
0-7803-9802-5/2000/$10.00 © 2000 IEEE.

Using Hardware Performance Monitors to Isolate Memory Bottlenecks

Bryan R. Buck Jeffrey K. Hollingsworth
Computer Science Department

University of Maryland
College Park, MD 20742

{buck,hollings}@cs.umd.edu

Abstract
In this paper, we present and evaluate two techniques that
use different styles of hardware support to provide data
structure specific processor cache information. In one ap-
proach, hardware performance counter overflow interrupts
are used to sample cache misses. In the other, cache misses
within regions of memory are counted to perform an n-way
search for the areas in which the most misses are occurring.
We present a simulation-based study and comparison of the
two techniques. We find that both techniques can provide
accurate information, and describe the relative advantages
and disadvantages of each.

1 Introduction
 As processor speeds have rapidly increased, the
gap between these speeds and the access time of main
memory has widened. Because of this, it is becoming
ever more important for applications to make effective
use of memory caches. Information about an applica-
tion’s interaction with the cache is therefore crucial to
tuning its performance. To be most useful to a pro-
grammer, this information should be presented in
terms of program objects (data structures) at the
source code level. In the past, this has been difficult to
do, due to limited hardware support. For instance,
processors that include support for counting cache
misses have often not provided a way to determine the
addresses being accessed to cause them. An alternative
to hardware support is simulation, which can provide
the information but is often prohibitively slow.
 The situation is now changing as newer proces-
sors include more and more support for performance
monitoring. Many processors have for some time sup-
ported counting cache misses. Some, including the
MIPS R10000 [12] and the Compaq Alpha [3], include
a way to generate an interrupt after some number of
misses have occurred. In addition to such features, the
Itanium from Intel [5] provides a means to determine
the address associated with a cache miss. It also pro-
vides a way to limit cache miss counting to misses
associated with a user-determined area of memory.
The MIPS R12000 and Alpha 21364 are rumored to
have similar functionality.

 This paper presents two techniques for using
such hardware support to provide source code level
feedback to a programmer about data structures with
poor cache behavior. The first uses sampling, and the
second performs a search through the address space
using hardware counters that can selectively count
events depending on the address at which a cache miss
occurs. We also describe the results of a simulation-
based study of the effectiveness of the two techniques.

2 Description of Techniques
 The techniques described in this paper utilize two
different approaches to hardware support for measur-
ing cache miss information. In order for a tool to relate
cache misses to data structures, the hardware must
provide knowledge about the addresses that are being
accessed when cache misses occur. However, running
instrumentation code at every cache miss to check the
address would likely cause an unacceptable slowdown
in the application being measured. It is desirable to
limit the frequency with which instrumentation code
must run to read the hardware counters, and the
amount of information that must be processed by the
tool. The following sections describe two approaches
to doing this and how they could be used.

2.1 Cache Miss Address Sampling
 One way to process cache miss information less
frequently is to sample it. This can be accomplished
with the cache miss counters available on some proc-
essors. For instance, the MIPS R10000 and R12000,
Compaq Alpha, and Intel Itanium can generate an in-
terrupt after a user-defined number of misses. The
Itanium also provides a way to determine the address
of the last cache miss. On modern processors without
specific hardware to report the address of a miss, fea-
tures like multiple instruction issue and out-of-order
execution make it difficult to determine what instruc-
tion caused the miss much less the effective address
being accessed. In our study, we will assume that the
processor provides the address of the last cache miss.
 The technique that we will examine is to associ-
ate a count with each memory object in an application

2

15%

15%

25%
40%

25%

15%

30%
20%

10%

55%

45% 45%

25%

result

Figure 1: Searching for a Memory Bottleneck

to be measured, meaning each variable and dynami-
cally allocated block of memory. We then set the
hardware counters (simulated in this study) to cause an
interrupt after some number of misses. When an inter-
rupt occurs, the address of the last cache miss is
matched to the program object containing it, and the
corresponding count is incremented, after which the
process is repeated. After a representative portion of
the execution of the application has completed, we can
examine the counts and rank the program objects by
the number of misses incurred while accessing them.
If the number of misses we sampled for each object is
proportional to the total number, this will provide a
programmer with an accurate idea of which program
objects are causing the worst cache behavior.
 An advantage of this technique is that it is sim-
ple, if there is a method available to map addresses to
program objects. For global and static variables, this
can be done easily using data from symbol tables and
debug information. The location of dynamically allo-
cated memory objects can be tracked by instrumenting
memory allocation library functions. Support for vari-
able on the stack is discussed in section 5.

