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Abstract 
In this paper, we present and evaluate two techniques that 
use different styles of hardware support to provide data 
structure specific processor cache information. In one ap-
proach, hardware performance counter overflow interrupts 
are used to sample cache misses. In the other, cache misses 
within regions of memory are counted to perform an n-way 
search for the areas in which the most misses are occurring. 
We present a simulation-based study and comparison of the 
two techniques. We find that both techniques can provide 
accurate information, and describe the relative advantages 
and disadvantages of each. 

1 Introduction 
 As processor speeds have rapidly increased, the 
gap between these speeds and the access time of main 
memory has widened. Because of this, it is becoming 
ever more important for applications to make effective 
use of memory caches. Information about an applica-
tion’s interaction with the cache is therefore crucial to 
tuning its performance. To be most useful to a pro-
grammer, this information should be presented in 
terms of program objects (data structures) at the 
source code level. In the past, this has been difficult to 
do, due to limited hardware support. For instance, 
processors that include support for counting cache 
misses have often not provided a way to determine the 
addresses being accessed to cause them. An alternative 
to hardware support is simulation, which can provide 
the information but is often prohibitively slow. 
 The situation is now changing as newer proces-
sors include more and more support for performance 
monitoring. Many processors have for some time sup-
ported counting cache misses. Some, including the 
MIPS R10000 [12] and the Compaq Alpha [3], include 
a way to generate an interrupt after some number of 
misses have occurred. In addition to such features, the 
Itanium from Intel [5] provides a means to determine 
the address associated with a cache miss. It also pro-
vides a way to limit cache miss counting to misses 
associated with a user-determined area of memory. 
The MIPS R12000 and Alpha 21364 are rumored to 
have similar functionality. 

 This paper presents two techniques for using 
such hardware support to provide source code level 
feedback to a programmer about data structures with 
poor cache behavior. The first uses sampling, and the 
second performs a search through the address space 
using hardware counters that can selectively count 
events depending on the address at which a cache miss 
occurs. We also describe the results of a simulation-
based study of the effectiveness of the two techniques. 

2 Description of Techniques 
 The techniques described in this paper utilize two 
different approaches to hardware support for measur-
ing cache miss information. In order for a tool to relate 
cache misses to data structures, the hardware must 
provide knowledge about the addresses that are being 
accessed when cache misses occur. However, running 
instrumentation code at every cache miss to check the 
address would likely cause an unacceptable slowdown 
in the application being measured. It is desirable to 
limit the frequency with which instrumentation code 
must run to read the hardware counters, and the 
amount of information that must be processed by the 
tool. The following sections describe two approaches 
to doing this and how they could be used. 

2.1 Cache Miss Address Sampling 
 One way to process cache miss information less 
frequently is to sample it. This can be accomplished 
with the cache miss counters available on some proc-
essors. For instance, the MIPS R10000 and R12000, 
Compaq Alpha, and Intel Itanium can generate an in-
terrupt after a user-defined number of misses. The 
Itanium also provides a way to determine the address 
of the last cache miss. On modern processors without 
specific hardware to report the address of a miss, fea-
tures like multiple instruction issue and out-of-order 
execution make it difficult to determine what instruc-
tion caused the miss much less the effective address 
being accessed. In our study, we will assume that the 
processor provides the address of the last cache miss.  
 The technique that we will examine is to associ-
ate a count with each memory object in an application 
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Figure 1: Searching for a Memory Bottleneck

to be measured, meaning each variable and dynami-
cally allocated block of memory. We then set the 
hardware counters (simulated in this study) to cause an 
interrupt after some number of misses. When an inter-
rupt occurs, the address of the last cache miss is 
matched to the program object containing it, and the 
corresponding count is incremented, after which the 
process is repeated. After a representative portion of 
the execution of the application has completed, we can 
examine the counts and rank the program objects by 
the number of misses incurred while accessing them. 
If the number of misses we sampled for each object is 
proportional to the total number, this will provide a 
programmer with an accurate idea of which program 
objects are causing the worst cache behavior. 
 An advantage of this technique is that it is sim-
ple, if there is a method available to map addresses to 
program objects. For global and static variables, this 
can be done easily using data from symbol tables and 
debug information. The location of dynamically allo-
cated memory objects can be tracked by instrumenting 
memory allocation library functions. Support for vari-
able on the stack is discussed in section 5. 

