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Critical Path Profiling of Message Passing
and Shared-Memory Programs

Jeffrey K. Hollingsworth, Member, IEEE Computer Society

Abstract—In this paper, we introduce a runtime, nontrace-based algorithm to compute the critical path profile of the execution of
message passing and shared-memory parallel programs. Our algorithm permits starting or stopping the critical path computation
during program execution and reporting intermediate values. We also present an online algorithm to compute a variant of critical
path, called critical path zeroing, that measures the reduction in application execution time that improving a selected procedure will
have. Finally, we present a brief case study to quantify the runtime overhead of our algorithm and to show that online critical path
profiling can be used to find program bottlenecks.

Index Terms—Parallel and distributed processing, measurement, tools, program tuning, on-line evaluation.
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1 INTRODUCTION

N performance tuning parallel programs, simple sums of
sequential metrics, such as CPU utilization, do not pro-

vide the complete picture. Due to the interactions between
threads of execution, improving the performance of a single
procedure may not reduce the overall execution time of the
program. One metric, explicitly developed for parallel pro-
grams, that has proven useful is Critical Path Profiling [27].
Critical path profiling is a way to identify the component in
a parallel program that limits its performance. Based on our
experience with commercial and scientific users, Critical
Path Profiling is an effective metric for tuning parallel pro-
grams. It is especially useful during the early stages of
tuning a parallel program when load imbalance is a signifi-
cant bottleneck [11]. In this paper, we introduce a runtime,
nontrace-based algorithm to compute the critical path pro-
file. Our algorithm also permits starting or stopping the
critical path computation during program execution and
reporting intermediate values.

Previous algorithms to compute the critical path profile
are expensive. In an earlier paper [20], we described an off-
line (post mortem) approach to computing the critical path
profile that required space proportional to the number of
procedure calls and communication operations performed.
For large, long running programs, this space requirement
limited the usefulness of Critical Path Analysis.

To make critical path profiling practical for long running
programs, we developed an online (during program execu-
tion) algorithm that incrementally computes the critical
path profile for a selected procedure(s). It requires O(p)
space, where p is the number of processes in the program.
The time required is O(|e′|), where e′ is the set of inter-
process events and call and return events for the selected
procedure(s). Our online approach makes it possible to

integrate critical path profiling into online performance
monitoring systems, such as Paradyn [18]. By using
Paradyn’s dynamic instrumentation system, we only need
to insert instrumentation code for the procedures whose
share of the critical path we are currently computing.

We also present an online algorithm to compute a vari-
ant of critical path, called critical path zeroing. Critical path
zeroing measures the reduction in application execution
time that improving a selected procedure will have. We
then show how the online critical path algorithm can be
adapted to work with shared-memory programs. Finally,
we present results from running an initial implementation
of our algorithm using several PVM [9] based parallel pro-
grams. Initial results indicate that our online critical path
algorithm can profile up to eight procedures with a 3-10 per-
cent slow down of the application program.

2 CRITICAL PATH

A simple definition of the critical path of a program is the
longest, time-weighted sequence of events from the start of
the program to its termination. For an execution of a se-
quential program, there is only one path whose events are
the procedure invocations and returns, and the length of
the path is the CPU time consumed by the process. In a
parallel program, communication and synchronization
events result in multiple paths through a program’s execu-
tion. Fig. 1 shows the sequences of events in a three process
parallel program (indicated by the three vertical lines). The
diagonal arcs show the communication events between
processes and the dashed line shows the critical path
through the program’s execution. In this example, the
length of the critical path is 16 and it is entirely contained in
the rightmost process. Nodes represent events during the
execution of a parallel program and arcs indicate the or-
dering of events. The weight assigned to each arch is the
amount of time that elapses between events. The table at
the right summarizes the amount of time each procedure
contributes to the critical path.
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The advantage of critical path profiling compared to
metrics that simply add values for individual processes is
that it provides a “global view” of the performance of a
parallel computation that captures the performance impli-
cations of the interactions between processes. However, this
advantage of providing a global view is exactly what makes
it difficult to efficiently compute the metric. In a distributed
system, extracting a global view during the computation
requires exchanging information between processes. This
exchange of information will require resources (e.g., proces-
sor cycles and communication bandwidth) and could po-
tentially slow down the computation being measured. In
this section, we introduce a new, efficient online algorithm
to compute the critical path profile.

2.1 Formal Definition of Critical Path
Before we describe our algorithm, we define a few relevant
terms:

Process: A thread of execution with its own address space.

Event: Observable operations performed by a process. A
process communicates with other processes via mes-
sages. Message passing consists of start-send, end-
send, start-receive, and end-receive operations, each
of which is an event. Message events can be
“matched” between processes. For example, an end-
send event in one process matches exactly one end-
receive event in another process. Processes also have
local events for procedure calls and returns.1

Program: One or more processes that communicate during
execution. This definition of a program captures
SPMD, MIMD, and client-sever systems.