2.2 N-Way Search
 A second way to provide data structure specific
cache statistics is to have the hardware itself separate
the misses into memory regions. Some processors,
including the Intel Itanium, allow for counting cache
misses conditionally based on the addresses being
accessed. The second technique we will describe uses
this feature to perform a search through the address
space of an application for bottlenecks, the regions of
memory in which the most cache misses are occurring.
 We will assume that a number of cache miss
counters are available, each with its own associated set
of base and bounds registers that specify an area of
memory in which to count cache misses. Although
current processors that provide conditional counting of
cache misses typically allow only one region to be

specified at a time, multiple counters with separate
base/bounds could be simulated by timesharing the
single conditional counter between regions of interest.
 Our search technique uses an n-way search to
narrow down on the areas of memory that are causing
the most cache misses. Figure 1 shows an example of
a two-way search. At the beginning of the search, the
address space is divided into n areas, each assigned to
a miss counter. An additional cache miss counter is
used to measure the total number of cache misses in
the entire address space. The application is then al-
lowed to run to collect information.
 At the expiration of a timer, the instrumentation
examines the values in the counters and uses them to
compute the percentage of the total cache misses that
were caused by each region. It then places the infor-
mation about the measured regions into a priority
queue, which ranks them by this percentage (the queue
starts out empty at the beginning of the search).
 Next, the instrumentation code takes the n/2 re-
gions that caused the largest percentage of total cache
misses off the priority queue. It splits each of these n/2
regions in half, to form n new regions for the next it-
eration of the search, and the process is repeated.
When the top regions in the priority queue reach the
size of individual memory objects (and therefore can-
not usefully be split further), the search is complete,
and the objects are listed, along with an estimate of the
percentage of all cache misses caused by each. This
last information is collected by taking additional sam-
ples with each cache miss counter set to cover exactly
the area of one of the found objects. The current ver-
sion of the search code identifies only global and static
variables and dynamically allocated blocks of mem-
ory, although the entire address space is included in
the search.
 One problem for the naïve n-way search algo-
rithm is memory objects that lie only partially within a
region. In such cases, the rate of cache misses in the
whole object may not be adequately represented by the

3

data used in the search. In particular, an array causing
many cache misses that spans a region boundary may
not cause enough cache misses in any single region to
attract the search to it. The solution to this problem is
to adjust the extents of the regions each time they are
split so that objects do not span region boundaries.
This is done efficiently in our implementation using
information about object extents kept in a sorted array
for variables and a red-black tree for heap blocks
(since this data will change as allocations and deallo-
cations take place).

60%

40%

35%

25%

15%
20%

A: 10%
B: 15%
C: 20%
D: 15%

E: 40%

F: 0%

arrays search

Finds C
instead of E.

Figure 2: Search without Priority Queue

 Another potential problem for the search algo-
rithm, which is solved by the priority queue, is that the
region causing the most cache misses does not neces-
sarily contain the single object causing the most
misses, unless the region contains only that object.
This is illustrated in Figure 2. This figure shows the
layout of a group of arrays on the left, along with the
percentage of cache misses that is due to each. On the
right, the figure shows the areas examined by a search
in which the region with the most cache misses in each
iteration is chosen for refinement. In the first iteration,
the region causing 60% of the cache misses is se-
lected, even though none of the arrays within it cause
as many cache misses as array E. This removes the
region containing the array E from consideration,
causing the search to eventually terminate at array C.
The priority queue fixes this problem by providing a
mechanism that causes the search to “back up” when
necessary. In the second search iteration above, the
bottom region from the first iteration would be on the
priority queue when the region to refine is chosen.
Since it accounted for a greater percentage of cache
misses than any other region examined up to that
point, it would be chosen for refinement, allowing the
search to correctly identify region E as the one causing
the most cache misses.
 Many programs have phases in which access
patterns may be very different from those observed at
other times. This can lead to incorrect results, as the
search algorithm may remove from consideration re-
gions that generally cause many cache misses but did

