
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 6, JUNE 1998 451

Modeling and Evaluating Design Alternatives
for an On-Line Instrumentation System:

A Case Study
Abdul Waheed, Member, IEEE, Diane T. Rover, Member, IEEE,

and Jeffrey K. Hollingsworth, Member, IEEE

Abstract—This paper demonstrates the use of a model-based evaluation approach for instrumentation systems (ISs). The overall
objective of this study is to provide early feedback to tool developers regarding IS overhead and performance; such feedback helps
developers make appropriate design decisions about alternative system configurations and task scheduling policies. We consider
three types of system architectures: network of workstations (NOW), symmetric multiprocessors (SMP), and massively parallel
processing (MPP) systems. We develop a Resource OCCupancy (ROCC) model for an on-line IS for an existing tool and
parameterize it for an IBM SP-2 platform. This model is simulated to answer several ‘what if’ questions regarding two policies to
schedule instrumentation data forwarding: collect-and-forward (CF) and batch-and-forward (BF). In addition, this study investigates
two alternatives for forwarding the instrumentation data: direct and binary tree forwarding for an MPP system. Simulation results
indicate that the BF policy can significantly reduce the overhead and that the tree forwarding configuration exhibits desirable
scalability characteristics for MPP systems. Initial measurement-based testing results indicate more than 60 percent reduction in the
direct IS overhead when the BF policy was added to Paradyn parallel performance measurement tool.

Index Terms—Instrumentation system, resource occupancy model, workload characterization, parallel tools, parallel and distributed
system, monitoring, intrusion.

——————————���F���——————————

1 INTRODUCTION

PPLICATION-LEVEL software instrumentation systems
(ISs) collect runtime information from parallel and

distributed systems. This information is collected to serve
various purposes, for example, evaluation of program exe-
cution on high performance computing and communication
(HPCC) systems [24], monitoring of distributed real-time
control systems [3], [11], resource management for real-time
systems [21], and administration of enterprise-wide trans-
action processing systems [1]. In each of these application
domains, different demands may be placed on an IS and it
should be designed accordingly. In this paper, we present a
case study of IS design. We use specific measurements from
Paradyn, an example of an on-line data gathering system
that is found in performance analysis and program steering
environments [23]. We apply a structured approach that is
based on modeling and simulating the IS to answer several
“what-if” questions regarding possible configurations and
scheduling policies to collect and manage runtime data [28].
The Paradyn IS is enhanced based on the initial feedback
provided by the modeling and simulation process. Meas-
urement-based testing validates the simulation-based re-

sults and shows more than 60 percent reduction in the data
collection overheads for two applications from the NAS
benchmark suite executed on an IBM SP-2 system.

A rigorous system development process typically in-
volves evaluation and testing prior to system production or
usage. In IS development, formal evaluation of options for
configuring modules, scheduling tasks, and instituting
policies should occur early. Testing then validates these
evaluation results and qualifies other functional and non-
functional properties. Finally, the IS is deployed on real
applications. Evaluation requires a model for the IS and
adequate characterization of the workload that drives the
model. We have developed a Resource OCCupancy
(ROCC) modeling methodology that can account for inter-
actions among different types of processes, such as applica-
tion and IS, and their contention for shared system re-
sources. This methodology is based on a coarse-grained
workload characterization that does not require extensive
and expensive measurements.

One may ask if such rigor is needed in IS development.
The IS represents enabling technology of growing impor-
tance for effectively using parallel and distributed systems.
However, users typically see a tool and not the IS and there-
fore may be unaware of IS overheads. Unfortunately, the IS
can perturb the behavior of the application [20], degrading
the performance of an instrumented application program
from 10 percent to more than 50 percent according to vari-
ous measurement-based studies [9], [22]. Perturbation can
result from contention for system resources among applica-
tion and instrumentation processes. With increasing so-
phistication of system software technologies (such as mul-

0098-5589/98/$10.00 © 1998 IEEE

²²²²²²²²²²²²²²²²

•� A. Waheed is with MRJ Technology Solutions, NASA Ames Research
Center, Moffett Field, CA 94035. E-mail: waheed@nas.nasa.gov.

•� D.T. Rover is with the Department of Electrical Engineering, Michigan
State University, East Lansing, MI 48824. E-mail: rover@egr.msu.edu.

•� J.K. Hollingsworth is with the Department of Computer Science, Univer-
sity of Maryland, College Park, MD 20742. E-mail: hollings@cs.umd.edu.

Manuscript received 26 Dec. 1996; revised 19 Dec. 1997.
Recommended for acceptance by D. Eager.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 104740.

A

452 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 6, JUNE 1998

tithreading), an IS process is expected to manage and regu-
late its use of shared system resources [25]. Toward this
end, tool developers have implemented adaptive IS man-
agement approaches; for instance, Paradyn’s dynamic cost
model [13] and Pablo’s user-specified (static) tracing levels
[24]. With these advancements come increased complexity
and more design decisions. Modeling and early evaluation
facilitates dealing with these design decisions.

A Resource OCCupancy (ROCC) model for an on-line IS
is developed and parameterized in Section 2 using Paradyn
as an example performance measurement tool. Initial ‘back-
of-the-envelope’ calculations are obtained through applica-
tion of operations analysis and presented in Appendix B.
We simulate the ROCC model to answer a number of inter-
esting “what-if” questions regarding the performance of the
IS in Section 3. Modifications to the Paradyn IS design are
tested in Section 4 to assess their impact on IS performance.
We conclude with a discussion of the contributions of this
work to the area of parallel tool development.

2 A MODEL FOR PARADYN IS
In this section, we introduce Paradyn and present a model
for its IS. Paradyn is a tool for measuring the performance
of large-scale parallel programs. Its goal is to provide de-
tailed, flexible performance information without incurring
the space and time overheads typically associated with
trace-based tools [23]. The Paradyn parallel performance
measurement tool runs on TMC CM-5, IBM SP-2, and clus-
ters of Unix workstations. Our model of the Paradyn IS is
sufficiently general to be useful for any of these platforms
and is representative of many on-line measurement sys-
tems. However, in this paper we use parameters based on
the IBM SP-2 unless otherwise noted. The tool consists of
the main Paradyn process, one or more Paradyn daemons,
and external visualization processes.

The main Paradyn process is the central part of the tool,
which is implemented as a multithreaded process. It in-
cludes the Performance Consultant, Data Manager, and
User Interface Manager. The Data Manager handles re-
quests from other threads for data collection, delivers per-
formance data from the Paradyn daemon(s), and distributes
performance metrics. The User Interface Manager provides
visual access to the system’s main controls and perform-
ance data. The Performance Consultant controls the auto-
mated search for performance problems, requesting and
receiving performance data from the Data Manager.

Paradyn daemons are responsible for inserting the re-
quested instrumentation into the executing processes being
monitored. The Paradyn IS supports the W3 search model
implemented by the Performance Consultant for on-the-fly
bottleneck searching by periodically providing instrumenta-
tion data to the main Paradyn process [12]. Required instru-
mentation data samples are collected from the application
processes executing on each node of the system. These sam-
ples are collected by the local Paradyn daemon (Pd) through
Unix pipes, which forwards them to the main process.

2.1 Modeling Objectives and Metrics
The Paradyn IS can be represented by a queuing network
model, as shown in Fig. 1. It consists of several sets of iden-

tical subnetworks representing a local Paradyn daemon and
application processes. We assume that the subnetworks at
every node in the concurrent system show identical be-
havior in terms of sharing local resources during the execu-
tion of an SPMD program. Fig. 1 highlights the perform-
ance data collection and forwarding activities of a Paradyn
daemon on a node. These IS activities are central to
Paradyn’s support for on-line analysis of performance bot-
tlenecks in long-running application programs. However,
they may adversely affect application program perform-
ance, since they compete with application processes for
shared system resources. The objectives of our modeling
include: comparing alternatives for IS management policies
and configurations; evaluating IS overheads due to resource
sharing; identifying any IS-induced performance bottle-
necks; and determining desirable operating conditions for
the IS.

2.1.1 Scheduling Policies for Data Forwarding
Two possible options for a Paradyn daemon to schedule
data collection and data forwarding at a node are collect-
and-forward (CF) and batch-and-forward (BF). As illus-
trated in Fig. 2, under the CF scheduling policy, the
Paradyn daemon collects a sample from an instrumented
application process and immediately forwards it to the
main process. Under the BF policy, the Pd collects a sample
from the application process and stores it in a buffer until a
batch of an appropriate number of samples is accumulated
and then forwarded to the main Paradyn process.

