be used in soft-failure protection and recov-
ery systems. A unique feature of our algorithm is that we
measure the relative timing of application events (i.e. time
between MPI calls) rather than system level events such as
CPU utilization. This approach lets our system automat-
ically accommodate natural variations in an application’s
utilization of resources. We use performance irregularities
and degradation as signs of software interference. However,
instead of relying on temporal changes in performance, our
system detects spatial performance degradation across mul-
tiple processors. We also include a case study that demon-
strates our technique’s effectiveness, resilience and robust-
ness.

1. INTRODUCTION
High-performance computing systems with thousands of

processors are used to run large-scale scientific applications.
Management and maintenance of such systems are daunting
tasks, and it is crucial to have automated supporting tools
to help identify problems. In this paper, we present an au-
tomated mechanism for software interference and resource
contention detection.

Performance of parallel applications depends on the com-
bination of user-level application code plus any interfering
system level operations. Hence, interfering OS activities
can cause resource contention and performance degradation
[19,23]. Our objective is to detect and quantify performance
irregularities and degradation on individual processors run-
ning a parallel application and use the information as an
indicator and metric for the intensity of system level interfer-
ence. Such a metric has several applications in autonomous
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maintenance and management of high-performance comput-
ing systems to detect problems such as:

Inconsistent system library and OS kernel setup may cause
performance degradation in systems. In large systems with
thousands of nodes, it is possible that a system manager
fails to update all nodes kernels properly. If such a kernel
inconsistency results in performance degradation on some of
the cluster nodes, our algorithm could detect it.

System software failure is often preceded by performance
degradation. Failure prediction systems generally rely on
machine learning and statistical inference algorithms to pre-
dict failures before they occur. These systems require a local
mechanism that can monitor degradation of a node attribute
over time. Modern hardware devices are equipped with such
monitoring mechanisms. For instance, most disk drives fol-
low the SMART protocol, and provide indication of suspi-
cious behaviors. Similarly, motherboards contain tempera-
ture sensors, which can be accessed via interfaces. Network
drivers, such as those for Myrinet interface cards, maintain
statistics of packet loss and retransmission counts. However,
there is no failure detection mechanism for system software.
This is despite the fact that most failures are due to software
errors. For instance, failure logs for an eight-month period
from the Platinum and Titan clusters at NCSA shows that
while 0.1 and 5 percent of failures were due to hardware
errors, 84 and 60 percent of them were due to software er-
rors respectively [8]. Our proposed mechanism can be used
as a failure detection and monitoring mechanism for early
prediction of software errors.

Software aging is a phenomenon, usually caused by re-
source contention that can cause computer systems to hang,
panic, or suffer performance degradation. Software rejuve-
nation is a proactive fault management technique for clean-
ing up the system and for preventing severe failures or sys-
tems performance degradation. Proactive rejuvenation (some-
times called therapeutic reboots) can include re-initialization
of components, purging shared-memory buffer pool caches,
or node fail-over. In a prediction-based rejuvenation sys-
tem, our proposed mechanism can be used to activate the
rejuvenation mechanism(s) to avert catastrophic failures.

Previously, the general approach for failure prediction and
interference detection has been to monitor and collect infor-
mation on critical resource attributes such as CPU, disk,
memory and network. Then, by using statistical, machine
learning and curve fitting techniques try to predict and de-
tect software interference or failure [1, 5, 6, 15]. For every
fixed configuration, this approach requires multiple sampling
of the normal system behavior to tune its detection param-



eters.
In our approach, instead of system resource utilization,

we first monitor the short term performance of the applica-
tion. Then, we compare every processor’s performance with
a base line formed from the average and standard deviation
of all processors’ performance. Hence, instead of relying on
absolute performance measurements of each processor sepa-
rately, we consider the relative performance of processors to
detect performance degradation of individual processors. If
the relative performance of the processors does not vary dra-
matically for different configurations, previously collected
performance data may be re-used to detect anomalies in
later runs. Further, instead of direct and explicit compari-
son of processors performance, we first use the MPI profiles
to detect common patterns in the processor profiles. Then,
we compare performance of the processors during the exe-
cution of these common patterns. In this way, our approach
can also work for irregular and unbalanced applications, as
long as there are some common patterns in the processor
profiles.

Solution Overview: Our goal is to develop general interfer-
ence monitoring algorithms for MPI applications. For each
processor we form a 4-tuplet profile sequence. The first en-
try is the MPI function, the second one specifies the corre-
sponding peer processor(s) of the MPI call, the third entry
is the time elapsed since the last MPI call (computation
time) and the fourth entry is the elapsed time in this MPI
call (communication time). We abstract the sequence of the
first two tuplets to a grammar that describes the behavior
patterns. This abstraction enables us to extract Typical Se-
quences (TS) that are common patterns of inter-processor
interaction. After identifying an application’s typical se-
quences, we monitor the computation (communication) time
of typical sequence occurrences for all processors. For each
processor and typical sequence we have a time series. Fur-
ther, for each typical sequence we aggregate data from all
processors to form two additional time series, whose val-
ues are the average and standard deviation of the individ-
ual processor samples for that sequence. Processor typical
sequence samples are compared against dynamic threshold
values computed from the average and standard deviation
data. We form an Interference Level Signal (ILS), which
is the running average of the number of processor samples
that are above their corresponding threshold value. Finally,
for each processor, we combine all typical sequences inter-
ference level signals to compute the interference metric, a
positive number whose value indicates interference level for
the program running on that processor.