not do so in the most recent sample interval. Ordinar-
ily, regions that incur no cache misses during a sample
period are discarded immediately, but an exception is
made in order to account for phases. Regions that pre-
viously were ranked in the top n/2 but which show no
misses during the current interval are not discarded
unless the situation persists for several interactions. In
addition, each time a region with zero misses is kept,
the duration of future sample intervals is increased.
When phases are short, this can have the effect of
automatically adapting the length of the sample inter-
val to cover multiple phases, effectively averaging
their cache miss rates.
 Another important consideration is when to de-
clare the results of the search final. Since the goal of
the search is to identify the memory objects causing
the most cache misses, an obvious point is when some
number of the top regions have been refined until they
contain only individual objects or cache lines. We
chose to terminate the search when the top n-1 regions
reach this point. This value was chosen so that the
search algorithm could continue to include regions
containing only one object in the search until all final
objects have been found. When a region contains only
one object, it cannot be further split, but it is kept in
the priority queue and may be selected for measure-
ment in each iteration. When such a region is selected,
the search algorithm measures the cache misses within
it again and averages the results with the results from
previous iterations. This allows the objects to be
ranked with increasing accuracy. When n-1 of the top
regions all contain only a single object, there would
not be enough counters available to measure them
along with two new regions formed by splitting the nth
region, so the search is terminated. The search is also
terminated if the percentage of cache misses within
unsearched regions drops below a selectable threshold,
in order to handle applications in which there are
fewer than n-1 significant regions. When the search
terminates, the instrumentation code prints the names
of the objects within the regions from the last search
iteration that were found to be causing the most cache
misses. Only regions containing single objects are
included in these results (others have not been fully
examined).
 It would be possible to return more objects if
regions containing only a single object were removed
from the search after being measured, although this
may lead to less accuracy since the results for the
found regions would be from single iterations only,
instead of averaged over many as is the case in the
current algorithm.

3 Experiments
 To investigate the effectiveness of the two ap-
proaches described in section 2, we performed a simu-

4

lation-based study. The simulator runs real applica-
tions, with load and store instructions instrumented to
track memory references and calculate their effects on
a simulated cache. The instrumentation is performed
using the ATOM [10] binary rewriting tool. Basic
blocks are also instrumented to keep a virtual cycle
count for the execution. The cycle counts do not repre-
sent any specific processor, but are meant to model
RISC processors in general. The simulator does not
model details such as pipelining and multiple instruc-
tion issue. The cache simulated is a single-level set
associative cache (2MB in size for these experiments).
 The simulator provides a software-selectable
number of cache miss counters, each with a base and

bound register designating an area of memory for
which to collect information, as well as interrupts that
can be requested to occur after some number of cycles
or cache misses. These are used by additional instru-
mentation code that implements the techniques we
have discussed. This code runs inside the simulation,
so it can be timed using the virtual cycle counter, and
it can affect the cache, making it possible to study
perturbation of the results.
 In the following sections, we will describe the
results of running the two measurement techniques
under the simulator on a number of applications from
the SPEC95 benchmark suite. The applications tested
were tomcatv, su2cor, applu, swim, mgrid, compress,