2.2 N-Way Search 
 A second way to provide data structure specific 
cache statistics is to have the hardware itself separate 
the misses into memory regions. Some processors, 
including the Intel Itanium, allow for counting cache 
misses conditionally based on the addresses being 
accessed. The second technique we will describe uses 
this feature to perform a search through the address 
space of an application for bottlenecks, the regions of 
memory in which the most cache misses are occurring. 
 We will assume that a number of cache miss 
counters are available, each with its own associated set 
of base and bounds registers that specify an area of 
memory in which to count cache misses. Although 
current processors that provide conditional counting of 
cache misses typically allow only one region to be 

specified at a time, multiple counters with separate 
base/bounds could be simulated by timesharing the 
single conditional counter between regions of interest. 
 Our search technique uses an n-way search to 
narrow down on the areas of memory that are causing 
the most cache misses. Figure 1 shows an example of 
a two-way search. At the beginning of the search, the 
address space is divided into n areas, each assigned to 
a miss counter. An additional cache miss counter is 
used to measure the total number of cache misses in 
the entire address space. The application is then al-
lowed to run to collect information. 
 At the expiration of a timer, the instrumentation 
examines the values in the counters and uses them to 
compute the percentage of the total cache misses that 
were caused by each region. It then places the infor-
mation about the measured regions into a priority 
queue, which ranks them by this percentage (the queue 
starts out empty at the beginning of the search). 
 Next, the instrumentation code takes the n/2 re-
gions that caused the largest percentage of total cache 
misses off the priority queue. It splits each of these n/2 
regions in half, to form n new regions for the next it-
eration of the search, and the process is repeated. 
When the top regions in the priority queue reach the 
size of individual memory objects (and therefore can-
not usefully be split further), the search is complete, 
and the objects are listed, along with an estimate of the 
percentage of all cache misses caused by each. This 
last information is collected by taking additional sam-
ples with each cache miss counter set to cover exactly 
the area of one of the found objects. The current ver-
sion of the search code identifies only global and static 
variables and dynamically allocated blocks of mem-
ory, although the entire address space is included in 
the search. 
 One problem for the naïve n-way search algo-
rithm is memory objects that lie only partially within a 
region. In such cases, the rate of cache misses in the 
whole object may not be adequately represented by the 
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data used in the search. In particular, an array causing 
many cache misses that spans a region boundary may 
not cause enough cache misses in any single region to 
attract the search to it. The solution to this problem is 
to adjust the extents of the regions each time they are 
split so that objects do not span region boundaries. 
This is done efficiently in our implementation using 
information about object extents kept in a sorted array 
for variables and a red-black tree for heap blocks 
(since this data will change as allocations and deallo-
cations take place). 
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Figure 2: Search without Priority Queue 

 Another potential problem for the search algo-
rithm, which is solved by the priority queue, is that the 
region causing the most cache misses does not neces-
sarily contain the single object causing the most 
misses, unless the region contains only that object. 
This is illustrated in Figure 2. This figure shows the 
layout of a group of arrays on the left, along with the 
percentage of cache misses that is due to each. On the 
right, the figure shows the areas examined by a search 
in which the region with the most cache misses in each 
iteration is chosen for refinement. In the first iteration, 
the region causing 60% of the cache misses is se-
lected, even though none of the arrays within it cause 
as many cache misses as array E. This removes the 
region containing the array E from consideration, 
causing the search to eventually terminate at array C. 
The priority queue fixes this problem by providing a 
mechanism that causes the search to “back up” when 
necessary. In the second search iteration above, the 
bottom region from the first iteration would be on the 
priority queue when the region to refine is chosen. 
Since it accounted for a greater percentage of cache 
misses than any other region examined up to that 
point, it would be chosen for refinement, allowing the 
search to correctly identify region E as the one causing 
the most cache misses.  
 Many programs have phases in which access 
patterns may be very different from those observed at 
other times. This can lead to incorrect results, as the 
search algorithm may remove from consideration re-
gions that generally cause many cache misses but did 