2.1.2 IS Configurations for Data Forwarding
In the case of using the Paradyn IS on a Massively Parallel
Processing (MPP) system, we consider two options for for-
warding the instrumentation data from the Paradyn dae-
mon to the main Paradyn process: direct forwarding and
binary tree forwarding. Under the configuration for direct
forwarding, a Paradyn daemon directly forwards one or
more samples to the main Paradyn process. With the binary
tree forwarding scheme, the system nodes are logically ar-
ranged as a binary tree; every Paradyn daemon running on
a nonleaf node receives, processes, and merges the samples
or batches from the Paradyn daemons running on its two
children nodes. Fig. 3 illustrates the two configurations.

2.1.3 Metrics
Two performance metrics are of interest for this study: av-
erage direct overhead due to IS modules and monitoring
latency of data forwarding. Average direct overhead repre-
sents the occupancy time of a shared system resource by the
IS modules, which is averaged over all the system nodes. A
lower value of the direct overhead is desirable. Direct over-
head quantifies the contention between application and IS
processes for the shared resources on a particular node of
the system. Monitoring latency has been defined by
Schwan et al. as the amount of time between the generation
of instrumentation data and its receipt at a logically central
collection facility (in our case, the main Paradyn process)
[9]. Monitoring latency impacts the main Paradyn process,
since a steady flow of data samples from individual system
nodes is needed to allow the bottleneck searching algorithm
to work properly. In order to quantify the IS intrusion to the

WAHEED ET AL.: MODELING AND EVALUATING DESIGN ALTERNATIVES FOR AN ON-LINE INSTRUMENTATION SYSTEM: A CASE STUDY 453

(a)

(b)

Fig. 2. Two policies for scheduling data collection and forwarding: (a)
collect-and-forward (CF) policy, and (b) batch-and-forward (BF) policy.

(a)

(b)

Fig. 3. Two configuration for data forwarding for an MPP implementation
of the Paradyn IS: (a) direct forwarding, and (b) binary tree forwarding.

application, we calculate the application CPU utilization
per node, with and without instrumentation. Simulation-
based experiments presented in Section 3 calculate these
metrics to help answer a number of “what-if” questions.

2.2 Resource Occupancy Model
This section introduces the Resource OCCupancy (ROCC)
model and its application to isolating the overhead due to
nondeterministic sharing of resources between the Paradyn
IS and application processes [29]. The ROCC model, founded

on well-known computer system modeling techniques, con-
sists of three components: system resources, requests, and
management policies. Resources are shared among (instru-
mented) application processes, other user and system proc-
esses, and IS processes; for example, CPU, network, and I/O
devices. Requests are demands from application, other user,
and IS processes to occupy system resources during the exe-
cution of an instrumented application program. A request to
occupy a resource specifies the amount of time needed for a
single (coarse-grain) computation, communication, or I/O
step of a process. Management policies involve scheduling of
system resources to fulfill the occupancy requirements of the
processes. We identify a series of coarse-grained states to
characterize each process, their dependences on the states of
other processes, and occupancy requirements corresponding
to each state. Fig. 4 depicts the ROCC model with local and
global levels of detail. It includes two types of resources of
interest for the Paradyn IS: CPU and a network. Each CPU is
shared by three types of processes: application, IS, and other
user processes.

Due to the interactions among different types of processes
at the same node and IS processes at multiple nodes, it is
impractical to solve the ROCC model analytically. Therefore,
simulation is used. The execution of the ROCC model for the
Paradyn IS relies on a workload characterization of the target
system, which in turn, relies on measurement-based infor-
mation from the specific system [5], [14].

2.3 Workload Characterization
The workload characterization for this study has two ob-
jectives:

1)� to determine representative behavior of each process
of interest (i.e., application, IS, and other user/system
processes) at a system node (see Section 2.3.1); and

2)� to fit appropriate theoretical probability distributions
to the lengths of resource occupancy requests corre-
sponding to the states of each of these processes (see
Section 2.3.2).

2.3.1 Process Model
After a Unix process is admitted, it can be in one of the fol-
lowing states: Ready, Running, Communication, or Blocked
(for I/O). The process can be preempted by the operating
system to ensure fair scheduling of multiple processes sharing

Fig. 1. A model for the Paradyn instrumentation system. The distributed system consists of P nodes and each node may have up to n instru-
mented application processes.

454 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 6, JUNE 1998

the CPU. After specified intervals of time (in case of sam-
pling) or after occurrence of an event of interest (in case of
tracing), such as spawning a new process, instrumentation
data are collected from the process and forwarded over the
network to the main Paradyn process via a Paradyn daemon.

In order to reduce the number of states in the process
behavior model and hence the level of complexity, we
group several states into a representative state. The simpli-
fied model, shown in Fig. 5, considers only two states of
process activity: Computation and Communication. This
simplification facilitates obtaining measurements without
any special operating system instrumentation. This charac-
terization also considers the interactions among states
across different processes. For instance, an instrumented
application process interacts with the local Paradyn dae-
mon process either by forwarding a sample to it or by
blocking (via the operating system) if the pipe is full. The
Computation and Communication states require the use of
the CPU and network resources, respectively. The Computa-
tion state is associated with the Running state of the Unix
process model. Similarly, the Communication state is asso-
ciated with data collection, network file service (NFS), and

communication activities with other system nodes. Meas-
urements regarding these two states of the simplified
model are conveniently obtained by tracing the application
programs. The model provides sufficient information to
characterize the workload when applied in conjunction
with the resource occupancy model.

2.3.2 Distribution of Resource Occupancy Requests
In order to drive simulation-based experiments, computa-
tional workload is often represented in one of three forms:

1)�actual source code;
2)�detailed traces of system-level activity for trace-

driven simulations; and
3)�probability density functions (pdfs) with specific pa-

rameters. These methodologies are appropriate to ad-
dress different requirements of workload accuracy,
level of detail, and granularity.

Actual application programs are often used for realistic
simulation of computer architectures at early design stages
[18], called direct-execution simulation. This workload char-
acterization requires the consideration of low-level architec-

(a)

(b)

Fig. 4. The resource occupancy model for the Paradyn IS with: (a) local (ROCC model for a paraticular system node, and (b) global (ROCC model
for the entire system) levels of detail.

Fig. 5. A process model based on alternating computation and communication states of two types of interacting workloads.

WAHEED ET AL.: MODELING AND EVALUATING DESIGN ALTERNATIVES FOR AN ON-LINE INSTRUMENTATION SYSTEM: A CASE STUDY 455

ture and operating system details. Since an IS measures an
entire application, direct-execution simulation yields un-
necessary fidelity and overhead. Therefore, an IS modeling
and evaluation effort may become prohibitively complex
and time-consuming using direct-execution simulation.
Fine-grained information represented by traces of low-level
system activities is typically used for analyzing memory
access behavior and memory management policies [7]. A
trace represents an execution of a specific application on a
specific system and cannot be generalized for a class of ap-
plications on a variety of platforms. Using a stochastic
model offers greater flexibility by depicting the general be-
havior of a class of applications in a way that is representa-
tive of a range of applications on different platforms [19].
Using this methodology, different applications and plat-
forms are represented by varying key parameters of the
system resources and distributions of workloads that utilize
those resources. We selected this methodology for IS
evaluation due to its generality and extensibility to address
different types of workloads and platforms [31].

Trace data generated by the IBM SP-2’s AIX operating
system tracing facility are the basis for the workload charac-
terization. We used the trace data obtained by executing
PVM implementation of the NAS benchmarks BT, LU, FT,
CG, and MG on the SP-2 system [27]. Only BT represents a
full scientific application while others are kernel benchmarks.
Therefore, we focus on the detailed measurements obtained
by executing BT before considering other benchmarks. Table
1 presents a summary of the statistics for CPU and network
occupancy by various processes for BT (pvmbt).

