
1

Modeling, Evaluation, and Testing of Paradyn Instrumentation
System*

Abstract

This paper presents a case study of modeling, evaluating, and testing the data
collection services (called an instrumentation system) of the Paradyn parallel
performance measurement tool using well-known performance evaluation and
experiment design techniques. The overall objective of the study is to use
modeling- and simulation-based evaluation to provide feedback to the tool
developers to help them choose system configurations and task scheduling policies
that can significantly reduce the data collection overheads. We develop and
parameterize a resource occupancy model for the Paradyn instrumentation system
(IS) for an IBM SP-2 platform. This model is parameterized with a measurement-
based workload characterization and subsequently used to answer several “what
if” questions regarding configuration options and two policies to schedule
instrumentation system tasks: collect-and-forward (CF) and batch-and-forward
(BF) policies. Simulation results indicate that the BF policy can significantly
reduce the overheads. Based on this feedback, the BF policy was implemented in
the Paradyn IS as an option to manage the data collection. Measurement-based
testing results obtained from this enhanced version of the Paradyn IS are reported
in this paper and indicate more than 60% reduction in the direct IS overheads
when the BF policy is used.

1 Introduction

Application-level softwareinstrumentation systems (ISs) collect runtime information from

parallel and distributed systems. This information is collected to serve various purposes, for

example, evaluation of program execution onhigh performance computing and communication

(HPCC) systems [23], monitoring of distributed real-time control systems [3,10], resource

management for real-time systems [18], and administration of enterprise-wide transaction

processing systems [1]. In each of these application domains, different demands may be placed on

* This work was supported in part by DARPA contract No. DABT 63-95-C-0072 and .National Science Foundation
grant ASC-9624149. Jeffrey K. Hollingsworth was supported in part by DOE grant DE-FG02-93ER25176 and NIST
CRA award 70-NANB-5H0055.

Abdul Waheed and Diane T. Rover*

Department of Electrical Engineering

Michigan State University

E-mail: {waheed,rover}@egr.msu.edu

Jeffrey K. Hollingsworth

Department of Computer Science

University of Maryland

E-mail: hollings@cs.umd.edu

2

the IS and it should be designed accordingly. In this paper, we present a case study onIS design;

we apply a structured development approach to the instrumentation system of the Paradyn parallel

performance measurement tool [20]. This structured approach is based on modeling and

simulating theIS to answer several “what-if” questions regarding possible configurations and

scheduling policies to collect and manage runtime data [28]. The ParadynIS is enhanced based on

the initial feedback provided by the modeling and simulation process. Measurement-based testing

validates the simulation-based results and shows more than 60% reduction in the data collection

overheads for two applications from theNAS benchmark suite executed on an IBM SP-2 system.

Using principal component analysis on these measurements, we also show that the reduction of

overheads is not affected by the choice of an application program.

A rigorous system development process typically involves evaluation and testing prior to system

production or usage. InIS development, formal evaluation of options for configuring modules,

scheduling tasks, and instituting policies should occur early. Testing then validates these

evaluation results and qualifies other functional and non-functional properties. Finally, theIS is

deployed on real applications. Evaluation and testing require a model for theIS and adequate

characterization of the workload that drives the model. The model can be evaluated analytically or

through simulations to provide feedback toIS developers. The model and workload

characterization also facilitate testing by highlighting performance-critical aspects. In this paper,

we focus on evaluation and testing of the ParadynIS.

One may ask if such rigor is needed inIS development. TheIS represents enabling technology of

growing importance for effectively using parallel/distributed systems. TheIS often supports tools

accessed by end-users; the user typically sees the tool and not theIS. Consequently, tools are

scrutinized, and theIS and its overheads receive little attention. Users may be unaware of the

impact of theIS. Unfortunately, theIS can perturb the behavior of the application [17], degrading

the performance of an instrumented application program from 10% to more than 50% according

to various measurement-based studies [8,19]. Perturbation can result from contention for system

resources among application and instrumentation processes. With increasing sophistication of

system software technologies (such asmultithreading), an IS process is expected to manage and

regulate its use of shared system resources [24]. Toward this end, tool developers have

implemented adaptiveIS management approaches; for instance, Paradyn’s dynamiccost model

3

[12] and Pablo’s user-specified (static)tracing levels [23]. With these advancements come

increased complexity and more design decisions. Dealing with these design decisions is the topic

of this paper.

A Resource OCCupancy (ROCC) model for the ParadynIS is developed and parameterized in

Section 2. We simulate theROCC model to answer a number of interesting “what-if” questions

regarding the performance of theIS in Section 3. Modifications to the ParadynIS design are tested

in Section 4 to assess their impact onIS performance. We conclude with a discussion of the

contributions of this work to the area of parallel tool development.

2 A Model for Paradyn IS

In this section, we introduce Paradyn and present a model for its IS. Paradyn is a tool for

measuring the performance of large-scale parallel programs. Its goal is to provide detailed,

flexible performance information without incurring the space and time overheads typically

associated with trace-based tools [20]. The Paradyn parallel performance measurement tool runs

on TMC CM-5, IBM SP-2, and clusters of Unix workstations. We have modeled the ParadynIS

for an IBM SP-2 system. The tool consists of the main Paradyn process, one or more Paradyn

daemons, and external visualization processes.

The main Paradyn process is the central part of the tool, which is implemented as a multithreaded

process. It includes thePerformance Consultant, Data Manager, andUser Interface Manager.

The Data Manager handles requests from other threads for data collection, delivers performance

data from the Paradyn daemon(s), and distributes performance metrics. The User Interface

Manager provides visual access to the system’s main controls and performance data. The

Performance Consultant controls the automated search for performance problems, requesting and

receiving performance data from the Data Manager.

Paradyn daemons are responsible for inserting the requested instrumentation into the executing

processes being monitored. The ParadynIS supports the W3 search algorithm implemented by the

Performance Consultant for on-the-fly bottleneck searching by periodically providing

instrumentation data to the main Paradyn process [11]. Required instrumentation data samples are

collected from the application processes executing on each node of the system. These samples are

4

collected by the local Paradyn daemon (Pd) through Unix pipes, which forwards them to the main

process. Figure 1 represents the overall structure of the ParadynIS. In the figure,pj
i for j =0,1,...,

n-1 denote the application processes that are instrumented by a local Paradyn daemon at nodei,

where the number of application processesn at a given node may differ from another node.