not do so in the most recent sample interval. Ordinar-
ily, regions that incur no cache misses during a sample 
period are discarded immediately, but an exception is 
made in order to account for phases. Regions that pre-
viously were ranked in the top n/2 but which show no 
misses during the current interval are not discarded 
unless the situation persists for several interactions. In 
addition, each time a region with zero misses is kept, 
the duration of future sample intervals is increased. 
When phases are short, this can have the effect of 
automatically adapting the length of the sample inter-
val to cover multiple phases, effectively averaging 
their cache miss rates. 
 Another important consideration is when to de-
clare the results of the search final. Since the goal of 
the search is to identify the memory objects causing 
the most cache misses, an obvious point is when some 
number of the top regions have been refined until they 
contain only individual objects or cache lines. We 
chose to terminate the search when the top n-1 regions 
reach this point. This value was chosen so that the 
search algorithm could continue to include regions 
containing only one object in the search until all final 
objects have been found. When a region contains only 
one object, it cannot be further split, but it is kept in 
the priority queue and may be selected for measure-
ment in each iteration. When such a region is selected, 
the search algorithm measures the cache misses within 
it again and averages the results with the results from 
previous iterations. This allows the objects to be 
ranked with increasing accuracy. When n-1 of the top 
regions all contain only a single object, there would 
not be enough counters available to measure them 
along with two new regions formed by splitting the nth 
region, so the search is terminated. The search is also 
terminated if the percentage of cache misses within 
unsearched regions drops below a selectable threshold, 
in order to handle applications in which there are 
fewer than n-1 significant regions. When the search 
terminates, the instrumentation code prints the names 
of the objects within the regions from the last search 
iteration that were found to be causing the most cache 
misses. Only regions containing single objects are 
included in these results (others have not been fully 
examined). 
 It would be possible to return more objects if 
regions containing only a single object were removed 
from the search after being measured, although this 
may lead to less accuracy since the results for the 
found regions would be from single iterations only, 
instead of averaged over many as is the case in the 
current algorithm. 

3 Experiments 
 To investigate the effectiveness of the two ap-
proaches described in section 2, we performed a simu-
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lation-based study. The simulator runs real applica-
tions, with load and store instructions instrumented to 
track memory references and calculate their effects on 
a simulated cache. The instrumentation is performed 
using the ATOM [10] binary rewriting tool. Basic 
blocks are also instrumented to keep a virtual cycle 
count for the execution. The cycle counts do not repre-
sent any specific processor, but are meant to model 
RISC processors in general. The simulator does not 
model details such as pipelining and multiple instruc-
tion issue. The cache simulated is a single-level set 
associative cache (2MB in size for these experiments). 
 The simulator provides a software-selectable 
number of cache miss counters, each with a base and 

bound register designating an area of memory for 
which to collect information, as well as interrupts that 
can be requested to occur after some number of cycles 
or cache misses. These are used by additional instru-
mentation code that implements the techniques we 
have discussed. This code runs inside the simulation, 
so it can be timed using the virtual cycle counter, and 
it can affect the cache, making it possible to study 
perturbation of the results. 
 In the following sections, we will describe the 
results of running the two measurement techniques 
under the simulator on a number of applications from 
the SPEC95 benchmark suite. The applications tested 
were tomcatv, su2cor, applu, swim, mgrid, compress, 

 
 

Actual Sample Search Application Variable 
Memory Block Rank %  Rank %  Rank %  

RY 1 22.5 2 17.6 1 22.5
RX 2 22.5 1 37.1 2 22.5
AA 3 15.0 5 10.1 3 15.1
DD 4 10.0 3 15.0 5 10.1
X 5 10.0 6 9.8 7 9.9
Y 6 10.0 7 0.2 6 9.9

tomcatv 

D 7 10.0 4 10.2 4 10.1
     

CU 1 7.7 3 8.2 3 7.7
H 2 7.7 4 8.1  
P 3 7.7 1 8.4  
V 4 7.7 2 8.3 1 7.7
U 5 7.7 5 7.8 2 7.7
CV 6 7.7 13 6.7 4 7.7

swim 

Z 7 7.7 12 6.8 5 7.7
     

U 1 57.1 1 57.5 1 56.8
R 2 6.9 3 6.8 2 7.2
S 3 6.6 2 7.2 3 6.8
W2 - intact 4 3.9 4 4.1 4 3.8
W2 - sweep 5 3.7 5 3.5  