Dynamic threshold values are computed separately for
each processor and typical sequence, even though all of them
are functions of the same average and standard deviation.
Therefore, what we measure is the relative deviation of per-
formance with respect to the average and standard devia-
tion rather than absolute performance values. Hence, our
approach is resilient to natural temporal performance vari-
ations as long as the relative performance does not change
dramatically.

Our main contributions in this paper are:

1. We use MPI1 profiling to monitor and separate com-

1Even though we have used MPI profiling in our current im-
plementation of the algorithm, similar methodology would
work with other parallel programming languages such as

putation and communication components of the per-
formance.

2. We use the Sequitur algorithm [22] to automatically
extract typical repeated communication sequences that
are common to all processors.

3. Our approach takes advantage of the spatial and rel-
ative performance correlation between processors that
frequently exists in SPMD parallel applications.

The rest of the paper is structured as follows: In section 2,
we briefly review MPI profiling and the Sequitur algorithm.
In section 3, we go over the main challenges in the design of
our algorithms to provide the rationale for our proposed so-
lutions. In section 4, we introduce the main components of
our proposed algorithm. In section 5, we study performance
and characteristics of the algorithm on the NAS [2] bench-
marks and a production level scientific application called
Parallel Ocean Program (POP) [25]. In section 6, we review
and discuss related work.

2. PRELIMINARIES AND TOOLS

2.1 MPI Profiling
We use the MPI profiling interface to perform our data

gathering. The idea behind the MPI profiling interface is
to use the linker to substitute a user-written wrapper func-
tion for the MPI functions called by the application. Every
MPI function with the name MPI Xxx is also callable by the
name PMPI Xxx name. Hence, we write a wrapper function
with the same name MPI Xxx, where we do profiling as well
as calling the real MPI function by the name PMPI Xxx.

At the start and end point of wrapper functions, we save
the wall time value. The computation time for an MPI call
is the difference between the current MPI call starting time
and the previous MPI call ending time. We also save the wall
time values before and after calling the real MPI function
inside the wrapper. The difference between these two values
is the communication time of the current MPI call.2

For each MPI call, we also record the peer processor. For
instance, the peer processor for an MPI send is the destina-
tion processor. For those collective operations that do not
have an explicit peer processor, we select an appropriate pa-
rameter or set it to a fixed number based on the collective
operation. For instance, for MPI Reduce, we use the opera-
tion indicator parameter (i.e. MPI Sum), for MPI Wait we
use a constant value and for MPI Barrier we use the com-
munication group.

The profiling data for each MPI function call is a 4-tuplet
consisting of the MPI function name, peer processor, compu-
tation and communication time. The profiling information
is monitored and saved for each processor separately.

2.2 Abstracting MPI event logs
After generating MPI profiles, we focus on the first two

entries (MPI function and peer process) to find repeated
patterns. From these patterns, we extract typical sequences

OpenMP, UPC and Titanium.
2We assume that there is at most one application process
per processor, so the wall time is a good proxy for commu-
nication time.



Table 1: Example sequences and Sequitur grammars
that reproduce them

Sequence Grammar
(a)

S→abcdbc S→aAdA
A→ bc

(b)
S→abcdbcabcdbc S→AA

A→ aBdB
B→ bc

that are common among all (or a subset of) processor pro-
files, and hence their computation time are relatively compa-
rable. Simple programs often have a semi-periodic pattern
that can be easily detected. We can detect these patterns
by simple signal processing techniques that are based on us-
ing the auto-correlation function of the profile sequence. In
complex applications, common patterns still exists but they
may not be periodic, hence we can not rely on simple signal
processing algorithms to detect them.

Instead, we use the Sequitur algorithm to extract the fre-
quent patterns. The Sequitur algorithm is a linear-time, on-
line algorithm for producing a context-free grammar from
an input string [22]. Sequitur takes a sequence of discrete
symbols, which in our case represents the MPI function and
peer process in the profile sequence, and produces a set of hi-
erarchical rules as a context-free grammar. Note that there
is no generalization in the produced grammar and it can
only generate one string, which is the original sequence.

Sequitur produces a grammar based on repeated phrases
(patterns) in the input sequence. Each repetition gives rise
to a rule in the grammar. Hence, there are high frequency
patterns among the rules derived. At each step, Sequitur
appends a new symbol from the input sequence to the end
of the produced grammar up to that time. After adding
each symbol, Sequitur modifies the grammar to maintain
two properties:
1-Diagram Uniqueness: no pair of adjacent symbols appears
more than once in the grammar.
2-Rule Utility: every rule is used more than once.

Table 1 shows simple examples (adopted from [22]) of the
inputs and outputs to the algorithm. The original sequence
symbols and Sequitur generated rules are shown with lower-
case and capital letters respectively. Rule S generates the
whole sequence. In example (a) Rule A corresponds to the
pattern bc, which is repeated two times in the original se-
quence. In example (b), we have appended 6 new letters to
the example (a) sequence. Sequitur forms A and B rules,
whose corresponding sequences are abcdbc and bc respec-
tively.

3. REQUIREMENTS, CHALLENGES AND
SOLUTIONS

We now elaborate on some of the problems and chal-
lenges in the design of interference detection algorithms. We
present these issues to explain the reasoning behind the de-
sign of our interference detection algorithm.