We apply standard distribution fitting techniques to de-
termine theoretical probability density functions that match
the lengths of resource occupancy requests corresponding
to the states of the processes during the execution of BT
[19]. Fig. 6 shows the histograms and probability density
functions for the lengths of CPU and network occupancy
requests (in (a) and (b), respectively) by the application
(NAS benchmark) process. We randomly selected fifty
samples of CPU and network occupancy requests using an
algorithm provided in [16]. Selecting a relatively small and
equally representative sample size is desirable to determine
meaningful goodness of fit statistics [19]. We use the Kol-
mogorov-Smirnov (K-S) goodness of fit test statistic to
quantitatively measure the differences between a theoretical
pdf and an observed pdf. The K-S test is based on a statistic,
called the K-S statistic, which is equal to the absolute value
of the largest difference between an observed and a theo-
retical pdf. Thus, a smaller value of the K-S statistic for a
particular distribution indicates a good fit. See [19] for fur-
ther details about K-S goodness of fit test.

For CPU requests (Fig. 6a), despite the differences, the
lognormal pdf is the best match. This is confirmed by the
minimum value of the K-S statistic for the lognormal pdf
compared to the exponential and Weibull pdfs. For network
requests by application processes (Fig. 6b), an exponential
distribution yields the best fit.

In order to verify the above characterization of applica-
tion’s CPU requests, we instrumented and analyzed other
NAS benchmarks. The histograms and theoretical pdfs of
the lengths of CPU requests from PVM implementations of
NAS benchmarks LU, FT, CG, and MG are presented in Fig.
7. All of these benchmarks are characterized by:

1)�a very large number of requests that require relatively
short lengths of CPU time; and

2)�a significant number (which is particularly noticeable
for FT and MG benchmarks in Fig. 7b and 7d, respec-
tively) of requests that require the full CPU quantum.

This characterization supports our choice of using lognor-
mal distribution to represent the lengths of CPU occupancy
requests generated by compute-intensive scientific work-
loads. Specific features of applications, such as compute-
intensive vs. communication-intensive, can be controlled by
selecting appropriate parameter values for the pdfs.

2.4 Model Parameterization and Validation
The workload characterization presented in the preceding
section yields suitable ranges of parameters for the ROCC
model for the Paradyn IS, as listed in Table 5 in Appendix
A. In order to validate the ROCC simulation model, we
parameterized it using measurements obtained by execut-
ing pvmbt on an IBM SP-2 system. Table 2 compares the
CPU time for the NAS benchmark and Paradyn daemon
during the execution of the program using measurement
and simulation. It is clear that the simulation model-based
results follow the measurement-based results for pvmbt.
Therefore, using the selected range of parameters, the
model can be simulated to answer “what if” questions for
different workload features and platform combinations,
which we consider in Section 3.

TABLE 2
COMPARISON OF MEASUREMENTS OF NAS BENCHMARK PVMBT
ON AN SP-2 WITH THE SIMULATION RESULTS OF THE SAME CASE

Basis of
Experiment

Application CPU Time
(sec)

Pd CPU Time
(sec)

Measurement 85.71 0.74

Simulation 87.96 0.59

TABLE 1
SUMMARY OF STATISTICS OBTAINED FROM MEASUREMENTS OF NAS BENCHMARK PVMBT ON AN SP-2

CPU Occupancy
(msec)

Network Occupancy
(msec)

Process Type Mean St. Dev. min max Mean St. Dev. min max

Application process 2,213 3,034 9 10,718 223 95 48 5,241

Paradyn daemon 267 197 11 6,923 71 109 31 816

PVM daemon 294 206 9 1,662 58 59 36 5,169

Other processes 367 819 8 9,746 92 80 8 198

Main paradyn process 3,208 3,287 11 10,661 214 451 46 4,776

456 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 6, JUNE 1998

3 SIMULATION-BASED EXPERIMENTS

We have completed both analytic and simulation studies of the
ROCC model. A summary of the analytic study is given in
Appendix B. In this section, we compare possible configura-

tions and management policies for the Paradyn IS using
simulation-based evaluation of the ROCC model. Simulation-
based evaluation is more accurate than analytical approaches
because we account for the interdependences between the

 (a) (b)

Fig. 6. Histograms and theoretical pdfs of the lengths of: (a) CPU and (b) network occupancy requests from the application process. K-S statistics
represent the differences from theoretical distributions.

Fig. 7. Histograms and corresponding theoretical pdfs for lengths of: CPU occupancy requests from NAS benchmarks. (a) LU; (b) FT; (c) CG;
and (d) MG.

WAHEED ET AL.: MODELING AND EVALUATING DESIGN ALTERNATIVES FOR AN ON-LINE INSTRUMENTATION SYSTEM: A CASE STUDY 457

application and IS workloads and details of system function-
ality. We keep this evaluation process focused by posing spe-
cific “what-if”questions that are of interest to the developers
and users of the IS. This focus is further refined by using the
technique of principal component analysis (PCA [15]) to de-
termine the system parameters and their combinations that
can significantly affect the selected IS performance metrics.

3.1 Experimental Setup
Simulation-based experiments are based on three types of
system architectures: NOW, SMP, and MPP. We make minor
modifications in the ROCC model to accommodate the spe-
cific characteristics of each of these configurations. In the case
of a NOW system, each node has one CPU and the nodes are
interconnected via a switch-based or a shared network. For
an SMP, multiple CPUs are connected through a bus. An
MPP system is similar to the NOW system but has a multi-
stage switched network and typically consists of a larger
number of nodes. We parameterized the ROCC model for an
IBM SP-2 system, which is closer to the NOW configuration.
Nevertheless we use the modified ROCC models to extend
the scope of the Paradyn IS evaluation to the SMP and MPP
systems. We emphasize that the simulation experiments do
not represent any specific application that was used for ge-
neric characterization of the workload. Suitable parameters
are selected for workload components and system resources
to investigate each “what-if” question of interest.

In answering various “what-if” questions regarding the
Paradyn IS management and configuration, our simulation
experiments are designed to analyze the effects of six pa-
rameters (factors):

1)�number of concurrent system nodes: the number of
NOW, SMP, or MPP system nodes that execute the in-
strumented application as well as the IS processes;

2)� sampling period: length of wall-clock time between two
successive collections of performance data samples
from an instrumented application process;

3)�number of local application processes: number of appli-
cation processes running on one node of the paral-
lel/distributed system;

4)� forwarding policy: the policy implemented by the
Paradyn daemon at each node to forward instrumen-
tation data samples to the main Paradyn process;

5)� application type: compute- or communication-intensive
(determined by the network occupancy requirement
and frequency of synchronization barrier operations);
and

6)�network configuration: direct or binary tree (logical)
configuration of the nodes to forward the instrumen-
tation data from a Paradyn daemon to the main
Paradyn process.

For each system architecture type, we use a subset of these
factors for simulation-based experiments. We use a 2k r
factorial design technique for the simulation-based experi-
ments, where k is the number of factors of interest for a
given case, r is the number of repetitions of each experi-
ment, and each factor can assume one of two possible val-
ues [15]. For these experiments, we select k = 4 factors and
r = 50 repetitions, and the mean values of the performance

metrics of interest are derived within 90 percent confidence
intervals from a sample of fifty values. This approach helps
reduce the variance (or “noise”) in the results; thus any dif-
ferences among the performance metrics under varying IS
configurations and management policies are clarified.

3.2 Principal Component Analysis
For each of the three system architecture types, we supple-
ment the 2k r factorial experiment design technique with
principal component analysis (PCA) to assess the sensitiv-
ity of the performance metrics to selected model parameters
(factors) [15]. With multiple factors, we cannot assume that
each acts independently on the system under test (i.e., the
IS). PCA helps determine the relative importance of indi-
vidual factors, as well as their interdependences. Instead of
evaluating the metrics for all possible combinations of the
factors for each “what-if” question, we use a subset of com-
binations that are deemed important by the PCA.

We apply 2k r factorial experiment design by selecting
two values at the opposite ends of the range of possible
values for each factor. For the NOW architecture, we as-
sume that the system nodes are connected through a shared
network (Ethernet). Each node runs an application process
and a Paradyn daemon. One of the nodes also executes the
main Paradyn process. Paradyn daemons on individual
nodes directly forward the instrumentation data to the
main process. We select a batch size of 32 samples for the
BF policy (based on analysis beyond the scope of this pa-
per; see [30]). For compute-intensive applications, the mean
network occupancy requirement is arbitrarily set at 200
msec; and for communication-intensive applications, 2,000
msec. Four factors of interest in this case are: number of
nodes, sampling period, forwarding policy, and application
type. Applying the 2k r factorial design technique, we con-
duct 16 simulation experiments, obtaining the results
shown in Table 3. Four factors produce 15 combinations
that affect a metric: four for individual factors; six for the
combinations of two factors; four for the combinations of
three factors; and one for the combination of four factors.