su2cor 

B 6 2.3 7 2.0 5 2.3
     

U 1 40.8 1 40.7 1 40.8
R 2 40.4 2 39.8 2 40.6mgrid 
V 3 18.8 3 19.5 3 18.6

     
a 1 22.9 2 23.0 1 22.7
b 2 22.9 3 19.9 2 22.6
c 3 22.6 1 25.8 3 22.4
d 4 17.4 4 16.7 4 17.4

applu 

rsd 5 6.9 5 7.7 5 7.2
     

orig_text_buffer 1 63.0 1 67.4 1 63.6
comp_text_buffer 2 35.6 2 30.2 2 35.9
htab 3 1.3 3 2.3  

compress 

codetab 4 0.2   
     

0x141020000 1 84.7 1 95.8 1 85.2
jpeg_compressed_data 2 12.5 2 4.2 2 12.7
0x14101e000 3 0.5  3 0.0

ijpeg 

std_chrominance_quant_tbl 4 0.0   

Table 1: Results for Sampling and Search 
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and ijpeg. For the search algorithm, we assumed ten 
hardware cache miss counters were available, and set 
the value of n for the n-way search to ten. 

3.1 Quality of Results 
 We will first examine the quality of the results 
returned by each approach. Table 1 shows the five 
objects in each application that caused the most cache 
misses, as well as the up to five objects found to be 
causing the most cache misses by sampling or by the 
n-way search algorithm, and excluding objects caus-
ing less than 0.01% of the total misses. Object names 
that consist of a hexadecimal number represent dy-
namically allocated blocks of memory. The search 
results were obtained using a ten-way search, which 
generally identifies up to nine objects, as described in 
section 2.2.  
 The “rank” columns show how each technique 
ranked the given object. The percentages are the per-
centage of all cache misses in the application that 
occurred due to references to the object. For the “ac-
tual” column, this value was measured by lower lev-
els of the simulator, separate from the sampling and 
search code. For the sample and search columns, 
these values are as estimated by each technique. The 
results were gathered over the same portion of each 
application’s execution for all methods. The sampled 
values represent the results of sampling one in 50,000 
cache misses. 
 Generally, both techniques returned results that 
were indicative of the actual number of cache misses 
occurring due to accessing each object. For almost all 
applications, both algorithms ranked the objects they 
found in order by the number of actual cache misses, 
except when the difference in total cache misses 

caused by two or more objects was small (generally 
less than 2%). 
 For sampling, the largest error occurs in tom-
catv, where the variable RX, causing the second larg-
est number of cache misses at approximately 22.5%, 
is estimated to be causing 37.1%. RY, which causes 
an almost identical number of cache misses, is esti-
mated to be causing only 17.6%. We observed simi-
lar results in runs for which we increased the sam-
pling frequency to 1 in 100 cache misses. However, 
when we changed the sampling frequency slightly by 
basing it on a nearby prime number, to sample 1 in 
50,111 cache misses, sampling achieved significantly 
more accurate results. In such a run, the largest dif-
ference between the percentage of cache misses for a 
variable estimated by sampling and the actual per-
centage was approximately 0.3%, versus a difference 
of approximately 14.6% for the variable RX in the 
original set of runs. This demonstrates the necessity 
of ensuring that the sampling interval does not coin-
cide with an application’s memory access patterns. 
This could be achieved by basing the sampling inter-
val on prime numbers as described above, or by vary-
ing it pseudo-randomly. 