2.1 Queuing Network Model

The ParadynIS can be represented by a queuing network model, as shown in Figure 2. It consists

of several sets of identical subnetworks representing a local Paradyn daemon and application

processes. We assume that the subnetworks at every node in the distributed system show identical

behavior during the execution of anSPMD program. Since the focus of this study is resource

sharing among processes at a node, we consider only one subnetwork at a given node and apply

theROCC model, introduced in the next section, for a detailed evaluation.

Pd

p0
0 pn-1

0

Pd

p0
P-1 pn-1

P-1

main process

Figure 1. An overview of the ParadynIS [20].

Application
processes

Paradyn
daemons

Main Paradyn process

Node 0 Node P-1

Host workstation

. . .

p1
i pn-1

ip0
i

Pdi

Main process

Pd0 PdP-1

Instrumentation data buffers
provided by the kernel (Unix

Local application processes (n)

Local Paradyn daemons (P),

Network delays are
represented by the arrivals
to a single server buffer to
allow random sequence of
arrivals from different Pds

Main Paradyn process

Figure 2. A model for the Paradyn instrumentation system.

pipes)

on node i

one per node
.

. . .

Data collection
by a Pd

Data forwarding
by a Pd

5

Figure 2 highlights the performance data collection and forwarding activities of a Paradyn

daemon on a node. TheseIS activities are central to Paradyn’s support for on-line analysis of

performance bottlenecks in long-running application programs. However, they may adversely

affect application program performance, since they compete with application processes for shared

system resources. Objectives of our modeling include evaluatingIS overheads due to resource

sharing, identifying anyIS-induced performance bottlenecks, and determining desirable operating

conditions for theIS.

Scheduling Policies for Data Forwarding. Two possible options for a Paradyn daemon to schedule

data collection and data forwarding arecollect-and-forward (CF) andbatch-and-forward (BF).

Under theCF scheduling policy, thePd collects a sample from an instrumented application

process and immediately forwards it to the main process. Under theBF policy, thePd collects a

sample from the application process and stores it in a buffer until a batch of an appropriate number

of samples is accumulated, which is then forwarded to the main Paradyn process.

Metrics. Two performance metrics are of interest for this study:direct overhead due to data

collection andthroughput of data forwarding. Direct overhead represents theoccupancy time by

the IS of a shared system resource. It quantifies the contention between application andIS

processes for the shared resources on a particular node of the system. A lower value of the direct

overhead is desirable. Throughput impacts the main Paradyn process, since a steady flow of data

samples from individual system nodes is needed to allow the bottleneck searching algorithm to

work properly. High throughput is desirable particularly in cases where Paradyn assists real-time

adaptive steering of the application. Throughput of data forwarding by a Paradyn daemon is

directly related to the monitoring latency. Monitoring latency has been defined as the amount of

time between the generation of instrumentation data and its receipt at a logically central collection

facility [8]. A higher throughput means lower monitoring latency and vice versa.

Simulation-based experiments presented in Section 3 calculate these two metrics to help answer a

number of “what-if” questions.

6

2.2 Resource Occupancy Model

This subsection introduces theResource OCCupancy (ROCC) model and its application to

isolating the overheads due to non-deterministic sharing of resources between the ParadynIS and

application processes [29]. TheROCC model, founded on traditional modeling techniques,

consists of three components:system resources, requests, andmanagement policies. Resources are

shared among (instrumented) application processes, other user and system processes, andIS

processes; for example, CPU, network, and I/O devices.Requests are demands from application,

other user, andIS processes to occupy the system resources during the execution of an

instrumented application program. A request to occupy a resource specifies the amount of time

needed for a single computation, communication, or I/O step of a process.IS management

involves scheduling of system resources to perform data collection and forwarding activities.

Figure 3 depicts theROCC model with two types of resources of interest for the ParadynIS, CPU

and network, being shared by three types of processes: application,IS, and other user processes.

Due to the interactions between different types of processes, it is impractical to solve theROCC

model analytically. Therefore, simulation is a natural choice. The execution of theROCC model

for the ParadynIS relies on a workload characterization of the target system, which in turn, relies

on measurement-based information from the specific system [5,13]. We present a brief discussion

of the workload characterization for this study in the following subsections; a complete

description is presented in a technical report [30].

Instrumented
application
processes

Instrumentation
system
processes

Other
user/system
processes

CPU

Processes running at a
particular system node that
generate requests for occupying
the system resources

Triggering of subsequent request from the corresponding process

Figure 3. The resource occupancy model for the ParadynIS.

time out

Network
CPU Requests

CPU

Network Requests

Serviced CPU requests
from the other processes

.

. .
 .

7

2.3 Workload Characterization

The workload characterization for this study has two objectives: (1) to determine representative

behavior of each process of interest (i.e., application,IS, and other user/system processes) at a

system node (see section 2.3.1); and (2) to fit appropriate theoretical probability distributions to

the lengths of resource occupancy requests from each of these processes (see section 2.3.2). The

resulting workload model is both practical and realistic.

2.3.1 Process Model

We consider the states of an instrumented process running on a node, as illustrated by Figure 4,

which is an extension of the Unix process behavior model. After the process has been admitted, it

can be in one of the following states:Ready, Running, Communication, or Blocked (for I/O). The

process can be preempted by the operating system to ensure fair scheduling of multiple processes

sharing the CPU. After specified intervals of time (in case ofsampling) or after occurrence of an

event of interest (in case oftracing), such as spawning a new process, instrumentation data are

collected from the process and forwarded over the network to the main Paradyn process via a

Paradyn daemon.

In order to reduce the number of states in the process behavior model and hence the level of

complexity, we group several states into a representative state. The simplified model, shown in

Figure 5, considers only two states of process activity:ComputationandCommunication. This

simplification facilitates obtaining measurements without any special operating system

Running ForkReady

Data collectionCommunication

ExitBlocked

dispatch

time out

waitresource
available release

sampling
interval

log the new
process

Admit

network
accessdone

Figure 4. Detailed process behavior model in an environment using an instrumentation system.

Forward data
to the main process

spawn

8

instrumentation. TheComputationand Communicationstates require the use of the CPU and

network resources, respectively. The model provides sufficient information to characterize the

workload when applied in conjunction with the resource occupancy model. TheComputation

state is associated with theRunning state of the detailed model of Figure 4. Similarly, the

Communication state is associated with Figure 4’sCommunication state, representing the data

collection, network file service (NFS), and communication activities with other system nodes.