The bar graphs in Fig. 8 present the results of the princi-
pal component analysis. Clearly, the sampling period (la-
beled as B) is the single most important factor that affects
the direct overhead of the Paradyn daemon, followed by
the data forwarding policy (C), and the combination of the
two (BC). The data forwarding policy (C) and number of
nodes (A) are the most important factors affecting moni-
toring latency. Thus, a further investigation of the IS be-
havior with respect to the sampling period (B), the number
of nodes (A), and the data forwarding policy (C) is justified.

PCA for the SMP and MPP architectures is conducted in a
similar manner but with slightly different sets of factors. The
final results of this analysis are depicted in Fig. 9. Fig. 9a
shows the results of the PCA for an SMP architecture. The
number of nodes (labeled as A) is the most important factor
that affects the direct overhead of the Paradyn IS (i.e., dae-
mon and the main process), followed by the forwarding pol-
icy (C) and the sampling period (B). The data forwarding
policy (C), the number of nodes (A), and the combinations of
the two (AC) are the most important factors affecting
monitoring latency. Fig. 9b shows the results of PCA for an

458 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 6, JUNE 1998

TABLE 3
RESULTS OF SIMULATION EXPERIMENTS FOR THE NOW ARCHITECTURE

Parameters
Compute-Intensive

Application
Communication-Intensive

Application

No. of
Nodes

Sampling
Period
(msec)

Forwarding
Policy

Pd CPU Time
per Node

(sec)

Monitoring Latency
per Received

Sample
(msec)

Pd CPU Time
per Node

(sec)

Monitoring Latency
per Received

Sample
(msec)

 2 5 CF 5.33 3.52 5.34 2.83

 2 50 CF 0.54 0.07 0.54 0.07

32 5 CF 5.34 0.07 5.34 2.92

32 50 CF 0.53 5.42 0.53 4.63

 2 5 BF 2.48 0.08 2.48 0.08

 2 50 BF 0.21 0.07 0.21 0.07

32 5 BF 1.78 0.68 1.78 0.70

32 50 BF 0.22 0.94 0.20 0.88

Fig. 8. Results of principal component analysis of four factors and their combinations for the NOW system.

(a)

(b)

Fig. 9. Results of PCA for (a) SMP (with direct forwarding configurations), and (b) MPP (with compute intensive applications) architectures for four
factors and their combinations.

WAHEED ET AL.: MODELING AND EVALUATING DESIGN ALTERNATIVES FOR AN ON-LINE INSTRUMENTATION SYSTEM: A CASE STUDY 459

MPP architecture. The sampling period (B), the forwarding
policy (C), and number of system nodes (A) are equally
important factors affecting the direct overhead of the
Paradyn IS, followed by the forwarding policy (C). The
forwarding policy (C) and the number of nodes (A) are the
most important factors affecting monitoring latency.

In summary, PCA directs us to focus on the following
features, in order of importance: B, C, A for NOW; A, C for
SMP; and C, A, B for MPP architecture. PCA indicates that
monitoring latency is most affected by forwarding policy
and number of nodes; and IS overhead by sampling period
and forwarding policy as well as number of nodes in SMP
and MPP cases.

3.3 Investigation of “what-if” Questions
In this section, we present simulation-based results that
answer four specific “what-if” questions using the ROCC
model. These questions are explored in order on the NOW,
SMP, and MPP architectures. These questions are related to
the forwarding policy, use of multiple Paradyn daemons,
and logical network configurations for data forwarding.

3.3.1 NOW Architecture: What are the Effects of
Forwarding Policy with Varying the Number of
Nodes and Sampling Periods?

The PCA in Section 3.2 shows that the choice of data for-
warding policy significantly impacts the IS overhead. In
this section, we compare the CF and BF policies by varying
the number of system nodes and sampling periods. The
simulation results, depicted in Fig. 10, lead to following
observations:

•� Although the direct overhead of Paradyn daemon
CPU utilization does not vary with the number of
system nodes due to its localized nature, Fig. 10a
shows that the BF policy incurs lower overhead. The
CPU overhead by the main Paradyn process under
the CF policy increases with the number of nodes due
to more data samples forwarded to it. However, this
overhead is significantly lower under the BF policy
since the same samples are aggregated into fewer
packets. Monitoring latency is also lower under the
BF policy because on the aggregate more data can be
transferred in a shorter time.

•� Fig. 10b shows that the monitoring latency is not sig-
nificantly affected by variations in the sampling pe-
riod. The direct IS overhead and intrusion to the ap-
plication decrease with increasing sampling period.
As sampling period increases, the application CPU
utilization approaches the uninstrumented level.

•� The application CPU utilization significantly de-
creases at sampling periods less than 4 msec (see the
lower left plot of (b)). Therefore, neither CF nor BF
policy can support more than 250 samples per second.

•� The behavior depicted by the simulation results in
Fig. 10 is generally consistent with the analytic results
(see Fig. 17 in Appendix B). Differences are due to the
approximate nature of analytic calculations that do
not accurately consider interdependences and re-
source contentions among the workloads. These dif-
ferences are elaborated in Section 3.3.2. Simulation of

the ROCC model accurately accounts for the resource
contentions according to the scheduling policies used
by the operating system.

These results indicate that the BF data forwarding policy
outperforms the CF policy with respect to both direct over-
head and monitoring latency. This is also true for the SMP
and MPP architecture (see [30]). Therefore, we consider
only the BF policy in the following sections.

3.3.2 SMP Architecture: What is the Effect of Multiple
Paradyn Daemons on the Monitoring Latency?

Simulation results in Fig. 10 show that the monitoring la-
tency increases with the number of nodes. In order to main-
tain a lower monitoring latency, we investigate the potential
effects of using multiple Paradyn daemons (up to four) on an
SMP. An important factor with respect to the use of multiple
daemons is the sampling period. Fig. 11 evaluates the use of
multiple Paradyn daemons in terms of direct Paradyn dae-
mon and main process (IS) overhead, monitoring latency,
and intrusion to the application processes under the BF pol-
icy. We conclude the following from Fig. 11:

1)�The number of Paradyn daemons does not have any
intrusive impact on the application except at sam-
pling periods of less than 10 msec. At shorter sam-
pling periods, the application CPU time significantly
decreases, particularly for one Paradyn daemon. This
is not a consequence of high CPU utilization by
Paradyn daemons at lower sampling periods (see the
left plot). Rather, at a lower sampling period, the pipe
that holds data samples for a Paradyn daemon fills to
its capacity more often. When the pipe is full, the ap-
plication process that generates a sample is blocked
until the daemon is able to forward outstanding data
samples. The effect of this blocking is reduced if the
number of Paradyn daemons is increased for smaller
sampling periods.

2)�The monitoring latency increases with the number of
Paradyn daemons. This small increase is a conse-
quence of additional CPU contention due to multiple
Paradyn daemon processes.

3)� It is interesting to note that the behavior of the moni-
toring latency shown in Fig. 11 is opposite to that pre-
dicted by analytical calculations in Fig. 18 of Appendix
B. Analytical calculation of monitoring latency for the
SMP architecture (presented in Table 6, in Appendix B)
is a function of only the arrival rate (l). Arrival rate is
inversely proportional to the sampling period and di-
rectly proportional to the number of Paradyn daemons.
Since the ratio of the number of Paradyn daemons to
the sampling period decreases with increases in sam-
pling period, the arrival rate and hence analytical
monitoring latency also decrease. However, the ana-
lytical model does not account for the fact that a longer
sampling period means longer periods of time between
successive samples being forwarded from a node,
which translates to longer latency in the end. On the
other hand, simulation of the ROCC model accurately
accounts for the time between successive samples in
calculating monitoring latency. It also accounts for CPU
and bus contention of multiple daemons.

460 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 6, JUNE 1998

Fig. 10. Effects of varying number of nodes and sampling periods on the metrics with respect to the CF and BF data forwarding policies
(contention-free network). (a) sampling period = 40 msec; (b) number of nodes = 8.