Actual Sample Search Application Variable
Memory Block Rank % Rank % Rank %

RY 1 22.5 2 17.6 1 22.5
RX 2 22.5 1 37.1 2 22.5
AA 3 15.0 5 10.1 3 15.1
DD 4 10.0 3 15.0 5 10.1
X 5 10.0 6 9.8 7 9.9
Y 6 10.0 7 0.2 6 9.9

tomcatv

D 7 10.0 4 10.2 4 10.1

CU 1 7.7 3 8.2 3 7.7
H 2 7.7 4 8.1
P 3 7.7 1 8.4
V 4 7.7 2 8.3 1 7.7
U 5 7.7 5 7.8 2 7.7
CV 6 7.7 13 6.7 4 7.7

swim

Z 7 7.7 12 6.8 5 7.7

U 1 57.1 1 57.5 1 56.8
R 2 6.9 3 6.8 2 7.2
S 3 6.6 2 7.2 3 6.8
W2 - intact 4 3.9 4 4.1 4 3.8
W2 - sweep 5 3.7 5 3.5

su2cor

B 6 2.3 7 2.0 5 2.3

U 1 40.8 1 40.7 1 40.8
R 2 40.4 2 39.8 2 40.6mgrid
V 3 18.8 3 19.5 3 18.6

a 1 22.9 2 23.0 1 22.7
b 2 22.9 3 19.9 2 22.6
c 3 22.6 1 25.8 3 22.4
d 4 17.4 4 16.7 4 17.4

applu

rsd 5 6.9 5 7.7 5 7.2

orig_text_buffer 1 63.0 1 67.4 1 63.6
comp_text_buffer 2 35.6 2 30.2 2 35.9
htab 3 1.3 3 2.3

compress

codetab 4 0.2

0x141020000 1 84.7 1 95.8 1 85.2
jpeg_compressed_data 2 12.5 2 4.2 2 12.7
0x14101e000 3 0.5 3 0.0

ijpeg

std_chrominance_quant_tbl 4 0.0

Table 1: Results for Sampling and Search

5

and ijpeg. For the search algorithm, we assumed ten
hardware cache miss counters were available, and set
the value of n for the n-way search to ten.

3.1 Quality of Results
 We will first examine the quality of the results
returned by each approach. Table 1 shows the five
objects in each application that caused the most cache
misses, as well as the up to five objects found to be
causing the most cache misses by sampling or by the
n-way search algorithm, and excluding objects caus-
ing less than 0.01% of the total misses. Object names
that consist of a hexadecimal number represent dy-
namically allocated blocks of memory. The search
results were obtained using a ten-way search, which
generally identifies up to nine objects, as described in
section 2.2.
 The “rank” columns show how each technique
ranked the given object. The percentages are the per-
centage of all cache misses in the application that
occurred due to references to the object. For the “ac-
tual” column, this value was measured by lower lev-
els of the simulator, separate from the sampling and
search code. For the sample and search columns,
these values are as estimated by each technique. The
results were gathered over the same portion of each
application’s execution for all methods. The sampled
values represent the results of sampling one in 50,000
cache misses.
 Generally, both techniques returned results that
were indicative of the actual number of cache misses
occurring due to accessing each object. For almost all
applications, both algorithms ranked the objects they
found in order by the number of actual cache misses,
except when the difference in total cache misses

caused by two or more objects was small (generally
less than 2%).
 For sampling, the largest error occurs in tom-
catv, where the variable RX, causing the second larg-
est number of cache misses at approximately 22.5%,
is estimated to be causing 37.1%. RY, which causes
an almost identical number of cache misses, is esti-
mated to be causing only 17.6%. We observed simi-
lar results in runs for which we increased the sam-
pling frequency to 1 in 100 cache misses. However,
when we changed the sampling frequency slightly by
basing it on a nearby prime number, to sample 1 in
50,111 cache misses, sampling achieved significantly
more accurate results. In such a run, the largest dif-
ference between the percentage of cache misses for a
variable estimated by sampling and the actual per-
centage was approximately 0.3%, versus a difference
of approximately 14.6% for the variable RX in the
original set of runs. This demonstrates the necessity
of ensuring that the sampling interval does not coin-
cide with an application’s memory access patterns.
This could be achieved by basing the sampling inter-
val on prime numbers as described above, or by vary-
ing it pseudo-randomly.