3.2 Perturbation of Results 
 Figure 3 shows the percentage increase in cache 
misses for each application when run with instrumen-
tation code. The “search” bars show results for the 
search, and the “sample(number)” bars show the in-
crease for sampling, with the number indicating the 
number of cache misses between each sample. Note 
that the scale of the y-axis, showing the percentage, is 
logarithmic. 
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Figure 3: Increase in Cache Misses Due to Instrumentation 
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 These results were derived by running the code 
for each type of instrumentation under the cache simu-
lator, along with the application code. They were 
compared to runs with no instrumentation to calculate 
the percentage increase in cache misses. For all runs 
with and without instrumentation, the applications 
were allowed to execute for the same number of appli-
cation instructions (this was made possible by the 
simulator). Operating system code is not included in 
the simulation, so the effects of kernel code for con-
text switches and the delivery of signals was not mod-
eled. 
 In all cases except for the ijpeg application, the 
effects of instrumentation code on the cache were al-
most negligible, with the highest increase in cache 
misses aside from ijpeg being seen when running 
compress with a ten-way search, which caused an ap-
proximately 0.14% percent increase in misses. For 
ijpeg, the increase with a ten-way search was still only 
2.4%. The larger increase relative to the other applica-
tions is due to the fact that ijpeg normally has a much 
lower cache miss rate, only 144 misses per million 
cycles (the next lowest is compress, with 361 misses 
per million cycles, and after that is mgrid with 6,827). 
 Interestingly, for sampling with mgrid, applu, 
and compress, the number of additional cache misses 
goes up as the frequency of sampling goes down, until 
we reach a sampling rate of one sample per million 
misses. This is likely due to the data used by instru-
mentation code being evicted from the cache more 
often as the sampling frequency is reduced. When 
sampling frequency becomes low enough, this effect is 
no longer important. Factors that would affect whether 

or not this phenomenon will occur with a given appli-
cation include the cache miss rate, the size of the pro-
gram object map used by the instrumentation, and the 
frequency with which misses land in the same set of 
objects. 

3.3 Instrumentation Cost 
 Figure 4 shows the percent slowdown of each 
application due to instrumentation code. The “search” 
bars show results for the search algorithm, and the 
remaining bars show results for sampling with the 
given frequency. Again, the scale of the y-axis is loga-
rithmic. 
 The values shown include the time spent execut-
ing search or sampling code (in virtual cycles), plus a 
cost for receiving each interrupt signal. For this value, 
we used results obtained experimentally on an SGI 
Octane workstation with 175Mhz processors. We used 
the performance counter support in the Irix operating 
system to cause an interrupt after a chosen number of 
cache misses, which we varied. The cost measured 
was approximately 50 microseconds per interrupt, or 
8,800 cycles. 
 The figure shows that both techniques are ex-
tremely efficient, unless sampling is performed too 
often; sampling one miss in every thousand leads to a 
slowdown of as much as 16% (in tomcatv). Although 
the n-way search is generally more efficient except at 
low sampling frequencies, at a frequency of one in 
10,000 misses, which was shown in section 3.1 to be 
sufficient, the worst slowdown for sampling is ap-
proximately 1.6% (again for tomcatv). 
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Figure 4: Instrumentation Cost 
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Actual 
2-Way 
Search 

10-Way 
Search Application Variable 

Memory Block 
Rank %  Rank %  Rank %  

RY 1 22.5 2 22.4 1 22.5
RX 2 22.5 1 22.4 2 22.5
AA 3 15.0  3 15.1
DD 4 10.0  5 10.1
X 5 10.0  7 9.9
Y 6 10.0  6 9.9

tomcatv 

D 7 10.0  4 10.1
     

CU 1 7.7 1 7.8 3 7.7
H 2 7.7   
P 3 7.7   
V 4 7.7  1 7.7
U 5 7.7  2 7.7
CV 6 7.7  4 7.7
Z 7 7.7  5 7.7

swim 

VOLD 8 7.7 2 7.6 6 7.7
     

U 1 57.1  1 56.8
R 2 6.9 1 0.0 2 7.2
S 3 6.6  3 6.8
W2 - intact 4 3.9  4 3.8
W2 - sweep 5 3.7   

su2cor 

B 6 2.3  5 2.3
     

U 1 40.8 1 40.6 1 40.8
R 2 40.4 2 40.3 2 40.6mgrid 
V 3 18.8  3 18.6

     
a 1 22.9  1 22.7
b 2 22.9 1 22.7 2 22.6
c 3 22.6 2 22.4 3 22.4
d 4 17.4  4 17.4

applu 

rsd 5 6.9  5 7.2
     

orig_text_buffer 1 63.0 1 63.6 1 63.6
comp_text_buffer 2 35.6 2 36.0 2 35.9
htab 3 1.3   

compress 

codetab 4 0.2   
     

0x141020000 1 84.7 1 84.9 1 85.2
jpeg_compressed_data 2 12.5 2 12.6 2 12.7
0x14101e000 3 0.5  3 0.0