WAHEED ET AL.: MODELING AND EVALUATING DESIGN ALTERNATIVES FOR AN ON-LINE INSTRUMENTATION SYSTEM: A CASE STUDY 461

Fig. 11. Effects of multiple Paradyn daemons on two metrics (number of nodes = 16, application processes = 32, BF policy, duration of simulation
= 100 sec, logarithmic horizontal scale).

Fig. 12. Effects of varying sampling periods with respect to direct or tree forwarding on the IS performance metrics (number of nodes = 256, BF
policy, logarithmic horizontal scale).

These results show that the use of multiple Paradyn dae-
mons per node may not result in improved monitoring la-
tency on an SMP. In fact, it may increase the latency due to
additional resource contention.

3.3.3 MPP Architecture: What is the Effect of Direct vs.
Tree Forwarding on Scalability?

A typical MPP system may consist of hundreds of nodes.
Our objective is to study the scalability of data collection

when hundreds of nodes forward instrumentation data
samples through their local Paradyn daemons. In this case,
a single data collection and reduction node that hosts the
main Paradyn process is likely to become a bottleneck. We
proposed the use of a binary tree configuration in Section
2.1 (Fig. 3) for intermediate reduction and forwarding of
instrumentation data samples. In this section, we compare
the scalability of the Paradyn IS under direct and tree con-
figurations.

462 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 6, JUNE 1998

Principal component analysis in Section 3.2 indicates that
the effect of varying the sampling period on the direct IS
overhead should be significant. Fig. 12 represents the effects
of varying sampling periods under the direct and binary tree
data forwarding configurations. The results are again shown
under the BF policy only. Analyzing direct forwarding vs.
tree forwarding, we make the following comparisons:

•� Per node Paradyn daemon CPU overhead is higher
under the binary tree configuration at shorter sampling
periods due to the increased volume of samples being
generated. CPU utilization of the main Paradyn proc-
ess reaches nearly 100 percent because it is swamped
by sample arrivals from 256 nodes. With direct for-
warding, a swamped main Paradyn process blocks all
the Paradyn daemons that try to forward further sam-
ples to it. Blocking results in lower Paradyn daemon
CPU utilization even though samples are pending.
Since most of the data reduction and merging are han-
dled by intermediate Paradyn daemons, blocking is
less likely under tree forwarding because the main
Paradyn process has less work to do.

•� The same phenomena that lead to the performance of
the IS processes impacts the application processes as
well. When a Paradyn daemon blocks, waiting to
forward additional samples, it forces the application
process generating samples to block. Thus the appli-
cation CPU utilization at a node is reduced to 25 per-
cent instead of an uninstrumented 78 percent. Tree
forwarding greatly reduces this intrusion to the appli-
cation processes.

•� Although the CPU utilization values for the main
Paradyn process are almost the same under the direct
and tree forwarding cases, the number of samples
collected under the tree forwarding is larger.

•� Monitoring latency is higher for the tree configuration
because a set of samples originating from the leaf
nodes undergoes a logarithmic number of forwarding
operations instead of one for direct forwarding. Ad-
ditionally, the monitoring latency increases with sam-
pling period for the tree configuration because inter-
mediate Paradyn daemons do not merge and forward
the “enroute” samples asynchronously; these samples
are forwarded after the expiration of the current sam-
pling period. We do not process the enroute samples
asynchronously because doing so significantly re-
duces the CPU time available for the local application
process.

Simulation results presented in this section suggest that the
use of binary tree forwarding is beneficial to improve the
scalability of the Paradyn IS as the number of system nodes
increases to several hundreds. For 256 nodes and sampling
periods less than 8 msec (i.e., more than 25 samples per
second), the Paradyn IS should switch from direct to tree
forwarding.

3.3.4 MPP Architecture: What is the Effect of Varying the
Frequency of Barrier Operations in a Program on
IS Overhead and Intrusion?

Barrier synchronization is frequently used to explicitly im-
plement a lock-step execution of parts of a program on an

MPP system. Since barrier synchronization causes global
coordination among application processes, it is of interest to
consider the impact of on-line data collection on programs
with different rates of barrier synchronization. In particular,
we want to verify that the additional Paradyn daemon
overhead for tree forwarding does not unduly perturb ap-
plication execution time. Fig. 13 presents the results of our
investigation of the effect of varying the frequency of bar-
rier synchronization operations on the Paradyn IS.

•� CPU overhead of both Paradyn daemons and the
Paradyn main process decreases at higher barrier fre-
quencies (and lower barrier periods as shown in the
figure). While an application process waits to exit
from the barrier, the Paradyn daemon does not com-
pete for CPU time with the application process. Note
that the CPU overhead for Paradyn daemon is only a
fraction of a percent for the entire range of barrier pe-
riod.

•� Tree forwarding does not result in a lower application
CPU utilization compared to the direct forwarding at
any barrier period value. Thus, tree forwarding does
not cause any additional intrusion to the application.

•� The penalty of having instrumentation in the applica-
tion varies from 10 percent- 35 percent for a barrier pe-
riod range of 1 to 100 msec. It appears that any delay
in dispatching an instrumented application process
on a node significantly reduces the amount of useful
work done by that process, especially when coupled
with the synchronization operations. This behavior
identifies a potential bottleneck in the Paradyn IS for
an MPP system.

•� The monitoring latency is unaffected due to barrier
operations but exhibits differences due to the direct or
tree configurations.

These results indicate that barrier synchronization opera-
tions result in greater intrusion, independent of the choice
of data forwarding configuration. As a result, we are able to
use tree forwarding without introducing additional appli-
cation perturbation.

3.4 Summary of Results and Initial Feedback to the
Developers

The investigation of the “what-if” questions presented in
the preceding sections evaluated the Paradyn IS with sev-
eral low-level details. However, such low-level details are
typically less beneficial for tool developers or users. In or-
der to provide them with useful feedback, we summarize
the simulation-based evaluation results in this section.

Simulation-based evaluation results can be divided into
two categories: results directly relevant to the actual im-
plementation of the Paradyn IS on an IBM SP-2 (NOW ar-
chitecture) platform; and results projecting the performance
of the Paradyn IS to the SMP and MPP architectures under
different operating conditions. The first category of results
is useful for improving the IS; and the second category, for
porting the IS to other platforms without compromising
scalability or performance. We presented several conclu-
sions from the individual “what-if” simulation-based
analyses in the preceding section. The important results are
summarized as follows:

WAHEED ET AL.: MODELING AND EVALUATING DESIGN ALTERNATIVES FOR AN ON-LINE INSTRUMENTATION SYSTEM: A CASE STUDY 463

1)� the BF policy should be implemented as a default
policy to schedule data forwarding operations be-
cause it outperforms the CF policy;

2)� in the case of an SMP, use of multiple daemons per
node represents a trade-off between more samples re-
ceived by the main process and additional contention
for system resources;

3)�binary tree forwarding should be used on an MPP
system due to its superior scalability characteristics
compared to direct forwarding; and

4)� specific application characteristics, such as frequency
of barrier operations on an MPP system, may affect IS
performance, which may in turn impact the instru-
mented application

This feedback was well-received by the Paradyn IS devel-
opers and the BF policy was implemented in addition to the
CF policy for the IBM SP-2 platform. Thus, we can experi-
mentally validate these simulation results via testing of the
actual IS.

4 EXPERIMENTAL VALIDATION

We used measurement-based experiments of the IS to vali-
date our simulations. Several factors limit the number of
experiments we ran. Due to the volume of data generated
when measuring applications, we restrict our experimental
runs to a modest number of nodes and execution time. Due

to the time required to implement different policies, we
restrict our experiments to the BF and CF policies.

4.1 Experimental Setup
Fig. 14 depicts the experimental setup for measuring the
Paradyn IS performance on an IBM SP-2 system. We ini-
tially use the NAS benchmark pvmbt as the application
process; and we use the AIX tracing facility on one of the
SP-2 nodes executing the application process. The main
Paradyn process executes on a separate node, which is also
traced. Therefore, one experiment with a particular sam-
pling period and data forwarding policy results in two AIX
trace files. These trace files are then processed to determine
execution statistics relevant to the test.