3.2 Perturbation of Results
 Figure 3 shows the percentage increase in cache
misses for each application when run with instrumen-
tation code. The “search” bars show results for the
search, and the “sample(number)” bars show the in-
crease for sampling, with the number indicating the
number of cache misses between each sample. Note
that the scale of the y-axis, showing the percentage, is
logarithmic.

0.0001

0.001

0.01

0.1

1

10

tomcatv swim su2cor mgrid applu compress ijpeg

p
er

ce
n

t
in

cr
ea

se
 in

 m
is

se
s

Search
Sample(1,000)
Sample(10,000)
Sample(100,000)
Sample(1,000,000)

Figure 3: Increase in Cache Misses Due to Instrumentation

6

 These results were derived by running the code
for each type of instrumentation under the cache simu-
lator, along with the application code. They were
compared to runs with no instrumentation to calculate
the percentage increase in cache misses. For all runs
with and without instrumentation, the applications
were allowed to execute for the same number of appli-
cation instructions (this was made possible by the
simulator). Operating system code is not included in
the simulation, so the effects of kernel code for con-
text switches and the delivery of signals was not mod-
eled.
 In all cases except for the ijpeg application, the
effects of instrumentation code on the cache were al-
most negligible, with the highest increase in cache
misses aside from ijpeg being seen when running
compress with a ten-way search, which caused an ap-
proximately 0.14% percent increase in misses. For
ijpeg, the increase with a ten-way search was still only
2.4%. The larger increase relative to the other applica-
tions is due to the fact that ijpeg normally has a much
lower cache miss rate, only 144 misses per million
cycles (the next lowest is compress, with 361 misses
per million cycles, and after that is mgrid with 6,827).
 Interestingly, for sampling with mgrid, applu,
and compress, the number of additional cache misses
goes up as the frequency of sampling goes down, until
we reach a sampling rate of one sample per million
misses. This is likely due to the data used by instru-
mentation code being evicted from the cache more
often as the sampling frequency is reduced. When
sampling frequency becomes low enough, this effect is
no longer important. Factors that would affect whether

or not this phenomenon will occur with a given appli-
cation include the cache miss rate, the size of the pro-
gram object map used by the instrumentation, and the
frequency with which misses land in the same set of
objects.

3.3 Instrumentation Cost
 Figure 4 shows the percent slowdown of each
application due to instrumentation code. The “search”
bars show results for the search algorithm, and the
remaining bars show results for sampling with the
given frequency. Again, the scale of the y-axis is loga-
rithmic.
 The values shown include the time spent execut-
ing search or sampling code (in virtual cycles), plus a
cost for receiving each interrupt signal. For this value,
we used results obtained experimentally on an SGI
Octane workstation with 175Mhz processors. We used
the performance counter support in the Irix operating
system to cause an interrupt after a chosen number of
cache misses, which we varied. The cost measured
was approximately 50 microseconds per interrupt, or
8,800 cycles.
 The figure shows that both techniques are ex-
tremely efficient, unless sampling is performed too
often; sampling one miss in every thousand leads to a
slowdown of as much as 16% (in tomcatv). Although
the n-way search is generally more efficient except at
low sampling frequencies, at a frequency of one in
10,000 misses, which was shown in section 3.1 to be
sufficient, the worst slowdown for sampling is ap-
proximately 1.6% (again for tomcatv).

0.0001

0.001

0.01

0.1

1

10

100

tomcatv swim su2cor mgrid applu compress ijpeg

p
er

ce
n

t
sl

o
w

d
o

w
n

Search

Sample(1,000)

Sample(10,000)

Sample(100,000)

Sample(1,000,000)