Measurements regarding these two states of the simplified model are conveniently obtained by

tracing the application programs.

2.3.2 Distribution of Resource Occupancy Requests

Trace data generated by the SP-2’s AIX operating system tracing facility is the basis for the

workload characterization. We used the trace data obtained by executing theNAS benchmark

pvmbt on the SP-2 system [27]. Table 1 presents a summary of the statistics for CPU and network

occupancy by various processes.

We apply standard distribution fitting techniques to determine theoretical probability density

functions that match the lengths of resource occupancy requests by the processes [16]. Figure 6,

on the left, shows the histograms andprobability density functions (pdfs) for the lengths of CPU

ComputationCommunication

Figure 5. Alternating computation and communication states of a process forROCC model.

Table 1. Summary of statistics obtained from measurements ofNAS benchmark pvmbt on an SP-2.

Process Type CPU Occupancy (microseconds) Network Occupancy (microseconds)

Mean St. Dev. Min. Max. Mean St. Dev. Min. Max.

Application
process

2,213 3,034 9 10,718 223 95 48 5,241

Paradyn daemon 267 197 11 6,923 71 109 31 816

PVM daemon 294 206 9 1,662 58 59 36 5,169

Other processes 367 819 8 9,746 92 80 8 198

Main Paradyn
process

3,208 3,287 11 10,661 214 451 46 4,776

9

and network occupancy requests by the application (NAS benchmark) process (in (a) and (b),

respectively).

Quantile-quantile (Q-Q) plots are often used to visually depict differences between observed and

theoreticalpdfs (see [16]). For CPU requests (Figure 6a), the Q-Q plot of the observed and

lognormal quantiles approximately follows the ideal linear curve, exhibiting differences at both

tails, which correspond to very small and very large CPU occupancy requests relative to the CPU

scheduling quantum. Despite these differences, the lognormalpdf is the best match. For network

requests by application processes (Figure 6b), an exponential distribution yields the best fit. Table

2 summarizes the distribution fitting results for various processes; the inter-arrival time of requests

to individual resources is approximated by an exponential distribution (see [30]).

Figure 6. Histograms and theoreticalpdfs of the lengths of (a) CPU and (b) network occupancy
requests from the application process. Q-Q plots represent the closest theoretical distributions.

(a)

(b)

0 2000 4000 6000 8000 10000 12000
0

1

2

3

4

5

6

7

8

9
x 10

−4

R
el

at
iv

e
fr

eq
ue

nc
y

Lengths of CPU occupancy requests (microseconds)

–.
x
o

Exponential
Weibull
Lognormal

O
bs

er
ve

d
qu

an
til

es

Lognormal quantiles

R
el

at
iv

e
fr

eq
ue

nc
y

Lengths of network occupancy requests (microseconds)
0 1000 2000 3000 4000 5000 6000

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

O
bs

er
ve

d
qu

an
til

es

Exponential quantiles

–.
x
o

Exponential
Weibull
Lognormal

−4 −2 0 2 4 6 8 10 12 14 16
−4

−2

0

2

4

6

8

10

12

14

16

0 500 1000 1500 2000 2500
0

1000

2000

3000

4000

5000

6000

–. Ideal fit
Actual quantiles

–. Ideal fit
Actual quantiles

10

2.4 Model Parameterization

The workload characterization presented in the preceding section yields parameters for theROCC

model for the ParadynIS, as shown in Table 2. Note thatexponential(m) means an exponential

random variable with mean inter-arrival time ofm microseconds, andlognormal(a, b) means a

lognormal random variable with meana and varianceb. These parameters were calculated using

maximum likelihood estimators given by Law and Kelton [16]. With these parameters, the model

can be simulated and used to answer “what if” questions, which we consider next in Section 3.

3 Simulation-Based Experiments

In this section, we describe the simulation of the model and use it to answer several questions

about configuration and scheduling policies for the ParadynIS:

• What is the effect of varying the number of application processes on each node?

• What is the effect of varying the length of the sampling period?

• Does an increase in the number of Paradyn daemons on a node increase throughput, especially
given a large number of application processes?

Table 2. Summary of parameters used in simulation of theROCC model. All time parameters are in
microseconds. The range of inter-arrival times for the Paradyn daemon corresponds to varying the

rate of sampling (and forwarding) performance data by the application process.

Parameter Type Parameter Range of Values

Configuration Number of application processes per node 1–32

Number ofPd processes per node 1–4

Number of CPUs per node 1

CPU scheduling quantum (microseconds) 10,000

Application
Process

Length of CPU occupancy request Lognormal (2213, 3034)

Length of network occupancy request Exponential (223)

Paradyn Daemon Length of CPU request Exponential (267)

Length of network request Exponential (71)

Inter-arrival time 5,000–50,000 (typical 47,344)

PVM Daemon Length of CPU request Lognormal (294, 206)

Length of network request Exponential (58)

Inter-arrival time Exponential (6485)

Other Processes Length of CPU request Lognormal (367, 819)

Length of network request Exponential (92)

Inter-arrival time of CPU requests Exponential (31485)

Inter-arrival time of network requests Exponential (5598903)

11

• What is the effect of a scheduling policy given multiple application processes and varying sam-
pling periods?

3.1 Experimental Setup

In answering these questions, our simulation experiments are designed to analyze the effects of

four parameters (factors):

• sampling period: length of time between two successive collections of performance data sam-
ples from an instrumented application process;

• number of local application processes: number of processes of the application running on one
node of the parallel/distributed system;

• rate of instrumentation insertion: frequency of changing the instrumentation level in a process.
The instrumentation increases or decreases when a Paradyn daemon (dynamically) inserts
instrumentation code into the application process to collect additional or different data. The
main Paradyn process requests the daemon to insert instrumentation in the binary image of the
application process based on performance metrics being used. The amount of time between
main process requests is the length of aninstrumentation interval or period and is the recipro-
cal of this rate; and

• scheduling policy to forward instrumentation data samples to the main Paradyn process: the
data forwarding policy determines the manner in which a Paradyn daemon sends data samples
to the main Paradyn process.