We conduct a set of four experiments based on two fac-
tors, sampling period and forwarding policy, each having
two possible values. As in the simulation, the forwarding
policy options are CF and BF. The sampling period is as-
signed a relatively low value (10 msec) or a higher value (30
msec). Experiments using Paradyn on SMP and MPP ar-
chitectures are left to future work with Paradyn. Consistent
with the simulation, network occupancy is not considered
(which means that communication events are not traced);
this also reduces the disk space needed for AIX traces.

4.2 Evaluation
Fig. 15 summarizes the Paradyn IS testing results related to
the CPU overhead of the Paradyn daemon (a) and the main
Paradyn process (b). The CPU utilization of the Paradyn

Fig. 13. Effects of varying frequency of barrier operations. (a) (number of nodes = 256; (b) sampling period = 40 msec; (c) BF policy;
(e) logarithmic scales for barrier periods).

464 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 6, JUNE 1998

daemon under the BF policy is about one-third of its value
under the CF policy. This indicates a more than 60 percent
reduction in overhead when Paradyn daemons send
batches of samples rather than making system calls to send
each sample individually. Similar analysis of the trace data
obtained from the node running the main Paradyn process
indicates that the overhead is reduced by almost 80 percent
under the BF policy.

We conduct another set of measurement experiments to
isolate the effect of a particular application on the Paradyn IS
overheads. To do this, we experiment with two forwarding
policies, CF and BF, and two NAS benchmark programs,
pvmbt and pvmis. Benchmark pvmbt solves three sets of
uncoupled systems of equations, first in the x, then in the y,
and finally in the z direction. The systems are block tridiago-
nal with 5 × 5 blocks. Benchmark pvmis is an integer sort
kernel. All experiments use a sampling period of 10 msec.
The results are summarized in Fig. 16. The key observation is
that the reduction in IS overheads under the BF policy is not
significantly affected by the choice of application program.

5 DISCUSSION

In this paper, we presented a case study of applying a
structured modeling, evaluation, and testing approach to
the Paradyn instrumentation system. We investigated vari-

ous performance issues using a model of the Paradyn IS
and provided feedback to the developers. Specifically, a
simulation-based study indicated the potential advantages
of: a proposed batch-and-forward policy over the collect-
and-forward policy; and a tree forwarding configuration
over the direct forwarding for MPP systems. The effects of
implementing the BF policy were tested by using meas-
urement-based experiments. Testing results indicate that
use of the BF policy reduces the CPU overhead of the
Paradyn daemon and main Paradyn process by about 60
percent. More significantly, this study has demonstrated the
successful role of modeling and simulation to design effi-
cient instrumentation systems through appropriate feed-
back at an early development stage.

The purpose of the initial feedback provided by the mod-
eling and simulation-based study is to answer generic, per-
formance-related “what if” questions. It is both advisable
and practical to relax the accuracy requirements at this stage.
Achieving a high degree of accuracy is costly due to the
complexity of an instrumentation system. One lesson that we
learned by modeling the Paradyn IS is that an approximate
simulation model, following the gross behavior of the actual
instrumentation system, is sufficient to provide useful feed-
back. At an early stage of modeling the Paradyn IS, we arbi-
trarily parameterized the model based on information pro-

Fig. 14. Measurement-based experiment setup for the Paradyn IS on an SP-2.

(a) (b)

Fig. 15. Comparison of CPU overhead measurements under the CF and BF policies using two sampling period values for: (a) Paradyn daemon
and (b) main Paradyn process.

WAHEED ET AL.: MODELING AND EVALUATING DESIGN ALTERNATIVES FOR AN ON-LINE INSTRUMENTATION SYSTEM: A CASE STUDY 465

vided by the developers [29]. The case study presented in
this paper uses a more detailed workload characterization
based on measurement data. Although we enhanced the
scope of the “what-if” questions in this study, e.g., to include
the SMP and MPP architectures and factors such as for-
warding policy and length of instrumentation period, this
more detailed study does not contradict the earlier study that
used an approximate model [29]. Unfortunately, approximate
modeling results are open to speculation without extensive
workload study based on actual data.

6 RELATED WORK

We conclude by considering related work. This paper fo-
cused on the Paradyn tool. However, a number of tools ex-
ist that provide a range of functionality and rely on instru-
mentation system services. Table 4 is a representative listing
of tools, their functionality, and IS services.

While we have emphasized the use of IS modeling for
tool developers, users can also take advantage of it. With an

appropriate model of the IS, users can specify tolerable
limits of IS overheads relative to the requirements of their
applications. These limits can be used to adapt IS behavior
in order to regulate overheads. Some initial work has al-
ready been done in this direction for Paradyn [13]. Previous
work related to IS modeling and overhead analysis has fo-
cused on analyzing the intrusion due to instrumenting par-
allel programs [20], [32].

Several other researchers have given special attention to
the monitoring overheads of their tools. Miller et al. present
measurements of overheads of the IPS-2 tool and compare
them with the overheads of a functionally similar tool, gprof
[22]. Gu et al. use synthetic workloads to exercise specific
features of the IS of the Falcon steering tool and measure
the IS performance [9].

This study of Paradyn’s IS follows previous work by
Waheed and Rover to view the IS as enabling technology, or
middleware [2], and to establish an approach for character-
izing, evaluating, and understanding IS operation, includ-
ing its overheads [28]. This approach emphasizes a separa-

 (a) (b)

Fig. 16. Paradyn IS testing results related to (a) Paradyn daemon process, and (b) main Paradyn process.

TABLE 4
IS SERVICES USED BY TOOLS TO SUPPORT A RANGE OF FUNCTIONS

Functionality
Representative

Tools Description of Key Services

Performance
evaluation

ParAide [26] ParAide is the integrated tool environment for the Intel Paragon. Commands are sent to
the distributed monitoring system, called Tools Application Monitor (TAM). TAM consists
of a network of TAM processes arranged as a broadcast spanning tree with one TAM
process (part of the IS) at each node.

Debugging VIZIR [10] This debugger consists of an integrated set of commercial sequential debuggers. Its IS
synchronizes and controls the activities of individual debuggers that run the concurrent
processes. The IS also collects data from these processes to run multiple visualizations.

Performance
modeling and
prediction

AIMS, Lost cy-
cles analysis
toolkit [4], [33]

These tools integrate monitoring and statistical modeling techniques. Measurements are
used to parameterize the model, which is subsequently used for predicting performance.
The IS performs the basic data collection tasks.

Correctness
checking

SPI [3] Scalable Parallel Instrumentation (SPI) is Honewell’s real-time IS for testing and correct-
ness checking on heterogeneous computing systems. SPI supports a user-defined, ap-
plication-specific instrumentation development environment, which is based on an event-
action model and event specification language.

Adaptive real-time
control

DIRECT/ JEWEL
[8], [17]

Runtime information collected by the off-the-shelf instrumentation system JEWEL is fed
to a dynamic scheduler. The scheduler uses this information to adaptively control the
real-time system to be responsive to the variation of important system variables.

Dynamic resource
scheduling

RMON [21] RMON monitors the resource usage for distributed multimedia systems running RT-
Mach. Information collected by the instrumentation system is used for adaptively man-
aging the system resources through real-time features of the operating system.

Visualizing
corporate data

AT&T visualiza-
tion systems [6]

Visualization tools use monitored data to locate long-distance calling frauds through
unusual calling patterns, to find communities of interest in local calling, to retain custom-
ers, and to compare databases consisting of textual information.

466 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 6, JUNE 1998

tion of the high-level tool requirement and usability issues
from the low-level design and test issues. We applied this
two-level approach for modeling and evaluating the
Paradyn IS.

APPENDIX A—PARAMETERIZATION

Model parameterization accomplishes two objectives: 1)
investigating different types of workloads, such as com-
pute-intensive and communication-intensive; and 2) evalu-
ating the impact of different types of platforms, such as
MPPs, SMPs, and NOWs. Using a carefully selected set of
parameters, an IS can be evaluated for specific workload
and platform combinations. Table 5 lists the range of pa-
rameters that are used in this study.