Figure 4: Instrumentation Cost

7

Actual
2-Way
Search

10-Way
Search Application Variable

Memory Block
Rank % Rank % Rank %

RY 1 22.5 2 22.4 1 22.5
RX 2 22.5 1 22.4 2 22.5
AA 3 15.0 3 15.1
DD 4 10.0 5 10.1
X 5 10.0 7 9.9
Y 6 10.0 6 9.9

tomcatv

D 7 10.0 4 10.1

CU 1 7.7 1 7.8 3 7.7
H 2 7.7
P 3 7.7
V 4 7.7 1 7.7
U 5 7.7 2 7.7
CV 6 7.7 4 7.7
Z 7 7.7 5 7.7

swim

VOLD 8 7.7 2 7.6 6 7.7

U 1 57.1 1 56.8
R 2 6.9 1 0.0 2 7.2
S 3 6.6 3 6.8
W2 - intact 4 3.9 4 3.8
W2 - sweep 5 3.7

su2cor

B 6 2.3 5 2.3

U 1 40.8 1 40.6 1 40.8
R 2 40.4 2 40.3 2 40.6mgrid
V 3 18.8 3 18.6

a 1 22.9 1 22.7
b 2 22.9 1 22.7 2 22.6
c 3 22.6 2 22.4 3 22.4
d 4 17.4 4 17.4

applu

rsd 5 6.9 5 7.2

orig_text_buffer 1 63.0 1 63.6 1 63.6
comp_text_buffer 2 35.6 2 36.0 2 35.9
htab 3 1.3

compress

codetab 4 0.2

0x141020000 1 84.7 1 84.9 1 85.2
jpeg_compressed_data 2 12.5 2 12.6 2 12.7
0x14101e000 3 0.5 3 0.0

ijpeg

std_chrominance_quant_tbl 4 0.0

Table 2: Results of Two-Way Versus Ten-Way Search

 Note that the search code is much more expen-
sive per interrupt; 26,000 to 64,000 cycles across the
applications including the time for the OS to deliver
the interrupt signal, versus approximately 9,000 cycles
per interrupt for sampling. The search algorithm
achieves its efficiency by requiring very few inter-
rupts, from 1.6 to 4.1 per billion cycles with the tested
applications, versus 13 to 1,727 per billion cycles for
sampling 1 in 10,000 misses. This results in a lower
overall overhead for the search code versus sampling
even one in every 100,000 misses, except for the ijpeg
and compress applications (which have lower cache
miss rates than the others).

3.4 Number of Regions
 The results for the search algorithm that have
been presented up to this point have been generated
using a ten-way search. This section compares these
with the results of a two-way search, shown in Table
2. The question of choosing the value for n in the n-
way search is an important issue, since an n-way
search requires n cache miss counters with associated
base and bounds (plus one global counter, for use in
calculating the percentage of total cache misses caused
by each region). An alternative is to timeshare fewer

8

registers to measure n regions, but this may lead to
increased inaccuracy.
 Since a processor is likely to provide only lim-
ited support for performance measurement, reducing
the number of required registers is desirable. However,
an important consideration is that as discussed in sec-
tion 2.2, in general an n-way search will return n-1
objects as results (it may return one more result if the
nth ranked region contains only one object). There-
fore, a two-way search could be expected to identify
only the top one or two objects causing the most cache
misses. An early version of the search algorithm,
without the priority queue for previously examined
regions, failed to find the top object because the
coarser granularity made the two-way search more
likely to discard important regions. A region may
cause fewer cache misses than another and yet still
contain an object causing more misses than any indi-
vidual object in the other region. Table 2 shows that
with the current version of the algorithm, using a pri-
ority queue (which allows backtracking to previously
measured regions), even a two-way search is able to
accurately identify the top one or two regions causing
the most cache misses for almost all of the applica-
tions we tested. The only exception is su2cor. In this
application, changing memory access patterns caused
it assign a low rank a region that would later cause the
most cache misses, so that it was never selected for
refinement. The fact that it estimated the percentage of
cache misses in the array that was found to be zero is
also due to changing access patterns. The estimation is
based on measurements taken after the search has con-
cluded; in this case the access patterns had changed
since the region was found. Possible solutions to the
problem of changing access patterns will be discussed
in the next section.