Initial “back-of-the-envelope” analytical calculations of theROCC model for the ParadynIS

indicated that the CPU is the bottleneck resource [29]. Therefore, we do not investigate the

network occupancy time in this study. Our specific interest is in the analysis of the CPU time taken

by the Paradyn daemon (i.e., its direct overhead) and the throughput of data forwarding (i.e.,

number of data samples forwarded per unit of time). We use a 2kr factorial design technique for

these experiments, wherek is the number of factors of interest andr is the number of repetitions of

each experiment [14]. For these experiments,k=4 factors andr=50 repetitions, and the mean

values of the two metrics (direct overhead and throughput) are derived within 90% confidence

intervals from a sample of fifty values.

Applying the2kr factorial design technique, we conduct sixteen simulation experiments, obtaining

the results shown in Table 3. For this analysis, each factor can assumeone of two possible values.

For factors having numerical values, we use their maximum and minimum. The length of an

instrumentation period (reciprocal of rate of instrumentation insertion) represents either no change

or periodic change; a value of 100 seconds indicates that the instrumentation does not change

during the execution (as simulation experiments have a time limit of 100 seconds), and a value of

12

10 seconds indicates the Paradyn daemon changes the instrumentation level of the local

application processes (i.e., increases or decreases) after every 10 seconds.

3.2 Principal Component Analysis

We supplement the 2kr factorial experiment design technique withprincipal component analysis

(PCA) to assess the sensitivity of the performance metrics to selected model parameters (factors).

With multiple factors, we cannot assume that each acts independently on the system under test

(i.e., theIS). PCA helps determine the relative importance of individual factors, as well as their

interdependencies. We use the technique outlined by Jain to perform PCA on the results from

Table 3 [14].

Figure 7 shows the results of the principal component analysis. Clearly, the number of application

processes (labeled as B) is the single most important factor that affects the direct overhead of the

Paradyn daemon, followed by the data forwarding policy (D) and length of an instrumentation

period (C). The forwarding policy (D) and combination of the number of application processes

and the forwarding policy (BD) are the most important factors affecting throughput, followed by

the number of application processes (B), and the length of the sampling period (A). Thus, a further

investigation of the behavior of theIS with respect to the number of application processes (B), the

data forwarding policy (D), and their interaction (BD) is justified.

CF—Collect-and-Forward

BF—Batch-and-Forward

Table 3. Results of simulation experiments.

Parameters CF Policy BF Policy

Sampling
period
(msec)

Number
of

application
 processes

 Length of
instr.

period
(sec)

Pd CPU
time (sec)

Pd
throughput

(samples/sec)
Pd CPU

time (sec)

Pd
throughput

(samples/sec)

5 1 100 4.5 164.5 2.2 163.2

50 1 100 0.5 18.9 0.2 19.2

5 32 100 13.2 5.8 7.5 473.6

50 32 100 12.5 6.2 6.2 412.8

5 1 10 6.2 153.2 2.0 153.6

50 1 10 0.5 17.7 0.2 16

5 32 10 18.2 4.0 12.2 361.6

50 32 10 17.9 6.2 11.5 374.4

13

3.3 Evaluation of “what-if” Questions

The questions raised in the introduction to Section 3, repeated below, were formulated based on

the principal component analysis presented in the preceding section.

• What is the effect of varying the number of application processes on each node?

• What is the effect of varying the length of the sampling period?

• Does an increase in the number of Paradyn daemons on a node increase throughput, especially
given a large number of application processes?

• What is the effect of a scheduling policy given multiple application processes and varying sam-
pling periods?

The following subsections investigate these questions using the simulation configuration

presented in Section 3.1. Via simulation, we vary the factors of interest and observe the effects on

the overhead and throughput metrics.

3.3.1 What are the effects of varying the number of application processes and the sampling period?

We run simulations in which we vary the sampling period and the number of application

processes. Results are shown in Figure 8, where the performance is plotted for both the Paradyn

daemon (instrumentation,IS, process) and the application processes: in (a), sampling period

varies for a fixed number of application processes; in (b), number of application processes varies

for a fixed sampling period; the graphs on the left show CPU time taken by the processes; and the

graphs on the right, throughput.

B
72 %

D

10 %
C

5 %
Rest
13 %

100 %75 %50 %25 %

BD
38 %

D
38 %

B
13 %

AB
4 %

A
5 %

Rest
2 %

Variation
explained for
Pd CPU time

Variation
explained for
Pd throughput

Figure 7. Results of principal component analysis of four factors and their combinations.

A — Sampling period
B — Number of application processes
C — Length of instrumentation period
D — Data forwarding policy

14

Consider (a). The CPU time taken by the Paradyn daemon (IS process) decreases noticeably as the

sampling period increases (i.e., as rate of sampling decreases) and then levels off. For smaller

sampling periods, the Paradyn daemon makes a large number of CPU occupancy requests,

resulting in higher overhead (i.e., more CPU time). On the other hand, the throughput of data

forwarded by theIS remains relatively unaffected with increasing sampling periods. Next,

consider (b). The CPU time taken by the Paradyn daemon increases linearly with the number of

processes. The throughput increases up to a small number of processes and then decreases

steadily. The initial increase in throughput is attributable to an increase inIS requests per unit time

due to the additional application processes. However, with the growing number of application

processes, contention for shared resources arises amongIS and application requests, resulting in a

lower throughput.

Thus, there are interesting metric variations, especially with respect to number of application

processes. Before arriving at any conclusions, we take a closer look at the Paradyn daemon

performance in the next section, including varying the number of daemons.

C
P

U
 ti

m
e

(s
ec

)

Sampling period (µsec) Sampling period (µsec)

Number of application processes Number of application processes

(a) P = 8 application processes

(b) Sampling period = 40 msec

T
hr

ou
gh

pu
t (

sa
m

pl
es

/s
ec

)
T

hr
ou

gh
pu

t (
sa

m
pl

es
/s

ec
)

+
× Application processes

IS process

C
P

U
 ti

m
e

(s
ec

)

Figure 8. CPU time and throughput metrics calculated with theROCC simulation model.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

10

20

30

40

50

60

70

80

90

100

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

50

100

150

200

250

300

350

400

450

500

550

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35
0

100

200

300

400

500

600

15

3.3.2 Does an increase in the number of Paradyn daemons on a node increase throughput?

In Figure 8(b), we observed a decrease in the data forwarding throughput by the Paradyn daemon.