APPENDIX B—SUMMARY OF ANALYTICAL
CALCULATIONS

Operations analysis is applied to the ROCC model of the
Paradyn IS. The ROCC model may be considered an open
queuing network for the Paradyn daemon’s workload be-
cause its requests leave the system when a sample is received
by the main Paradyn process. Thus, the total number of
Paradyn daemon requests in the system can vary with time.
Alternatively, the ROCC model may be considered a closed
queueing network for the application workload. An applica-
tion process generates a request and waits for its completion
before initiating a new occupancy request for the same or a
different resource. Thus, the total number of application re-
quests at a given time is always constant. This scenario is
typical of a closed queueing network with a batch workload
[15]. Therefore, the overall ROCC model for the Paradyn IS is
a mixed queueing network with two workloads, assumed to

be independent for analytic calculations. We list the analyti-
cal results for Network of Workstations (NOW), Symmetric
MultiProcessors (SMP), and Massively Parallel Processing
(MPP) architectures in Table 6 in Appendix A.

B.1 The NOW Architecture
Fig. 17 plots the results of analytical calculations of the met-
rics of interest with respect to the number of system nodes
and sampling rate. The results indicate that the Paradyn
daemon CPU overhead does not change with respect to the
number of system nodes. However, under the BF forward-
ing policy, the overhead is significantly lower. This differ-
ence between the CF and BF cases is due to the dependence
of arrival rate l on the batch size, as given in Table 6. The
batch sizes are 1 and 32, respectively, for the CF and BF
policies. The larger batch size for the BF policy results in
lower overhead. Analytical results with respect to variable
number of nodes and sampling periods predict that the BF
policy is more desirable as it yields lower CPU overhead
and monitoring latency.

B.2 The SMP Architecture
Fig. 18 plots the results of analytical calculations under the
BF policy with respect to sampling periods and multiple
Paradyn daemons. Equations corresponding to the SMP case
in Table 6 indicate that IS (i.e., Pd and Paradyn) CPU utiliza-
tion and monitoring latency metrics depend on the number
of Paradyn daemon processes because the arrival rate 1 is
proportional to the number of Paradyn daemons. Therefore,
the analytical results predict that the use of multiple dae-
mons may result in a higher monitoring latency and CPU
overhead compared to the single daemon case, but the effects
appear to be negligible, especially at larger sampling periods.

TABLE 5
SUMMARY OF PARAMETERS USED IN SIMULATION OF THE ROCC MODEL

Parameter Type Parameter Range of Values

Configuration Number of application processes per node 1—32 (typical 1)

Number of Pd processes per node 1—4 (typical 1)

Number of CPUs per node 1

Number of nodes 1—256 (typical 8)

CPU scheduling quantum (msec) 10,000

Application process Length of CPU occupancy request Lognormal (2213, 3034)

Length of network occupancy request Exponential (223)

Paradyn daemon Length of CPU request Exponential (267)

Length of network request Exponential (71)

Interarrival time 5,000—50,000 (typical 40,000)

PVM daemon Length of CPU request Lognormal (294,206)

Length of network request Exponential (58)

Interarrival time Exponential (6485)

Other processes Length of CPU request Lognormal (367,819)

Length of network request Exponential (92)

Interarrival time of CPU request Exponential (31485)

Interarrival time of network requests Exponential (5598903)

All time parameters are in microseconds. The range of interarrival times for the Paradyn daemon corresponds to varying the rate of
sampling (and forwarding) performance data by the application process. Note that exponential (m) means an exponential random
variable with mean interarrival time of m msec, and lognormal(a, b) means a lognormal random variable with mean a (also in mi-
croseconds) and variance b. These parameters were calculated using maximum likelihood estimators given by Law and Kelton [19].

WAHEED ET AL.: MODELING AND EVALUATING DESIGN ALTERNATIVES FOR AN ON-LINE INSTRUMENTATION SYSTEM: A CASE STUDY 467

(a)

(b)

Fig. 17. Analytic calculations of the effects of varying number of nodes and sampling periods on metrics with respect to CF and BF data forward-
ing policies (logarithmic horizontal scale in (b)).

TABLE 6
SUMMARY OF ANALYTICAL RESULTS FOR THE ROCC MODEL OF PARADYN IS

Fig.18. Analytical calculations of the effects of multiple Paradyn daemons on two metrics (number of nodes = 16, number of application processes
= 32, BF policy). IS CPU utilization represents the combined CPU utilization due to Paradyn daemons and the main Paradyn process.

B.3 The MPP Architecture
Fig. 19 presents the analytical results under the BF policy
with respect to the number of nodes in the MPP system. The
graph in the middle indicates that tree forwarding has a clear
advantage over direct forwarding in terms of lower CPU
overhead for the main Paradyn process. Analytical results in
Table 6 in Appendix B show that under tree forwarding the
CPU overhead due to Paradyn remains unchanged as long as
the arrival rate at a node (i.e., 1) is constant. Conversely, this
overhead increases linearly with the number of nodes under
direct forwarding. The monitoring latency is higher for tree
forwarding due to additional arrivals at nonleaf nodes corre-
sponding to the “enroute” samples. The differences in
Paradyn daemon CPU overhead between the two forward-
ing policies are insignificant (hundredths of a percent).

ACKNOWLEDGMENTS

We thank Bart Miller of the University of Wisconsin, who
helped initiate this collaborative work using the Paradyn as
a case study for IS modeling, evaluation, and testing. We
also thank Tia Newhall for implementing the batch-and-
forward policy in Paradyn. Abdul Waheed and Diane T.
Rover were supported in part by DARPA contract DABT
63-95-C-0072 and by National Science Foundation grant
ASC-9624149. Jeffrey K. Hollingsworth was supported in
part by Department of Energy grant DE-FG02-93ER25176
and NIST CRA award 70-NANB-5H0055.

468 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 6, JUNE 1998

Fig. 19. Analytical calculations of the effects of varying number of nodes with respect to direct and tree forwarding policies.
(sampling period = 40 msec, BF policy, logarithmic horizontal scale).

TABLE 6
SUMMARY OF ANALYTICAL RESULTS FOR THE ROCC MODEL OF PARADYN IS

WAHEED ET AL.: MODELING AND EVALUATING DESIGN ALTERNATIVES FOR AN ON-LINE INSTRUMENTATION SYSTEM: A CASE STUDY 469

REFERENCES

[1]� D.G. Belanger, Y.-F. Chen, N.R. Fildes, B. Krishnamurthy, P.H.
Rank Jr., K.-P. Vo, and T.E. Walker, “Architecture Styles and Serv-
ices: An Experiment Involving Signal Operations Platforms-
Provisioning Operations Systems,” AT&T Technical J., pp. 54-60,
Jan./Feb. 1996.

[2]� P.A. Bernstein, “Middleware: A Model for Distributed System
Services,” Comm. ACM, vol. 39, no. 2, , pp. 86–98, Feb. 1996.

[3]� D. Bhatt, R. Jha, T. Steeves, R. Bhatt, and D. Wills, “SPI: An In-
strumentation Development Environment for Parallel/ Distrib-
uted Systems,” Proc. Int’l Parallel Processing Symp., Apr. 1995.

[4]� M.E. Crovella and T.J. LeBlanc, “Parallel Performance Prediction
Using Lost Cycles Analysis,” Proc. Supercomputing ‘94, pp. 600–
609, Washington, D.C., Nov. 1994.

[5]� R.T. Dimpsey and R.K. Iyer, “A Measurement-Based Model to
Predict the Performance Impact of System Modifications: A Case
Study,” IEEE Trans. Parallel and Distributed Systems, vol. 6, no. 1,
pp. 28–40, Jan. 1995.

[6]� S.G. Eick, and D.E. Fyock, “Visualizing Corporate Data,” AT&T
Technical J., pp. 74–85, Jan./Feb. 1996.

[7]� J.D. Gee, M.D. Hill, D.N. Pnevmatikatos, and A.J. Smith, “Cache
Performance of SPEC92 Benchmark Suite,” IEEE Micro, Aug.
1993.

[8]� M.J. Gergeleit and H. Streich, “DIRECT: Towards a Distributed
Object–Oriented Real-Time Control System,” technical report,
1996.

[9]� W. Gu, G. Eisenhauer, E. Kraemer, K. Schwan, J. Stasko, and J.
Vetter, “Falcon: On-Line Monitoring and Steering of Large-Scale
Parallel Programs,” Technical Report GIT-CC-94–21, 1994.

[10]� M.C. Hao, A.H. Karp, A. Waheed, and M. Jazayeri, “VIZIR: An
Integrated Environment for Distributed Program Visualization,”
Proc. Int’l Workshop Modeling, Analysis and Simulation of Computer
and Telecommunication Systems (MASCOTS ‘95), pp. 288-292, Tools
Fair, Durham, North Carolina, Jan. 1995.