3.5 Changing Access Patterns
 One aspect of program behavior that can ad-
versely affect the reliability of the simple search algo-
rithm is phases. Distinct phases of a program’s execu-
tion may display very different access patterns. It may
be the case that no single array causes the most cache
misses across all phases; instead, there may be a sepa-
rate such array for each phase. This would not be ex-
pected to affect sampling unless the phases are syn-
chronized with the sample frequency, or short enough
to most often fall in between samples.
 Figure 5 shows cache misses over time for an
application that exhibits phases, applu. The names in
the key identify arrays in the application, with “A, B,
C” indicating the graph for three arrays, A, B, and C,
which have almost exactly the same access pattern.
 We can see in this graph that the number of
cache misses in the arrays that cause the most misses
overall, A, B, and C, periodically dip below the num-
ber of misses in other arrays; in fact, A, B, and C peri-
odically cause no cache misses during a sample inter-
val.
 The simple heuristic described in section 2.2 for
handling changing access patterns sufficiently handles
this case. When no cache misses occur in a region that
was previously among the areas with the most cache
misses, the region is not immediately discarded from
the search, and the time between search iterations is
extended. In the case of applu, this automatically ad-
justs the length of an iteration to cover multiple
phases. As can be seen in Table 1, this allows the
search to find the five arrays causing the most cache
misses, demonstrating the effectiveness of this simple
mechanism in handling short phases. We plan to ex-
tend this technique to cover cases in which the number

0

20

40

60

80

100

120

140

160

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000

time (millions of cycles)

ca
ch

e
m

is
se

s
(t

h
o

u
sa

n
d

s)

a,b,c

rsd

frct

Figure 5: Cache Misses over Time for Applu

9

of cache misses in a region drops off, but does not
reach or approach zero. The technique does not apply
to longer phases, which would require more sophisti-
cated handling.

4 Related Work
 Most modern processors include some kind of
performance monitoring counters on-chip. These typi-
cally provide low-level information about resource
utilization such as cache hit and miss information,
stalls, and integer and floating point instructions exe-
cuted. Examples include the MIPS R10000 [12], the
Compaq Alpha line [3], the UltraSPARC [11], and the
Intel Itanium [5]. All of these can provide cache miss
information.
 Other systems have used flexibility provided by
the hardware to add data centric cache instrumenta-
tion. ATUM [1] uses the ability to change the mi-
crocode in some processors to collect memory refer-
ence information. The FlashPoint [8] system uses the
fact that the Stanford FLASH multiprocessor [6] im-
plements its coherence protocols in software, allowing
instrumentation to be added at this level.
 Mtool [4] provides information about the amount
of performance lost due to the memory hierarchy, but
only relates this information back to program source
lines, not data structures. A system with more similar-
ity to the techniques in this paper is MemSpy [7].
MemSpy provides data-oriented information as well as
code-oriented, but uses simulation to collect its data.
 StormWatch [2] is another system that allows a
user to study memory system interaction. It is used for
visualizing memory system protocols under Tempest
[9], a library that provides software shared memory
and message passing. However, the goal of Storm-
Watch is to study how to adapt a memory system pro-
tocol to suit the application, rather than how to change
the application to match the memory system. Because
of this, the information provided is also different. This
information includes what protocol events are taking
place, what code is causing them, and how they are
related.

5 Future Work
 We plan to extend the techniques we have dis-
cussed to gather information about variables on the
stack, and to better handle dynamically allocated
memory. For sampling, this could be done by aggre-
gating data for all instances of the same local variable,
and for related blocks of dynamically allocated mem-
ory (for instance, the nodes of a tree). For the search
technique, we would need to move related blocks of
memory into contiguous regions in order to allow
them to be considered as a unit. This could be done by
replacing the standard memory allocation functions

with specialized ones that arrange memory for meas-
urement. A possible disadvantage to this approach is
that the changed placement of the blocks may affect
cache behavior. It would be difficult for the search
technique to handle individual objects on the stack, so
such support would be limited.
 Currently, the algorithms depend on certain arbi-
trarily chosen parameters, such as sampling frequency
or the length of a search iteration. We plan to investi-
gate how these values could be adjusted automatically
by the algorithms in order to achieve greater accuracy
and efficiency.
 Much useful information could be gained by
running the two algorithms on actual hardware, such
as the Intel Itanium, which supports the required fea-
tures. It would also be useful to examine the results
achieved by the algorithms on a variety of other appli-
cations, especially applications that make extensive
use of dynamically allocated memory. We plan to ex-
pand the tested applications to include at least a set
taken from the SPEC2000 benchmark suite.