Insensitivity to the network performance: Communication
and computation times determine the overall performance of
parallel applications. While software interference increases
the computation time, it is not clear how it affects the com-

munication time. Software interference may change when a
processor’s data is ready and/or when it needs new data.
This in turn changes the communication pattern between
processors and consequently can remove or create network
bottlenecks and hence reduce or increase the communica-
tion time. Therefore, it is crucial to monitor and profile the
communication and computation times separately.

Appropriate time scale: In our approach, we monitor soft-
ware performance to estimate software interference levels.
However, software interference is not the sole cause of per-
formance variations and we need to minimize other factors
too. Kernel scheduler granularity is another reason for per-
formance variation. Consider that under normal behavior
it might be the case that 99 percent of the processing time
is allocated to the application and 1 percent is consumed
by the OS and daemon processes. Suppose that the kernel
scheduler granularity is 5ms. Roughly speaking, the pro-
cessor spends 495ms (99 × 5) running the application and
5ms running other things. If the monitored computation
time granulaity is close to the kernel scheduler granularity
(5ms), even under normal operation, we will observe sig-
nificant variations. In general, the impact of factors other
than interference becomes evident and more significant for
smaller computation times. This is because while the ab-
solute value of performance variations remain the same, for
smaller intervals of time their relative impact is higher.3

To reduce sensitivity to normal performance variations,
we use aggregation and filtering. To increase the time dura-
tion of samples, instead of considering individual samples,
we work with the aggregated patterns derived by Sequitur.
Further, we drop computation time intervals that are lower
than a pre-defined threshold. The threshold value is not
fixed and we will discuss in section 4.3 how it is set.

Another major source of performance variation is the ap-
plication itself. It is quite possible that between different
occurrences of the same MPI profile pattern, the application
runs a different set of instructions which results in temporal
variations in the monitored performance. Hence, instead of
temporal, we use spatial correlations in our analysis.

Note that, we do not require that application performance
on all processors be the same, or even they execute same
instruction sequence. As long as, there are some common
communication patterns among some processors and their
relative performance does not change dramatically our algo-
rithm performs well.

Insensitivity to Software Configuration: Software perfor-
mance may depend on an application’s compile and/or run
time parameters. This is problematic for interference de-
tection algorithms that are based on statistical and machine
learning approaches and rely on similarities in temporal per-
formance patterns. Note that for each new software configu-
ration, these algorithms need to learn the temporal patterns
again. The number of possible configurations can be very
large, which makes it practically impossible to train the de-
tection algorithm for all possible configurations. By using
relative spatial rather than absolute temporal performance
correlation, our algorithm is less sensitive to software config-
uration variations. In other words, we assume the detected
communication patterns that occur frequently in the pro-
file remain frequent from run to run, while the timing and

3While some applications might be subject to performance
degradation due to these small changes in system overhead,
we concentrate on identifying larger gained interference.



repetitions count of the patterns may change.

4. THE ALGORITHM
In this section, we present the main modules of the detec-

tion system and explain how they interact with each other.
The input to the system are processor profiles that contain
application MPI calls, peer process, computation time and
communication time as explained in section 2. Further, we
use the Sequitur algorithm to form the frequent patterns
for only one of the processors. We divide the system into
three main modules which are: preprocessing, learning and
detection units.

4.1 Preprocessing Unit
The preprocessing unit generates signals that are inputs

to other units. First, we need to select a subset of the Se-
quitur patterns that are frequently present in all processor
profiles. To that end, we sort the Sequitur patterns accord-
ing to their length. We start from the longest pattern and
determine how many matches we find in each processor’s
profile sequence. To find a match, we only check the first
entry in the profile, i.e. the MPI function. Recall that the
Sequitur patterns are generated based on the MPI functions
and peer processor entries in a processor profile. However,
since the peer processor entry is processor dependent, we
can not use it at this stage to find matches among differ-
ent processors. We select the first L Sequitur patterns that
were detected frequently on all processors and call them the
Typical Sequences (TS).

For each TS, we form P processor signals, where P is the
number of processors. For a given processor p and a typical
sequence l, the processor signal consists of the computation
time of typical sequence l’s occurences for processor p. We
also form two aggregate signals that represent the average
and STD. deviation of all processor samples. Note that av-
erage and standard deviation are taken over all processors
signals at each sample index. Therefore, we have L×(P +2)
signals. We denote by S(p, l, t) the computation time of the
t-th occurence of typical sequence l on processor p. We de-
fine AV G(l, t), STDEV (l, t) the average and standard de-
viation signals,

AV G(l, t) = 1
P

∑P
p=1 S(p, l, t)

STDEV (l, t) =
√

1
P

∑P
p=1(S(p, l, t)−AV G(l, t))2

(1)

4.2 Detection Unit
The outputs of this unit are interference level signals and
interference metrics. For each processor and TS we compute
a dynamic threshold,

T (p, l, t) = AV G(l, t) + K(p, l)× STDEV (l, t), (2)

where K(p, l) is a constant determined in the learning unit.
Whenever a signal sample is above the corresponding thresh-
old, the contention level assessment should be increased.
The indicator function I(p, l, t) specifies when a signal is
above that threshold:

I(p, l, t) =

{
1 if S(p, l, t) > T (p, l, t)
0 if S(p, l, t) ≤ T (p, l, t)