One possible means to enhance the throughput, especially with many application processes, is the

use of multiple daemon processes per node. Figure 9 is close-up of Figure 8(b), focusing onIS

process performance for multiple Paradyn daemons on the same node. We use the same two

metrics and vary the number of application processes while keeping the sampling period fixed. In

the graph on the left, we see little variation in the CPU time taken by Paradyn daemons for

different numbers of daemons. Therefore, it appears feasible to use multiple daemons without

incurringexcessive overhead. Moreover, the graph on the right shows that multiple daemons are

useful in maintaining higher throughputs, especially when the number of application processes is

above a “threshold” value (i.e., the knee in a curve). This is due to a lower overall blocking

probability for the Paradyn daemon requests for CPU resources.

3.3.3 What is the effect of different scheduling policies for data forwarding?

For the preceding simulation results, theCF policy was used to schedule the forwarding of

samples from the Paradyn daemon to the main Paradyn process;CF is the initial policy

implemented by Paradyn developers (pre-release). In this section, we compare the performance of

the CF andBF policies and show thatBF is a better choice;BF is implemented in the current

release (1.0) of Paradyn. Figure 10 (similar in format to Figure 8) focuses onIS process

Number of application processes Number of application processes

 Sampling period = 40 msec

T
hr

ou
gh

pu
t p

d
(s

am
pl

es
/s

ec
)

x
+ 1 Pd

C
P

U
 ti

m
e

(s
ec

)

Figure 9. CPU time and throughput metrics calculated with theROCC simulation model using
multiple Pds.

3 Pds
4 Pds

*
o

2 Pds

0 5 10 15 20 25 30 35
0

50

100

150

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

16

performance under the two policies; theIS process curve in Figure 8 is theCF policy curve in

Figure 10, and it is plotted with theBF policy curve.

The CPU time taken by the Paradyn daemon (i.e., direct overhead) is significantly smaller using

the BF policy, particularly with short sampling periods (see (a), left) or large numbers of

application processes (see (b), left). In theCF policy, a system call is necessary to forward each

data sample, whereas in theBF policy, a number of samples are forwarded per system call. Thus,

system call overhead is incurred more frequently under the CF policy, and the magnitude of this

overhead is depicted in Figure 10. The impact of the policy is more profound with respect to the

data forwarding throughput, as shown in the graphs on the right. In the CF policy, noted earlier,

there is considerable CPU contention between the Paradyn daemon and the application processes.

Under the BF policy, however, the CPU time is utilized more efficiently.

C
P

U
 ti

m
e

(s
ec

)

Sampling period (msec) Sampling period (msec)

Number of application processes Number of application processes

(a) P = 8 application processes

(b) Sampling period = 40 msec

T
hr

ou
gh

pu
t (

sa
m

pl
es

/s
ec

)
T

hr
ou

gh
pu

t (
sa

m
pl

es
/s

ec
)

+
× CF policy

BF policy

C
P

U
 ti

m
e

(s
ec

)

Figure 10. CPU time and throughput metrics calculated with theROCC simulation model usingCF
and BF (with an arbitrarily selected batch size = 32 samples) policies.

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35
0

50

100

150

200

250

300

350

400

450

5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

5 10 15 20 25 30 35 40 45 50
50

100

150

200

250

300

350

400

450

500

550

17

3.4 Summary of Results and Initial Feedback to the Developers

We can draw several conclusions from the “what-if” simulation-based analysis. The intent was to

provide ParadynIS developers with useful high-level feedback for improving theIS. A summary

of the results follows:

1. The number of application processes and the instrumentation data forwarding policy are the
most important factors under consideration that affect theIS performance. While the choice of
forwarding policy can be controlled by the developers, the number of application processes can
not be.

2. Data forwarding throughput can be improved by using multiple Paradyn daemons, especially
beyond a threshold in the number of application processes (e.g., eight or more processes, in this
case). CPU overhead due to multiple daemons is not significantly higher than the overhead due
to a single daemon. We continue to investigate the optimal number of daemon processes for a
given number of application processes. However, since the number of application processes on
a node of a high performance parallel/distributed system is usually very small (typically, one),
there often is no need to run multiple daemons in practice.

3. TheBF policy outperforms theCF policy both in terms of direct CPU overhead and data for-
warding throughput.

This feedback was well-received by the ParadynIS developers and theBF policy was

implemented in addition to theCF policy. Thus, we can experimentally validate these simulation

results via testing of the actualIS.

4 Experimental Validation

We use measurement-based experiments to test the actual IS and validate the simulation-based

results. Our objective is to experimentally verify that the performance of the real system with

actual application programs matches the predictions of the simulator. Measurement-based tests

generate large volumes of trace data. Investigating a number of “what-if” questions is less feasible

than with simulation. Time is also required to implement and debug new policies. Therefore,

testing necessarily focuses on specific aspects of performance under carefully controlled

experimental conditions. In this study, we test the system under two sampling periods and two

scheduling policies.

4.1 Experimental Setup

Figure 11 depicts the experimental setup for measuring the ParadynIS performance on an IBM

SP-2 system. We initially use theNAS benchmarkpvmbt as the application process; and we use

18

the AIX tracing facility on one of the SP-2 nodes executing the application process. The main

Paradyn process executes on a separate node, which is also traced. Therefore, one experiment with

a particular sampling period and data forwarding policy results in two AIX trace files. These trace

files are then processed to determine execution statistics relevant to the test.

We conduct a set of four experiments based on two factors,sampling period and scheduling

policy, each having two possible values. As in the simulation, the scheduling policy options are

CF andBF. The sampling period is assigned a relatively low value (10 msec) or a higher value (30

msec). Certain experiments were found interesting in the simulation-based study, such as the use

of multiple application and Paradyn daemon processes per node. However, the scope of this paper

is being limited to CPU-intensive, single-program multiple-data (SPMD) types of applications,

for which multiple application processes per node are less likely. Additionally, the volume of the

AIX trace data accumulated during each experiment can become unmanageable with multiple

application processes per node. Therefore, testing experiments are conducted with only one

application process per node; and, hence, there is no need for multiple Paradyn daemon processes

per node. Experiments using multiple processes are left to future work with other types of

SP-2 Node:

application,
Pd, pvmd,

AIX tracing facility AIX tracing facility

High-speed network

Ethernet

Parallel virtual machine running NAS benchmarks with Paradyn IS

AIX trace file
corresponding
to the main
process

AIX trace file
corresponding
to application,
Pd, and pvmd
processes

Figure 11. Measurement-based experiment setup for ParadynIS on an SP-2.