[11]� R. Harrison, L. Zitzman, and G. Yoritomo, “High Performance
Distributed Computing Program (HiPer-D)—Engineering Testbed
One (T1) Report,” technical report, Naval Surface Warfare Center,
Dahlgren, Va., Nov. 1995.

[12]� J.K. Hollingsworth, B.P. Miller, and J. Cargille, “Dynamic Program
Instrumentation for Scalable Performance Tools,” Proc. Scalable
High-Performance Computing Conf., pp. 841–850, Knoxville, Tenn.,
1994.

[13]� J.K. Hollingsworth and B.P. Miller, “An Adaptive Cost Model for
Parallel Program Instrumentation,” Proc. EuroPar ‘96, vol. 1, pp.
88–98, Lyon, France, Aug. 1996.

[14]� H.D. Hughes, “Generating a Drive Workload from Clustered
Data,” Computer Performance, vol. 5, no. 1, pp. 31–37, Mar. 1984.

[15]� R. Jain, The Art of Computer Systems Performance Analysis—Tech-
niques for Experimental Design, Measurement, Simulation, and Mod-
eling. New York: John Wiley & Sons, 1991.

[16]� D. Knuth, The Art of Computer Programming. Addison-Wesley,
1981.

[17]� F. Lange, R. Kroger, and M. Gergeleit, “JEWEL: Design and Im-
plementation of a Distributed Measurement System,” IEEE Trans.
Parallel and Distributed Systems, vol. 3, no. 6, pp. 657–671, Nov.
1992.

[18]� J.R. Larus, “The SPIM Simulator for the MPIS R2000/R3000,”
Computer Organization and Design—The Hardware/Software Interface
D.A. Patterson and J.L. Hennessy, eds., Morgan Kaufmann, 1994.

[19]� A.M. Law and W.D. Kelton, Simulation Modeling and Analysis.
McGraw-Hill, 1991.

[20]� A.D. Malony, D.A. Reed, and H.A.G. Wijshoff, “Performance Meas-
urement Intrusion and Perturbation Analysis,” IEEE Trans. Parallel
and Distributed Systems, vol. 3, no. 4, pp. 433–450, July 1992.

[21]� C.W. Mercer and R. Rajkumar, “Interactive Interface and RT-Mach
Support for Monitoring and Controlling Resource Management,”
Proc. Real-Time Technology and Applications Symp., pp. 134–139,
Chicago, May, 1995.

[22]� B.P. Miller et al., “IPS-2: The Second Generation of a Parallel Pro-
gram Measurement System,” IEEE Trans. Parallel and Distributed
Systems, vol. 1, no. 2, pp. 206–217, Apr. 1990.

[23]� B.P. Miller, J.M. Cargille, R.B. Irvin, K. Kunchithapadam, M.D.
Callaghan, J.K. Hollingsworth, K.L. Karavanic, and T. Newhall,
“The Paradyn Parallel Performance Measurement Tool,” Com-
puter, vol. 28, no. 11, pp. 37–46, Nov. 1995.

[24]� D.A. Reed, R.A. Aydt, T.M. Madhyastha, R.J. Noe, K.A. Shields,
B.W. Schwartz, “The Pablo Performance Analysis Environment,”
Dept. of Computer Science., Univ. of Illinois, 1992.

[25]� D.A. Reed, “Building Successful Performance Tools,” presented in
ARPA PI meeting, July 1995.

[26]� B. Ries, R. Anderson, D. Breazeal, K. Callaghan, E. Richards, and
W. Smith, “The Paragon Performance Monitoring Environment,”
Proc. Supercomputing ‘93, Portland, Ore., pp. 850–859, Nov. 1993.

[27]� S. Saini and D. Bailey, “NAS Parallel Benchmark Results,” Report
NAS-95-021, NASA Ames Research Center, Dec. 1995.

[28]� A. Waheed and D.T. Rover, “A Structured Approach to Instrumenta-
tion System Development and Evaluation,” Proc. Supercomputing ‘95,
San Diego, Calif., Dec. 1995.

[29]� A. Waheed, H.D. Hughes, and D.T. Rover, “A Resource Occu-
pancy Model for Evaluating Instrumentation System Overheads,”
Proc. 20th Ann. Int’l Conf. Computer Measurement Group (CMG ‘95),
pp. 1,212–1,223, Nashville, Tenn., Dec. 1995.

[30]� A. Waheed, D.T. Rover, and J. Hollingsworth, “Modeling, Evalua-
tion, and Testing of Paradyn Instrumentation System,” Proc.
Supercomputing ‘96, Pittsburgh, Pa., Nov. 1996.

[31]� A. Waheed, D.T. Rover, M.W. Mutka, H. Smith, and A. Bakic,
“Modeling, Evaluation, and Adaptive Control of an Instrumenta-
tion System,” Proc. Real-Time Technology and Applications Symp.
(RTAS ‘97), Montreal, June 1997.

[32]� J.C. Yan and S. Listgarten, “Intrusion Compensation for Perform-
ance Evaluation of Parallel Programs on a Multicomputer,” Proc.
Sixth Int’l Conf. Parallel and Distributed Systems, Louisville, Ky.,
Oct. 1993.

[33]� J.C. Yan, S.R. Sarukkai, and P. Mehra, “Performance Measure-
ment, Visualization and Modeling of Parallel and Distributed
Programs Using the AIMS Toolkit,” Software Practice and Experi-
ence, vol. 25, no. 4, pp. 429–461, Apr. 1995.

Abdul Waheed received the BSc degree (with
honors) in electrical engineering from the Uni-
versity of Engineering and Technology, Lahore,
Pakistan, in 1991. He received the MS degree
in 1993 and the PhD degree in 1997, both in
electrical engineering from Michigan State Uni-
versity. Dr. Waheed is a research staff member
at the NASA Ames Research Center. In 1991,
he worked as a field service engineer in the
Medical Engineering Division at Siemens in
Lahore, Pakistan. He held a summer position in

the Concurrent Computing Division at Hewlett-Packard Research
Laboratories, Palo Alto, California, in 1994. His research interests in-
clude high-performance parallel and distributed systems, distributed
data collection systems, performance evaluation tools, computer sys-
tem modeling, and distributed real-time and embedded systems. Dr.
Waheed is a member of the IEEE, the IEEE Computer Society, and the
ACM.

Diane T. Rover received the BS degree in
computer science in 1984, the MS degree in
computer engineering in 1986, and the PhD
degree in computer engineering in 1989, all
from Iowa State University. Dr. Rover is cur-
rently an associate professor in the Department
of Electrical Engineering and director of the
Computer Engineering Program at Michigan
State University. Under a Department of Energy
postdoctoral fellowship from 1989–1991, she

was a research staff member in the Scalable Computing Laboratory at
Ames Laboratory. She has held summer positions with McDonnell
Douglas and the IBM Thomas J. Watson Research Center. Her re-
search interests include integrated program development and perform-
ance environments for parallel and distributed systems, instrumenta-
tion systems, performance visualization, embedded real-time system
analysis, and reconfigurable hardware. She received an R&D 100
Award in 1991 for the development of the Slalom benchmark; a
MasPar Challenge Award in 1996; an MSU College of Engineering
Withrow Teaching Excellence Award in 1994; a National Science
Foundation Career Award in 1996; an MSU Lilly Teaching Fellowship
for 1996-1997; and the MSU Teacher-Scholar Award in 1998. Dr.
Rover is a member of the IEEE, the IEEE Computer Society, the ACM,
and the ASEE.

470 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 6, JUNE 1998

Jeffrey K. Hollingsworth graduated with a BS
degree in electrical engineering from the Univer-
sity of California at Berkeley in 1988. He received
his MS and PhD degrees in computer science
from the University of Wisconsin in 1994 and
1990, respectively. He. is an assistant professor
in the Computer Science Department at the Uni-
versity of Maryland, College Park, and is affiliated
with the Department of Electrical Engineering and
the University of Maryland Institute for Advanced
Computer Studies. His research interests include

performance measurement tools for parallel computing, enabling infra-
structure for high performance distributed computing, and computer
networks. He received a National Science Foundation Career Award in
1997. Dr. Hollingsworth is a member of the IEEE, the IEEE Computer
Society, and the ACM.