(3)

In section 3, we elaborated on the sensitivity to normal vari-
ations in application performance, and mentioned that we

filter out samples that are for too short of time intervals.
We filter signal samples that are less than 0.5ms. We take
the running averages of the filtered indicator functions and
call them the Interference Level Signal (ILS(p, l, t)). Hence,
ILS(p, l, t0) is the average of those indicator function sam-
ples [I(p, l, 1) · · · I(p, l, t0)], whose corresponding S(p, l, t) in-
tervals are longer than 0.5ms. Interference increases both
the signal level S(p, l, t), and the number of times that it
is larger than the threshold T (p, l, t). Consequently, this
results in a larger average value, i.e., the interference level
signal ILS(p, l, t) is larger. We use the interference level
signals to derive a single interference metric, m(p). In this
paper, we use a weighted average of the signals final values:

m(p) =
∑

l

w(l)ILS(p, l, end), (4)

where the weight w(l) of typical sequences is proportional to
sequence length. As we will see in the case study longer typ-
ical sequences are more stable and less sensitive to normal
performance variations, hence we give them higher weights
in the metric computation. Clearly there are alternative
ways to define this metric. For instance, we could take a
maximum instead of an average over all typical sequences,
or instead of the last value, we could use maximum or aver-
age of all values. We will consider and compare alternative
options in the future.

We note that the Detection unit tasks can be done in real
time as the program is running. Since we are taking the
average and standard deviation of computation time sam-
ples and using a running average of the (filtered) indicator
function, we do not need any future information to compute
the value of the metric at time t. The interference metric
is also defined over time as the weighted average of the last
computed ILS signals. In the next section, we specify how
we compute K(p, l) during the learning phase.

4.3 Learning Unit
Learning is performed once per application prior to pro-

duction runs to select and tune the detection algorithm pa-
rameters. The objective of this step is to set K(p, l). To
that end, for each processor we gather two sets of signals.
The first set is for a normal run of the application with-
out any background activity. In the second set, we run a
simple background interfering job on the node. To quan-
tify the impact interference, we want to set the parameters
K(p, l) so that we have as much difference as possible in the
interference level signal final values of the two runs.

After generating the S(p, l, t), AV G(l, t), STDEV (l, t)
signals for the two runs, we compute alternative threshold
functions by using different values of k, k = 0, 0.5, · · · , 10
for K(p, l) in (2). Then, we compute the indicator func-
tions defined in (3) for different threshold functions. Let
ILSNor(p, l, end, k) and ILSInt(p, l, end, k) be the final value
of the indicator level signals of the two runs (without and
with background loads respectively). Note that these val-
ues are a function of the parameter k. Then we select the
threshold value that maximizes the difference:

K(p, l) = arg max
k

(
Ik

Int(p, l, end)− Ik
Nor(p, l, end)

)
(5)

If for a processor p and a typical sequence l, and for all
values of k the resulting value is small, we do not use the
typical sequence l in the detection unit of processor p. This



Table 2: Length of FT MPI Profile Typical Sequences

TS 1 2 3 4

length 16 8 4 2

step eliminates typical sequences that are not sensitive to
interference.

5. PERFORMANCE EVALUATION
In this section, we evaluate and study the performance

of the proposed interference detection algorithm for 3 par-
allel bechmarks and applications. We run each application
without interfering jobs, with a continuously interfering back
ground job on a single node and with an on-off interfering
job on a single node. The on-off job runs for approximately
10 seconds and then becomes idle (sleeps) for 5 seconds. We
ran all applications on 64 processors (32 nodes) of a Linux
cluster. Each node is equipped with dual Intel Xeon 2.66
GHz processors. Nodes are connected via Myrinet network,
and use the PBS batch scheduler to admit at most one ap-
plication per node at a time. To run the application and
the interfering job simultaneously, we reserved nodes in in-
teractive mode, so we could login to a desired node and run
the background job while we were running the parallel ap-
plication. For our experiments hyperthreading was turned
off, and each processor of a node runs a separate task of the
application to make sure there is exactly one application
process per processor.

5.1 NAS Benchmarks
In this section, we evaluate the performance of our sys-

tem for interference detection on FT and CG, which are
two of the NAS parallel kernels derived from computational
fluid dynamics applications. The NAS parallel benchmarks
(NPB) [2] were developed at the NASA Ames research cen-
ter to evaluate the performance of parallel and distributed
systems.

5.1.1 FT Benchmark
The NAS FT benchmark is a three-dimensional heat equa-

tion solver that solves a certain partial differential equation
using forward and inverse FFTs. This kernel performs the
essence of many spectral codes. It is a rigorous test for long-
distance communication performance. We run FT class C
on 64 processors (32 nodes). The structure of the FT MPI
profile is very simple. It consists of 47 MPI calls and after
a few initializing calls it periodically calls MPI Alltoall and
MPI Reduce functions. From the Sequitur grammar we get
4 sequences, whose length are given in table 2. The typical
sequences are in fact 1, 2, 4 and 8 repetitions of the pattern
(MPI Alltoall, MPI Reduce). Even though the output pat-
tern is very simple, this experiment confirms that Sequitur
can detect highly regular periodic patterns.