SP-2 Node:

application,
Pd, pvmd,

SP-2 Node:

application,
Pd, pvmd,

SP-2 Node:

Main Paradyn
process

. . .

19

applications (e.g., real-time control). Consistent with the simulation, network occupancy is not

considered; this also reduces the disk space needed for AIX traces.

4.2 Evaluation

Figure 12summarizes the Paradyn IS testing results related to the CPU overhead of the Paradyn

daemon (graph on the left) and the main Paradyn process (graph on the right). The CPU time

taken by the Paradyn daemon under the BF policy is about one-third of its value under the CF

policy. This indicates a more than 60% reduction in overhead when Paradyn daemons send

batches of samples rather than making system calls to send each sample individually. Similar

analysis of the trace data obtained from the node running the main Paradyn process indicates that

the overhead is reduced by almost 80% under theBF policy.

In order to determine the relative contribution of these two factors to the direct CPU overhead, we

use principal component analysis. The results of this analysis for the Paradyn daemon and main

Paradyn processes are shown in Table 4. Clearly, the scheduling policy to forward data is

primarily responsible for variations inIS overhead. Thus, within the scope of our testing, the

results verify that the performance of the real system matches the predictions of the simulation.

We conduct another set of measurement experiments to isolate the effect of a particular

application on the ParadynIS overheads. To do this, we experiment with two scheduling policies,

CF andBF, and twoNAS benchmark programs,pvmbt andpvmis. Benchmarkpvmbt solves three

sets of uncoupled systems of equations, first in thex, then in they, and finally in thez direction.

214

38
69

29C
P

U
 ti

m
e

(s
ec

)

CF BF

SP = 10 msec SP = 30 msec

18.9

5.1
6.3

2.3

 C
P

U
 ti

m
e

(s
ec

)

CF BF

Sampling period (SP) = 10 msec SP = 30 msec

Figure 12. Comparison of CPU overhead measurements under the CF and BF policy using two
sampling period values for (a) Paradyn daemon and (b) main Paradyn process.

(a) Paradyn daemon process (b) Main Paradyn process

20

The systems areblock tridiagonal with 5×5 blocks. Benchmarkpvmis is an integer sort kernel. All

experiments use a sampling period of 10 milliseconds. In order to compare the overheads due to

different application programs having different CPU time requirements, we normalize the CPU

time for each process with the total CPU time requirement at a node during the execution of the

benchmark program. The results are summarized in Figure 13. The key observation is that the

reduction inIS overheads under theBF policy is not significantly affected by the choice of

application program.

We again use principal component analysis to quantify the dependence ofIS overheads on the

choice of application program. The results of this analysis are shown in Table 5. Not surprisingly,

the effect of the application program is negligible. Once again, the dominant factor under the

current experimental setup is the scheduling policy.

Table 4. Results of principal component analysis of scheduling policy vs. sampling period for the
tests in Figure 12.

Factors or combination of
factors

Variation explained
for Paradyn daemon

CPU time (%)

Variation explained
for main Paradyn

process CPU time (%)

A (scheduling policy for data
forwarding)

47.6 52.9

B (sampling period) 35.9 26.5

AB 16.5 20.7

95.5 %

82.6 %

95.6 %

88.2 %

N
or

m
al

iz
ed

 C
P

U
 o

cc
up

an
cy

 (
%

) CF BF

pvmbt pvmis

7.9 %

1.9 %

7.6 %

2.8 %

N
or

m
al

iz
ed

 C
P

U
 o

cc
up

an
cy

 (
%

) CF BF

pvmbt pvmis

Figure 13. Paradyn IS testing results related to (a) Paradyn daemon and (b) main Paradyn process.

(a) Paradyn daemon process (b) Main Paradyn process

21

5 Discussion

In this paper, we presented a case study of applying a structured modeling, evaluation, and testing

approach to the Paradyn instrumentation system. We investigated various performance questions

using a model of the ParadynIS and provided feedback to the developers. Specifically, a

simulation-based study indicated the potential advantage of a proposedbatch-and-forward policy

over thecollect-and-forward policy. The effects of implementing this policy were tested by using

measurement-based experiments. Testing results indicate that use of the BF policy reduces the

CPU overhead of the Paradyn daemon and main Paradyn process by about 60%. Perhaps more

significantly, this study has shown the successful role of modeling and simulation to design more

efficient instrumentation systems through appropriate feedback at an early development stage.

The purpose of the initial feedback provided by the modeling and simulation-based study is to

answer generic, performance-related “what if” questions. It is both advisable and practical to relax

the accuracy requirements at this stage. Achieving a high degree of accuracy is costly due to the

complexity of an instrumentation system. One lesson that we learned by modeling the ParadynIS

is that an approximate simulation model, following the gross behavior of the actual

instrumentation system, is sufficient to provide useful feedback. At an early stage of modeling the

Paradyn IS, we arbitrarily parameterized the model based on information provided by the

developers [29]. The case study presented in this paper uses a more detailed workload

characterization based on measurement data. Although we enhanced the scope of the “what-if”

questions in this study, e.g., to include factors such as scheduling policy and length of

instrumentation period, this more detailed study does not contradict the earlier study that uses an

approximate model [29]. Obviously, with an approximate model, the analyst relies on correlating

Table 5. Results of principal component analysis of scheduling policy vs. application program for
the tests in Figure 13.

Factors or combination of
factors

Variation explained
for Paradyn

daemon’s normalized
CPU time (%)

Variation explained
for main Paradyn

process’s normalized
CPU time (%)

A (scheduling policy for data
forwarding)

98.5 86.8

B (application program) 0.3 6.8

AB 1.2 6.4

22

the simulation results with some intuitive explanation of the system behavior. Unfortunately,

approximate modeling results are open to speculation without extensive workload study based on

actual data.

Instrumentation system design and maintenance are difficult and costly since supported tools may

undergo frequent modifications for new platforms and applications. TheHPCC community has

recognized the high cost of software tool development [22]. As with any large software system, a

software tool environment should be partitioned into components and services that can be

developed as off-the-shelf, retargettable software products. Due to the generic nature of anIS,

which consists of components and services for runtime data collection and management, it is an

excellent candidate for modular development [21]. Off-the-shelfIS components will need to meet

a number of functional as well as non-functional requirements. The modeling, evaluation, and

testing presented in this paper represent necessary steps to realize high-performance, well-

specified off-the-shelfIS components.