6 Conclusions
 In conclusion, the sampling and n-way search
techniques were able to adequately determine the set
of memory objects causing the greatest number of
cache misses in our experiments. This kind of feed-
back is becoming increasingly important to tuning an
application’s performance, due to the growing dispar-
ity between the access time for data in the cache ver-
sus data in main memory.
 Our simulation based study reveals several dif-
ferences between the two approaches. The n-way
search code is more complex, leading to potentially
larger overhead and perturbation of results. However,
because it runs much less frequently than the sampling
code, this was rarely the case in the applications we
tested, and in general the n-way search had a lower
overhead. On the other hand, the sampling technique
is able to rank all objects in terms of observed cache
misses, while the search is limited in how many bot-
tleneck objects it can identify by the number of region
cache miss counters available. This may be correctable
by returning to search previously discarded areas after
the ones causing the most cache misses have been
examined fully.
 Most modern processors are now being designed
with hardware counters, but often they do not include
such features as the determination of cache miss ad-
dresses. The latest generation of processors is starting
to provide these features; the Intel Itanium is one ex-
ample. The results of this study show that the tech-
niques we have presented can use them to provide
source-code level feedback to a programmer about
what data structures to concentrate on when optimiz-
ing for the cache.

10

7 References
1. A. Agrawal, R. L. Sites, and M. Horowitz, "ATUM: A

New Technique for Capturing Address Traces Using
Microcode," 13th Annual International Symposium on
Computer Architecture. June 1986, pp. 119-127.

2. T. M. Chilimbi, T. Ball, S. G. Eick, and J. R. Larus,
"StormWatch: A Tool for Visualizing Memory System
Protocols," Supercomputing ’95. December 1995, San
Diego, CA.

3. Compaq Computer Corporation, Alpha Architecture
Handbook (Version 4). 1998.

4. A. J. Goldberg and J. L. Hennessy, "MTOOL: An
Integrated System for Performance Debugging Shared
Memory Multiprocessor Applications," IEEE Transac-
tions on Parallel and Distributed Systems, 1993, pp.
28-40.

5. Intel, Intel IA-64 Architecture Software Developer’s
Manual. 1.0 ed. Vol. 4. 2000.

6. J. Kuskin, et al., "The Stanford FLASH Multiproces-
sor," 21st International Symposium on Computer Ar-
chitecture. April 1994, Chicago, IL, pp. 302-313.

7. M. Martonosi, A. Gupta, and T. Anderson, "MemSpy:
Analyzing Memory System Bottlenecks in Programs,"

1992 SIGMETRICS Conference on Measurement and
Modeling of Computer Systems. June 1-5, 1992, New-
port, Rhode Island, pp. 1-12.

8. M. Martonosi, D. Ofelt, and M. Heinrich, "Integrating
Performance Monitoring and Communication in Paral-
lel Computers," ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems.
May 1996, Philadelphia, PA.

9. S. K. Reinhardt, J. R. Larus, and D. A. Wood, "Ty-
phoon and Tempest: User-Level Shared Memory,"
ACM/IEEE International Symposium on Computer
Architecture. April 1994.

10. A. Srivastava and A. Eustace, "ATOM: A system for
Building Customized Program Analysis Tools," ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI). May 1994, Orlando,
FL, pp. 196-205.

11. Sun Microsystems, UltraSPARC User’s Manual. 1997.
12. M. Zagha, B. Larson, S. Turner, and M. Itzkowitz,

"Performance Analysis Using the MIPS R10000 Per-
formance Counters," Proceedings Supercomputing ’96.
November 1996, Pittsburgh, PA.