We examined the performance of the interference detec-
tion algorithm on node 1. We first use two runs with a con-
tinuous (full) and no background jobs for the learning phase.
Figure 1 shows the ILS(p, l, t) for p = 1, 2 and l = 1, · · · 4
signals for two production (non-learning) runs. One of the
two runs is with continuous (full) background (FT-F-1) job
and the other one is with no background job (FT-N-1). In

Table 3: Interference Metrics for FT runs

FT-F-1 FT-O-1 FT-N-1

0.324 0.1284 0

all ILS plots, the x-axis is TS sample index t and y-axis is the
interference signal level. In the figure, we can only see the
ILS signal for the run with background (the red plot), since
the ILS signal for the run with no background job remains
zero and thus lies on the x-axis. Hence, as expected, the ILS
signal is positive when there is interference and is zero when
there is no interference. We can also see that when there
is a background job, the ILS signal associated with longer
typical sequences are larger, and hence they are better de-
tectors. This is due to the fact that for longer sequences,
we aggregate a larger number of MPI profile samples and
thus lessen the sensitivity to natural temporal performance
variations.

Figure 2 shows the ILS signals for two processors with
on-off (FT-O-1) and no background jobs. The ILS signals
for the on-off background job are positive and for without
the background job are zero. Signal levels in figure 2(a) are
smaller than the signal levels in figure 1(a) indicating lower
interference levels. Table 3 summarizes the FT runs inter-
ference metrics as defined in (4). These results confirm the
positive relation between the interference level experienced
by the application and our metric.

We now study the sensitivity of our interference metric to
variations in the on-off period of background jobs. Table 4
shows our interference metric for different combinations of
on and off periods of the background job. Our metric is able
to detect interference for all of these cases (i.e. we get non-
zero values for the metric). However, when the background
job active (on) time period is 1s and its inactive (off) time
period is larger than 20s the metric gets close to zero. In
some cases, even though the metric correctly detects the
interference, its value does not accurately represent intensity
of the background job.

To understand the reason behind this fluctuation of the
interference metric, we need to elaborate more on the pat-
tern of computation in FT. In FT, all processors regularly
exchange data with each other, which results in significant
communication time. In our experiments the FT program
spends about twice as much time performing communica-
tion as computation. Note that if the background job uses
CPU only during FT’s communication periods, there will be
no interference. Therefore, the interference metric value de-
pends on: (1) the intensity of the background jobs, and (2)
the duration of the over-lap between the on-periods of the
background job and the computation period of the FT pro-
gram. The first factor is deterministic, but the second one is
in general probabilistic. That is why we observe fluctuations
in the performance metric value.

In our experiments, a complete run of FT takes about 2
minutes. Now, consider the case where the background job’s
active period is 1 second (third row) and its in-active period
is 20 seconds (5th column). There are approximately 6 on-
periods of the background job during a complete run of FT.
The interference metric value depends on the overlap time
between the 6 active periods of the background job and FT’s
computation times (which are about 40 seconds out of the
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Figure 1: ILS(p, l, t) vs t plots for FT kernel with full, and no background jobs for p = 1, 2 and l = 1, · · · , 4. The plots for the

run with background are shown with red lines, but the plots for the run with no back-ground are always zero and lie on the

x-axis.
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Figure 2: ILS(p, l, t) vs t plots for FT kernel with on-off, and no background jobs for p = 1, 2 and l = 1, · · · , 4. The plots for

the run with on-off background are shown with red lines, but the plots for the run with no back-ground are always zero and lie

on the x-axis.

Table 4: Interference Metrics for FT with different On-Off

times

Off time(s)
On time(s) 5 8 10 15 20 25 30

10 0.63 0.57 0.84 0.58 0.89 0.7 0.52
3 0.69 0.50 0.44 0.53 0.32 0.36 0.32
1 0.58 0.30 0.10 0.07 0.09 0.03 0.03

Table 5: Length of CG MPI Profile Typical Sequences

TS 1 2 3 4 5 6 7 8

length 25428 12624 6312 3156 1578 789 720 480

120 seconds of FT’s run time). The overlap time is clearly
a random variable, and hence the reason behind the fluctu-
ation of the results. Therefore, the most important factor
is not duty cycle of background jobs, but the probability
of overlap (interference) between the computation time and
interference.

5.1.2 CG Benchmark
The CG benchmark uses the inverse power method to esti-

mate the largest eigenvalue of a symmetric positive definite
sparse matrix with a random pattern of non-zeros. This

kernel is typical of unstructured grid computations in that
it tests irregular long distance communication, employing
unstructured matrix vector multiplication.

The MPI profile of CG is much more complex than FT.
We ran CG class C on 64 processors (32 nodes) and the pro-
files contain around 60,000 MPI calls. Sequitur generates 23
rules (patterns) and we selected the 8 longest ones as the
typical sequences. Their lengths are given in table 5. Figure
3 shows the autocorrelation function of the MPI profile inte-
ger representation. The auto-correlation of periodic signals
are periodic and their maximums are at 0 and multiples of
the period. In fact, auto-correlation is commonly used to
find the period of periodic and semi-periodic patterns in a
signal. The autocorrelation function in figure 3 indicates the
presence of two periodic components. The first one repeats
every 30 sample and the second one repeats after 789 sam-
ples as shown on the figure. The first six typical sequences
are repetitions of the 789 samples pattern and the last two
ones are repetitions of the 30 sample pattern. Hence, even
in complex situations, where multiple semi-periodic patterns
coexist, Sequitur successfully detects them.