6 Related Work

We conclude this paper by placing the work in perspective with related work. This paper focused

on the Paradyn tool. However, a number of tools exist that provide a range of functionality and

rely on instrumentation system services. Table 6 is a representative listing of tools, their

functionality, and IS services. Thus, the potential impact of soundIS design practices and well-

understood implementation alternatives is considerable.

More specific to IS modeling, while we have emphasized its use to tool developers, users can also

take advantage of it. With an appropriate model for theIS, users can specify tolerable limits forIS

overheads relative to the needs of their applications. TheIS can use the model to adapt its behavior

in order to regulate overheads. Some initial work has already been done in this direction for

Paradyn [12]. Previous work related toIS modeling and overhead analysis has focused on

analyzing the intrusion due to instrumenting parallel programs [17,32].

Several other researchers have given special attention to the monitoring overheads of their tools.

Miller et al. present measurements of overheads of the IPS-2 tool and compare them with the

23

overheads of a functionally similar tool,gprof [19]. Gu et al. use synthetic workloads to exercise

specific features of theIS of the Falcon steering tool and measure theIS performance [8].

Table 6.IS services used by tools to support a range of functions.

Functionality
Representative

 Tools Description of KeyIS Services

Performance
Evaluation

ParAide ParAide is the integrated tool environment for Intel Paragon. Commands are
sent to the distributed monitoring system, called Tools Application Monitor
(TAM). TAM consists of a network of TAM processes arranged as a broad-
cast spanning tree with one TAM process (part of theIS) at each node.

Reference: http://www.ssd.intel.com/paragon.html and [26]

Debugging VIZIR This debugger consists of an integrated set of commercial sequential debug-
gers. ItsIS synchronizes and controls the activities of individual debuggers
that run the concurrent processes. TheIS also collects data from these pro-
cesses to run multiple visualizations.

Reference: [9]

Performance
Modeling and
Prediction

AIMS, Lost
cycles analysis
toolkit

 These tools integrate monitoring and statistical modeling techniques. Mea-
surements are used to parameterize the model, which is subsequently used
for predicting performance. TheIS performs the basic data collection tasks.

Reference: http://www.nas.nasa.gov/NAS/Tools/Projects/AIMS/ and [4,33]

Performance
and Program
Visualization

ParaGraph and
POLKA

The IS collects runtime data in the form of time-orderedtrace records. These
trace records are used to drive hard-coded (ParaGraph) or user-defined
(POLKA) visualizations of system and program behavior.

References: http://www.netlib.org/picl/ and http://www.cc.gatech.edu/gvu/
softviz/parviz/polka.html

Correctness
Checking

SPI Scalable Parallel Instrumentation (SPI) is Honeywell’s real-timeIS for
testing and correctness checking on heterogeneous computing systems. SPI
supports a user-defined, application-specific instrumentation development
environment, which is based on an event-action model and event
specification language.

Reference: http://www.sac.honeywell.com/ and [3]

Adaptive Real-
Time Steering

DIRECT/JEWEL Runtime information collected by the off-the-shelf instrumentation system
JEWEL is fed to a dynamic scheduler. The scheduler uses this information to
adaptively control the real-time system to be responsive to the variation of
important system variables.

Reference: http://borneo.gmd.de:80/RS/Papers/direct/direct.html and [7,15]

Dynamic
Resource
Scheduling

RMON RMON monitors the resource usage for distributed multimedia systems
running RT-Mach. Information collected by the instrumentation system is
used for adaptively managing the system resources through real-time
features of the operating system.

Reference: http://www.cs.cmu.edu/afs/cs.cmu.edu/user/cwm/www/
publications.html

Visualizing
Corporate Data

AT&T
visualization
systems

Visualization tools use monitored data to locate long-distance calling frauds
through unusual calling patterns, to find communities of interest in local
calling, to retain customers, and to compare databases consisting of textual
information.

Reference: http://www.att.com/att-tj/ and [6]

24

This study of Paradyn’sIS follows previous work by Waheed and Rover to view theIS as enabling

technology, ormiddleware [2], and to establish an approach for characterizing, evaluating, and

understandingIS operation, including its overheads [28]. This approach emphasizes a separation

of the high-level tool requirement and usability issues from the low-level design and test issues.

We applied this two-level approach for modeling and evaluating the ParadynIS.

Acknowledgments

We would like to acknowledge the contribution of Bart Miller of the University of Wisconsin, who

helped initiate this collaborative work on ParadynIS modeling, evaluation, and testing. We also

thank Tia Newhall for implementing thebatch-and-forward policy in Paradyn.

References

[1] Belanger, David G., Yih-Farn Chen, Neal R. Fildes, Balachander Krishnamurthy, Paul H.
Rank Jr., Kiem-Phong Vo, and Terry E. Walker, “Architecture Styles and Services: An
Experiment Involving Signal Operations Platforms-Provisioning Operations Systems,”
AT&T Technical Journal, January/February 1996, pp. 54–60.

[2] Bernstein, Philip A. “Middleware: A Model for Distributed System Services,”Communi-
cations of the ACM, 39(2), Feb. 1996.

[3] Bhatt, Devesh, Rakesh Jha, Todd Steeves, Rashmi Bhatt, and David Wills, “SPI: An
Instrumentation Development Environment for Parallel/Distributed Systems,”Proc. of Int.
Parallel Processing Symposium, April 1995.

[4] Crovella, Mark E. and Thomas J. LeBlanc, “Parallel Performance Prediction Using Lost
Cycles Analysis,”Proceedings of Supercomputing ‘94, Washington, DC, Nov. 14–18,
1994.

[5] Dimpsey, Robert T. and Ravishankar K. Iyer, “A Measurement-Based Model to Predict the
Performance Impact of System Modifications: A Case Study,”IEEE Transactions on Par-
allel and Distributed Systems, 6(1), January 1995, pp. 28–40.

[6] Eick, Stephen G. and Daniel E. Fyock, “Visualizing Corporate Data,”AT&T Technical
Journal, January/February 1996, pp. 74–85.

[7] Gergeleit, Martin, J. Kaiser, and H. Streich, “DIRECT: Towards a Distributed Object-Ori-
ented Real-Time Control System,” Technical Report, 1996. Available from http://
borneo.gmd.de:80/RS/Papers/direct/direct.html.