ijpeg 

std_chrominance_quant_tbl 4 0.0   

Table 2: Results of Two-Way Versus Ten-Way Search

 Note that the search code is much more expen-
sive per interrupt; 26,000 to 64,000 cycles across the 
applications including the time for the OS to deliver 
the interrupt signal, versus approximately 9,000 cycles 
per interrupt for sampling. The search algorithm 
achieves its efficiency by requiring very few inter-
rupts, from 1.6 to 4.1 per billion cycles with the tested 
applications, versus 13 to 1,727 per billion cycles for 
sampling 1 in 10,000 misses. This results in a lower 
overall overhead for the search code versus sampling 
even one in every 100,000 misses, except for the ijpeg 
and compress applications (which have lower cache 
miss rates than the others). 

3.4 Number of Regions 
 The results for the search algorithm that have 
been presented up to this point have been generated 
using a ten-way search. This section compares these 
with the results of a two-way search, shown in Table 
2. The question of choosing the value for n in the n-
way search is an important issue, since an n-way 
search requires n cache miss counters with associated 
base and bounds (plus one global counter, for use in 
calculating the percentage of total cache misses caused 
by each region). An alternative is to timeshare fewer 
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registers to measure n regions, but this may lead to 
increased inaccuracy. 
 Since a processor is likely to provide only lim-
ited support for performance measurement, reducing 
the number of required registers is desirable. However, 
an important consideration is that as discussed in sec-
tion 2.2, in general an n-way search will return n-1 
objects as results (it may return one more result if the 
nth ranked region contains only one object). There-
fore, a two-way search could be expected to identify 
only the top one or two objects causing the most cache 
misses. An early version of the search algorithm, 
without the priority queue for previously examined 
regions, failed to find the top object because the 
coarser granularity made the two-way search more 
likely to discard important regions. A region may 
cause fewer cache misses than another and yet still 
contain an object causing more misses than any indi-
vidual object in the other region. Table 2 shows that 
with the current version of the algorithm, using a pri-
ority queue (which allows backtracking to previously 
measured regions), even a two-way search is able to 
accurately identify the top one or two regions causing 
the most cache misses for almost all of the applica-
tions we tested. The only exception is su2cor. In this 
application, changing memory access patterns caused 
it assign a low rank a region that would later cause the 
most cache misses, so that it was never selected for 
refinement. The fact that it estimated the percentage of 
cache misses in the array that was found to be zero is 
also due to changing access patterns. The estimation is 
based on measurements taken after the search has con-
cluded; in this case the access patterns had changed 
since the region was found. Possible solutions to the 
problem of changing access patterns will be discussed 
in the next section. 

3.5 Changing Access Patterns 
 One aspect of program behavior that can ad-
versely affect the reliability of the simple search algo-
rithm is phases. Distinct phases of a program’s execu-
tion may display very different access patterns. It may 
be the case that no single array causes the most cache 
misses across all phases; instead, there may be a sepa-
rate such array for each phase. This would not be ex-
pected to affect sampling unless the phases are syn-
chronized with the sample frequency, or short enough 
to most often fall in between samples. 
 Figure 5 shows cache misses over time for an 
application that exhibits phases, applu. The names in 
the key identify arrays in the application, with “A, B, 
C” indicating the graph for three arrays, A, B, and C, 
which have almost exactly the same access pattern. 
 We can see in this graph that the number of 
cache misses in the arrays that cause the most misses 
overall, A, B, and C, periodically dip below the num-
ber of misses in other arrays; in fact, A, B, and C peri-
odically cause no cache misses during a sample inter-
val. 
 The simple heuristic described in section 2.2 for 
handling changing access patterns sufficiently handles 
this case. When no cache misses occur in a region that 
was previously among the areas with the most cache 
misses, the region is not immediately discarded from 
the search, and the time between search iterations is 
extended. In the case of applu, this automatically ad-
justs the length of an iteration to cover multiple 
phases. As can be seen in Table 1, this allows the 
search to find the five arrays causing the most cache 
misses, demonstrating the effectiveness of this simple 
mechanism in handling short phases. We plan to ex-
tend this technique to cover cases in which the number 
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of cache misses in a region drops off, but does not 
reach or approach zero. The technique does not apply 
to longer phases, which would require more sophisti-
cated handling. 