After using two runs for learning, we use two separate
runs for evaluation of the system. Figure 4 shows the ILS
signals for two processors with continuous (CG-F-1) and no
background job (CG-N-1) runs. The ILS signals for the no
background runs are always zero, and hence not visible on
the plot. It is also clear that the ILS signals of longer typical
sequences are larger and hence more reliable for interference
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Figure 4: ILS(p, l, t) vs t plots for CG kernel with full, and no background jobs for p = 1, 2 and l = 1, · · · , 8 (first run). The

plots for the run with full background are shown with red lines, but the plots for the run with no back-ground are always zero

and lie on the x-axis.

Table 6: Interference Metrics for CG runs

CG-F-1 CG-F-2 CG-O-1 CG-N-1 CG-N-2

0.78 0.77 0.61 0 0

detection. Figure 5 shows the output of the system for two
additional runs with the same type of background jobs (CG-
F-2 and CG-N-2). Even though the output signal is not the
same, it has the same characteristics. For example, it is
zero for the no background run and longer typical sequences
result in larger signals when there is a background job. From
the FT and CG results, we may conclude that longer typical
sequences are better candidates for interference detection.

Figure 6 shows the performance of the algorithm when
there are on-off background jobs (CG-O-1). The algorithm
can still detect interference but the sensitivity of the shorter
typical sequences is higher and they are clearly less reliable.

Table 6 summarizes the CG runs interference metrics as
defined in (4). The results confirm the relation between the
interference level on the node and the computed metric. As
expected, the two runs with full background jobs have the
greatest interference metric values, followed by the run with
on-off background jobs. The metric value is zero for all runs
without background job.

5.2 POP Program
The Parallel Ocean Program (POP) [12] was developed at

Los Alamos National Laboratory and is descendant of the
Bryan-Cox-Semnter class of ocean models first developed at

the NOAA (National Oceanic and Atmospheric Administra-
tion) Geophysical Fluid Dynamics Laboratory in Princeton,
NJ in the late 1960s [3]. POP is currently used by the Com-
munity Climate System Model (CCSM) as the ocean com-
ponent. The model solves the three-dimensional primitive
equations for fluid motions on a sphere using hydrostatic
and Boussinesq approximations.

Figure 7(a) depicts the profile of the computation time
for 4 processors4. Clearly the processor 1 (top-left) profile
is different from other processors, hence it is not possible to
detect interference by direct comparison of profiles. Figures
7(b) and 7(c) are the computation time for two typical se-
quences occurrences on the same 4 processors. The derived
patterns for the 4 processors are comparable, and hence we
can use spatial correlation to detect interference. Further-
more, due to profile sample aggregation in a single sequence,
and elimination of samples that are not in typical sequences,
the total number of samples are greatly reduced compare to
the full event trace, which results in reduced processing time.

We started with Sequitur patterns derived from proces-
sor 1 profile. Then, we found 10 typical sequences among
them that are also present in other processor profiles whose
length was long enough (larger than 50) to be considered.
The length of the typical sequences are given in table 7.
From each processor profile, we obtain 10 TS derived sig-
nals. Eight of the TS derived signals are similar to figure
7(b) and two of them (number 5 and 9) are similar to figure
7(b).

5.2.1 Interference on Node 2
4We show results for 4 out of 64 processors due to space
limit, however all processors follow a similar pattern.
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Figure 5: ILS(p, l, t) vs t plots for CG kernel with full, and no background jobs for p = 1, 2 and l = 1, · · · , 8 (second run). The

plots for the run with full background are shown with red lines, but the plots for the run with no back-ground are always zero

and lie on the x-axis.
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Figure 6: ILS(p, l, t) vs t plots for CG kernel with on-off, and no background jobs for p = 1, 2 and l = 1, · · · , 8. The plots for the

run with on-off background are shown with red lines, but the plots for the run with no back-ground are always zero and lie on

the x-axis.

Here, we introduce interfering jobs on node 2 (processor
3 and 4). We first run POP, once with no background and
once with a continuous background job on node 2. We then
generate the TS derived signals of the two runs and use them
in the learning phase to compute the interference detection
system parameters. In the learning phase, if the maximum
difference between the ILS signals of the two runs is close to
zero then that typical sequence will not be used for detec-
tion. For node 2, this occurred for typical sequences 5 and
9. Therefore, we focus and use the remaining 8 sequences
for node 2. The discarded sequences are those that show the
least sensitivity to interference.

For evaluation, we generate two new profiles with full
(PPN2-F-1) and without (PPN2-N-1) background jobs on
node 2. The POP configuration was similar to the first set
used in the learning phase. Figure 8 shows the ILS signals
for the two processors (processor 3 and 4) on node 2. The
ILS signals for the no background run are always zero, and
hence lie on the x-axis. The ILS signals for the run with
continuous interference are shown in the plots.