[8] Gu, Weiming, Greg Eisenhauer, Eileen Kramer, Karsten Schwan, John Stasko, and Jeffrey
Vetter, “Falcon: On-line Monitoring and Steering of Large-Scale Parallel Programs,”
Technical Report GIT–CC–94–21, 1994.

[9] Hao, Ming C., Alan H. Karp, Abdul Waheed, and Mehdi Jazayeri, “VIZIR: An Integrated
Environment for Distributed Program Visualization,”Proc. of Int. Workshop on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS ‘95)
Tools Fair, Durham, North Carolina, Jan. 1995.

25

[10] Harrison, R., L. Zitzman, G. Yoritomo, “High Performance Distributed Computing Pro-
gram (HiPer-D)—Engineering Testbed One (T1) Report,” Technical Report, Naval Sur-
face Warfare Center, Dahlgren, Virginia, Nov. 1995.

[11] Hollingsworth, J. K., B. P. Miller, and Jon Cargille, “Dynamic Program Instrumentation
for Scalable Performance Tools,”Proc. of Scalable High-Performance Computing Confer-
ence, Knoxville, Tenn., 1994.

[12] Hollingsworth, J. K. and B. P. Miller, “An Adaptive Cost Model for Parallel Program
Instrumentation,”Proceedings of EuroPar ‘96, Lyon, France, August 1996.

[13] Hughes, Herman D., “Generating a Drive Workload from Clustered Data,”Computer Per-
formance, 5(1), March 1984.

[14] Jain, Raj,The Art of Computer Systems Performance Analysis—Techniques for Experi-
mental Design, Measurement, Simulation, and Modeling, John Wiley & Sons, Inc., 1991.

[15] Lange, F., Reinhold Kroger, and Martin Gergeleit, “JEWEL: Design and Implementation
of a Distributed Measurement System,”.IEEE Transactions on Parallel and Distributed
Systems, 3(6), November 1992, pp. 657-671. Also available on-line from http://
borneo.gmd.de:80/RS/Papers/JEWEL/JEWEL.html.

[16] Law, Averill M. and W. D. Kelton,Simulation Modeling and Analysis, McGraw-Hill, Inc.,
1991.

[17] Malony, A. D., D. A. Reed, and H. A. G. Wijshoff, “Performance Measurement Intrusion
and Perturbation Analysis,”IEEE Transactions on Parallel and Distributed Systems, 3(4),
July 1992.

[18] Mercer, Clifford W. and Ragunathan Rajkumar, “Interactive Interface and RT-Mach Sup-
port for Monitoring and Controlling Resource Management,”Proceedings of Real-Time
Technology and Applications Symposium, Chicago, Illinois, May 15-17, 1995.

[19] Miller, B. P. et al., “IPS-2: The Second Generation of a Parallel Program Measurement
System,”IEEE Transactions on Parallel and Distributed Systems, 1(2), April 1990, pp.
206–217.

[20] Miller, Barton P., Jonathan M. Cargille, R. Bruce Irvin, Krishna Kunchithapadam, Mark
D. Callaghan, Jeffrey K. Hollingsworth, Karen L. Karavanic, and Tia Newhall, “The Para-
dyn Parallel Performance Measurement Tool,”IEEE Computer, 28(11), November 1995,
pp.37–46.

[21] OMIS—On-Line Monitoring Interface Specifications. Accessible from http://www-
bode.informatik.tu-muenchen.de/~omis.

[22] Pancake, Cherri M. “The Emperor Has No Clothes: What HPC Users Need to Say and
HPC Vendors Need to Hear,”,Supercomputing ‘95, invited talk, San Diego, Dec. 3–8,
1995.

[23] Reed, Daniel A., Ruth A. Aydt, Tara M. Madhyastha, Roger J. Noe, Keith A. Shields, Bra-
dley W. Schwartz, “The Pablo Performance Analysis Environment,” Dept. of Comp. Sci.,
Univ. of Ill., 1992.

[24] Reed, Daniel A., “Building Successful Performance Tools,” Presented in ARPA PI Meet-
ing, July 1995. Available on-line from http://www-pablo.cs.uiuc.edu/June95-ARPA/
index.html.

26

[25] Reed, Daniel A., Keith A. Shields, Will H. Scullin, Luis F. Tavera, and Christopher L.
Elford, “Virtual Reality and Parallel Systems Performance Analysis,”IEEE Computer,
28(11), November 1995.

[26] Ries, Bernhard, R. Anderson, D. Breazeal, K. Callaghan, E. Richards, and W. Smith, “The
Paragon Performance Monitoring Environment,”Proceedings of Supercomputing ‘93,
Portland, Oregon, Nov. 15–19, 1993.

[27] Saini, Subhash and David Bailey, “NAS Parallel Benchmark Results,” ReportNAS-95-021,
NASA Ames Research Center, December 1995. Available on-line from: http://
www.nas.nasa.gov/NAS/TechReports/NASreports/NAS-95-021/NAS-95-021.html.

[28] Waheed, A. and Diane T. Rover, “A Structured Approach to Instrumentation System
Development and Evaluation,”Proceedings of Supercomputing ‘95, San Diego, Califor-
nia, Dec. 3–8, 1995.

[29] Waheed, A., Herman D. Hughes, and Diane T. Rover, “A Resource Occupancy Model for
Evaluating Instrumentation System Overheads,”Proceedings of the 20th Annual Interna-
tional Conference of the Computer Measurement Group (CMG ‘95), Nashville, Tennes-
see, Dec. 3–8, 1995.

[30] Waheed, Abdul, Diane T. Rover, and Jeff Hollingsworth, “Modeling and Evaluation of
Paradyn Instrumentation System,” Technical Report, April 1996. Available on-line from
http://web.egr.msu.edu/VISTA/Paradyn/paradyn.html.

[31] Workshop on Debugging and Performance Tuning of Parallel Computing Systems,
Chatham, Mass., Oct. 3-5, 1994.

[32] Yan, Jerry C. and S. Listgarten, “Intrusion Compensation for Performance Evaluation of
Parallel Programs on a Multicomputer,”Proceedings of the Sixth International Conference
on Parallel and Distributed Systems, Louisville, KY, Oct. 14–16, 1993.

[33] Yan, Jerry C., S. R. Sarukkai, and P. Mehra, “Performance Measurement, Visualization
and Modeling of Parallel and Distributed Programs using the AIMS Toolkit,”,Software
Practice and Experience, 25(4), April 1995, pp. 429–461.