4 Related Work 
 Most modern processors include some kind of 
performance monitoring counters on-chip. These typi-
cally provide low-level information about resource 
utilization such as cache hit and miss information, 
stalls, and integer and floating point instructions exe-
cuted. Examples include the MIPS R10000 [12], the 
Compaq Alpha line [3], the UltraSPARC [11], and the 
Intel Itanium [5]. All of these can provide cache miss 
information. 
 Other systems have used flexibility provided by 
the hardware to add data centric cache instrumenta-
tion. ATUM [1] uses the ability to change the mi-
crocode in some processors to collect memory refer-
ence information. The FlashPoint [8] system uses the 
fact that the Stanford FLASH multiprocessor [6] im-
plements its coherence protocols in software, allowing 
instrumentation to be added at this level. 
 Mtool [4] provides information about the amount 
of performance lost due to the memory hierarchy, but 
only relates this information back to program source 
lines, not data structures. A system with more similar-
ity to the techniques in this paper is MemSpy [7]. 
MemSpy provides data-oriented information as well as 
code-oriented, but uses simulation to collect its data. 
 StormWatch [2] is another system that allows a 
user to study memory system interaction. It is used for 
visualizing memory system protocols under Tempest 
[9], a library that provides software shared memory 
and message passing. However, the goal of Storm-
Watch is to study how to adapt a memory system pro-
tocol to suit the application, rather than how to change 
the application to match the memory system. Because 
of this, the information provided is also different. This 
information includes what protocol events are taking 
place, what code is causing them, and how they are 
related. 

5 Future Work 
 We plan to extend the techniques we have dis-
cussed to gather information about variables on the 
stack, and to better handle dynamically allocated 
memory. For sampling, this could be done by aggre-
gating data for all instances of the same local variable, 
and for related blocks of dynamically allocated mem-
ory (for instance, the nodes of a tree). For the search 
technique, we would need to move related blocks of 
memory into contiguous regions in order to allow 
them to be considered as a unit. This could be done by 
replacing the standard memory allocation functions 

with specialized ones that arrange memory for meas-
urement. A possible disadvantage to this approach is 
that the changed placement of the blocks may affect 
cache behavior. It would be difficult for the search 
technique to handle individual objects on the stack, so 
such support would be limited. 
 Currently, the algorithms depend on certain arbi-
trarily chosen parameters, such as sampling frequency 
or the length of a search iteration. We plan to investi-
gate how these values could be adjusted automatically 
by the algorithms in order to achieve greater accuracy 
and efficiency. 
 Much useful information could be gained by 
running the two algorithms on actual hardware, such 
as the Intel Itanium, which supports the required fea-
tures. It would also be useful to examine the results 
achieved by the algorithms on a variety of other appli-
cations, especially applications that make extensive 
use of dynamically allocated memory. We plan to ex-
pand the tested applications to include at least a set 
taken from the SPEC2000 benchmark suite. 

6 Conclusions 
 In conclusion, the sampling and n-way search 
techniques were able to adequately determine the set 
of memory objects causing the greatest number of 
cache misses in our experiments. This kind of feed-
back is becoming increasingly important to tuning an 
application’s performance, due to the growing dispar-
ity between the access time for data in the cache ver-
sus data in main memory. 
 Our simulation based study reveals several dif-
ferences between the two approaches. The n-way 
search code is more complex, leading to potentially 
larger overhead and perturbation of results. However, 
because it runs much less frequently than the sampling 
code, this was rarely the case in the applications we 
tested, and in general the n-way search had a lower 
overhead. On the other hand, the sampling technique 
is able to rank all objects in terms of observed cache 
misses, while the search is limited in how many bot-
tleneck objects it can identify by the number of region 
cache miss counters available. This may be correctable 
by returning to search previously discarded areas after 
the ones causing the most cache misses have been 
examined fully. 
 Most modern processors are now being designed 
with hardware counters, but often they do not include 
such features as the determination of cache miss ad-
dresses. The latest generation of processors is starting 
to provide these features; the Intel Itanium is one ex-
ample. The results of this study show that the tech-
niques we have presented can use them to provide 
source-code level feedback to a programmer about 
what data structures to concentrate on when optimiz-
ing for the cache. 
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