For the next set of experiments, we changed the POP con-
figuration to asses our tool’s ability to detect interference
when the workload of an application is changed. In partic-
ular, we changed the stop count parameter of POP from 40
to 20. We ran the algorithm 3 times with no (PPN2-N-2),
continuous (PPN2-F-2) and on-off (PPN2-O-2) background
jobs. In the detection unit, we used the threshold values

that were derived using runs with the previous POP config-
uration. Figure 9 shows the ILS signals for the runs with
continuous and without background jobs. Again, the ILS
signals for the no background runs remain zero, and hence
are not visible on the plot. The result for a continuous back-
ground job on processor 3 is also zero. Note that we did not
have any control on how the OS kernel schedules the back-
ground job on node processors. In this case, the background
job was always scheduled on processor 4. Hence, there is
no interference on processor 3. This result also indicates
that we need to monitor the performance of all processors
running on multi-processor/multi-core node simultaneously
and compute the performance metric for a node based on
the ILS signals of all processors.

Figure 10 shows the result for the runs with on-off traffic
and without background jobs. The ILS signal for the no
background run is always zero and hence lies on the x-axis.
Since the background job is on-off and less intense, the in-
terference level is lower than in previous experiments. This
is reflected in the ILS signal values. Contrary to the pre-
vious case, the interference is detectable on both processors
results. This is a by-product of the kernel scheduler, not a
characteristic of the application.

Table 8 provides the interference metrics for all runs that
we discussed in this section. The metric correctly detects
runs with interference, since the values for runs with the
background job are positive and for runs without the back-
ground activity are zero. The metric values of the two runs



Table 7: Length of the POP MPI Profile Typical Sequences

TS 1 2 3 4 5 6 7 8 9 10

length 252 224 192 128 125 112 96 64 64 56
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(c) Typical Sequence 5 signal sam-
ples

Figure 7: Pure profile and typical sequence samples computation times for first four processors

Table 8: Interference Metrics for POP runs with back-

ground activity on node 2.

PPN2-F-1 PPN2-F-2 PPN2-O-2 PPN2-N-1 PPN2-N-2

0.086 0.324 0.1284 0 0

Table 9: Interference Metrics for POP runs with back-

ground activity on node 1

PPN1-F-1 PPN1-F-2 PPN1-O-2 PPN1-N-1 PPN1-N-2

0.23 0.25 0.19 0.01 0.01

are not comparable since they have different configurations.
However, even though the system was trained with a dif-
ferent configuration, it correctly orders the alternative con-
figuration runs; PPN2-F-2 metric is larger than PPN2-O-2
metric and PPN2-N-2 metric is zero.

5.2.2 Interference on Node 1
We now introduce an interfering job on node 1 and study

the performance and characteristics of the detection system.
As it is shown in figure 7(a), there is no clear temporal cor-
relation in processor one’s profile, nor is there spatial corre-
lation between processor 1 and other processors profiles.

We used two POP runs (one with no background traffic
and one with a continuous (full) back ground job) for the
learning and parameter tuning. Next, using the same con-
figuration, we ran POP 3 times, with no (PPN1-N-1), on-off
(PPN1-O-1) and continuous background (PPN1-F-1) jobs
on node 1. The ILS signals for processor 1, for 3 runs are
shown in figure 11. Figure 11(a) shows the ILS signal for
continuous and no background runs and figure 11(b) shows
them for on-off and no background runs. The ILS signals for
the run without a background job on typical sequences 5 and
9 become temporarily positive, however their level is much

smaller and completely distinguishable from signal levels de-
rived for runs with background jobs. It is also interesting
that for processor 1 typical sequences 5 and 9 are more ef-
fective than other typical sequences, since they have larger
signal values. This is exactly in contrast with what we ob-
served for node 2 and indicates that learning and parameter
tuning should be done for each node separately.

Figure 12 shows the detection algorithm results for 3 POP
runs with a different configuration and with full (PPN1-F-
2), on-off (PPN1-O-2) and no (PPN1-N-2) background jobs.
For the on-off case shown in figure 12(b), only typical se-
quences 5 and 9 have positive values and can detect inter-
ference. Table 9 summarizes the interference metric for all
runs on node 1. The metric values for runs with background
jobs are an order of magnitude larger than the runs with no
background job, and can be used to correctly detect inter-
ference.

6. RELATED WORK
Sequitur has been used by Chimbli to find frequent data-

access sequences to abstract data reference localities in pro-
grams [10]. In a similar application, it is used by Shen, et. al.
to construct a phase hierarchy in order to identify compos-
ite phases and to increase the granularity of phase prediction
in a system that predicts locality phases in a program [24].
Larus used the Sequitur algorithm in whole program paths.
This system to captures and represents a program’s dynamic
control flow [20]. Sequitur is used in the second phase of
their work, where the collected traces are transformed into
a compact and usable form by finding its regularity (i.e.,
repeated code).

In large systems, fault detection requires extensive data
monitoring and analysis. Various techniques such as, pat-
tern recognition [4], probabilistic models [9] and automata
models [18] have been proposed to analyze input data for
fault detection. In our approach, we use the sequitur algo-
rithm to extract patterns that are common to parallel pro-
cessors. Our approach differs from most others in that it
automatically extracts communication patterns from multi-
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Figure 8: ILS(p, l, t) vs t plots for POP software when algorithm parameters are tuned to same POP configuration with full,

and no background jobs for p = 3, 4 and l = 1, · · · , 10. The plots for the run with full background are shown with red lines, but

the plots for the run with no back-ground are always zero and lie on the x-axis.

0 1000 2000 3000 4000 5000
−1

0

1

IL
S(

3,
 1

, t
)

0 2000 4000 6000
−1

0

1

IL
S(

3,
 2

, t
)

0 2000 4000 6000
−1

0

1

t

IL
S(

3,
 3

, t
)

0 2000 4000 6000 8000
−1

0

1

IL
S(

3,
 4

, t
)

0 2000 4000 6000 8000
−1

0

1

IL
S(

3,
 6

, t
)

0 2000 4000 6000 8000
−1

0

1

t

IL
S(

3,
 7

, t
)

0 2000 4000 6000 8000 10000
−1

0

1

IL
S(

3,
 8

, t
)

0 2000 4000 6000 8000 10000
−1

0

1

t

IL
S(

3,
 1

0,
 t)

(a) Processor 3

0 1000 2000 3000 4000 5000
0

0.05

IL
S(

4,
 1

, t
)

0 2000 4000 6000
0

0.05

IL
S(

4,
 2

, t
)

0 2000 4000 6000
0

0.02

0.04

t

IL
S(

4,
 3

, t
)

0 2000 4000 6000 8000
0

0.01

0.02

IL
S(

4,
 4

, t
)

0 2000 4000 6000 8000
0

0.01

0.02

IL
S(

4,
 6

, t
)

0 2000 4000 6000 8000
0

0.01

0.02

t

IL
S(

4,
 7

, t
)

0 2000 4000 6000 8000 10000
0

0.01

0.02

IL
S(

4,
 8

, t
)

0 2000 4000 6000 8000 10000
0

0.005

0.01

t

IL
S(

4,
 1

0,
 t)

(b) Processor 4

Figure 9: ILS(p, l, t) vs t plots for POP software when algorithm parameters are tuned to different POP configuration with

full, and no background jobs for p = 3, 4 and l = 1, · · · , 10. The plots for the run with full background are shown with red lines,

but the plots for the run with no back-ground are always zero and lie on the x-axis.

ple nodes and correlates them to find faulty nodes. It might
be possible to apply our approach to distributed systems
such as three tier web-servers.

Combined user and kernel performance analysis tools can
be used to detect software interference. For instance KTAU
is a system designed for kernel measurement to understand
performance influences and the inter-relationship of system
and user-level performance factors [21]. Because this system
relies on direct instrumentation, there is always concern with
measurement overhead and efficiency. Our solution can be
used as a low overhead mechanism to detect interference and
to enable dynamic instrumentation mechanisms for detailed
investigation.

Software aging and failure prediction systems generally
require performance metrics that they can monitor and use.
Chakravorty et. al. leverage the fact that such metrics for
hardware devices exist [7]. Our approach can provide simi-
lar metrics for software components. Andrzajak and Silva [1]
and Castelli et. al. [6] use system level measurements such
as CPU, disk, memory, and network utilization for monitor-
ing. Then they use statistical inference, machine learning
or curve fitting based algorithm to predict software aging.
However, their analysis is based on a systems temporal be-
havior, which is subject to change if the software configura-
tion changes. Therefore, they need to have a learning phase

for each new configuration. Further, since they do not mea-
sure software performance directly it is not clear how they
can distinguish other factors that may contribute to higher
utilization.

Florez et. al. [13] use library function calls (from the stan-
dard C, math and MPI libraries) and operating system calls
issued by an MPI program to detect anomalies. However,
they do not take advantage of the underlying parallelism in
parallel programs and do not take into account the compu-
tation and communication times. Therefore, they can detect
those anomalies that results in changes in the library func-
tion or operating system calls.

Our work can be considered as an anomaly detection method
for parallel programs. Anomaly detection methods are used
for intrusion detection schemes since they were proposed
by Denning [11]. Anomaly detection systems have the ad-
vantage that they can detect new types of intrusion as de-
viations from normal usage [17]. These schemes generally
attempt to build some kind of a model over normal pro-
file using statistical [16] or AI methods [14]. The model is
usually built during the learning phase and remains fixed
after that. Our algorithm can be considered as a parametric
adaptive model, where the parameters are temporal average
and STD. deviation signals of all processors.
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Figure 10: ILS(p, l, t) vs t plots for POP software when algorithm parameters are tuned to different POP configuration with

on-off, and no background jobs for p = 3, 4 and l = 1, · · · , 10. The plots for the run with on-off background are shown with red

lines, but the plots for the run with no back-ground are always zero and lie on the x-axis.
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Figure 11: ILS(p, l, t) vs t plots for POP software when algorithm parameters are tuned for same POP configuration for p = 1

and l = 1, · · · , 10. The plots for the run with full and on-off background are shown with red lines, but the plots for the run with

no background is in blue, which most of the time is zero and lies on the x-axis.

7. CONCLUSION
We presented an automated software interference detec-

tion algorithm for parallel programs. Our approach takes
advantage of spatial correlation present between processor
communication profiles. We use the Sequitur algorithm to
abstract and extract common frequent patterns in proces-
sor profiles. We evaluated the performance of the system
in detecting interference for different parallel programs and
studied its sensitivity to changes in the on-off period of the
interference. We also measured the ability of the algorithm
to detect interference when the workload differs from the
training workload. Interference detection algorithms and
metrics have many application in autonomous computing
systems, including failure prediction, performance optimiza-
tion, proactive management of software aging and detection
of inconsistency in system software. Another, more novel
application of interference metrics is to score and evaluate
applications on their sensitivity to interference. Interference
sensitivity analysis enables us to design applications that are
more robust and thus have predictable performance.
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