Program Execution: A single execution of a program on one
or more processors with one input. A program execu-
tion consists of one or more processes. A program

1. This definition is extended to include locks and barriers in Section 4.

execution is defined by the total ordering of all events
in all its processes. We denote a program execution P.

Program (Execution) Trace: A set of logs, one per process,
that records the events that happened during the exe-
cution of that process. For a program execution P, let
PT[p, i] denote the ith event in process p.

CPU Time: A per-process clock that runs when the process
is executing on a processor and is not waiting for a
message. Each event is labeled with the current CPU
time at the time of the event.

Program Activity Graph (PAG): A graph of the events in a
single program trace. Nodes in the graph represent
events in the program’s execution. Arcs represent the
ordering of events within a process or the communi-
cation dependencies between processes. Each arc is
labeled with the amount of CPU time between events.
Fig. 1 shows a simple PAG for a parallel program with
three processes.

The critical path of a parallel program is the longest path
through the PAG. We can record the time spent on the criti-
cal path and attribute it to the procedures that were exe-
cuting. The Critical Path Profile is a list of procedures and
the time each procedure contributed to the length of the
critical path. The time spent in these procedures is the rea-
son that the program ran as long as it did. Unless one of
these procedures is improved, the application will not run
any faster.

Since the number of nodes in the PAG is equal to the
number of events during the program’s execution, explicitly
building the graph is not practical for long running pro-
grams. One way to overcome this limitation is to develop an
algorithm that does not require storing events logs or build-
ing the graph. However, we want to compute the critical
path profile for distributed memory computations and,
therefore, any online approach will require instrumentation

Fig. 1. A program activity graph and calculating its critical path.
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messages to co-exist with (and compete for resources with)
application messages. Therefore, we need to keep the vol-
ume and frequency of instrumentation messages small.
Since programs can have hundreds or thousands of proce-
dures, an approach that requires sending messages whose
lengths are proportional to the number of procedures can
cause a significant interference with the application pro-
gram due to message passing.

2.2 Online Computation of Critical Path
With these challenges in mind, we have developed an on-
line algorithm to compute the Critical Path Profile. We de-
scribe our approach to computing the Critical Path Profile
in three steps. First, we show an algorithm to compute the
share (fraction) of the critical path for a specified procedure.
Second, we describe how to calculate the fraction of the
critical path for a single procedure for a specific subinterval
of the program’s execution starting at the beginning of the
computation. Third, we discuss how to start collecting criti-
cal path data during program execution. In this section, we
present the algorithm assuming a message passing pro-
gram; the algorithm is extended to support shared memory
programs in Section 4.

Rather than computing the Critical Path Profile for all
procedures in the application, we compute the Critical Path
Profile for a selected set of procedures. Currently, selecting
the desired set of procedures to compute the Critical Path
Profile for is left to the programmer. A good heuristic is to
identify those procedures that consume a large percentage
of the total CPU time of the application. Selecting high CPU
time procedures works well since, although critical path
profiling may assign a different ordering and importance to
the top 10 procedures, the procedures generally remain the
same [11]. If top procedures are not the same, this can be
detected since their cumulative share of the critical path
length will be small. In this case, the programmer selects a

different set of procedures and computes the critical path
share for them.

We could also automate the identification of the top
items in the critical path profile. To do this, we take advan-
tage of the fact that we are interested in the top m items,
where m is a user supplied value on the critical path pro-
file, and that the most expensive operation is to send mes-
sages between processes. Based on these two assumptions,
it is possible to employ a variation on binary search to
identify the top m items from a set of n items in O(m log2 n)
time. The details of this algorithm are given in Appendix B.

To compute the length of the critical path (but not the
share due to any procedure), we harness the normal flow of
messages in the application to traverse the PAG implicitly.
For each message sent, we attach an extra value to indicate
the length of the longest path to the point of the send op-
eration. For each receive event, we compare the received
value to the local length of the critical path. If the received
length is longer than the local one, we set the value of the
local copy to the received copy. At the end of the computa-
tion, the critical path length is the longest path through any
of the processes. To compute the share of the longest path
due to a selected procedure, we also keep track of (and
pass) the amount of time the selected procedure is on the
longest path.

Each process keeps a structure of five variables (shown
in lines 2-6 of Fig. 2). These variables record the longest
path ending in the process, the share of that path due to the
selected procedure, a flag to indicate if the selected proce-
dure is currently active, the time of the last recorded event
in the process, and the time of the last recorded event when
the selected procedure was active. To compute the Critical
Path for multiple procedures, we would replicate the vari-
ables funcShare, funcActive, and funcLastTime for
each procedure.

Fig. 2. Algorithm to compute the Critical Path of a procedure on-the-fly.
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Four events in the application program require instru-
mentation: message send and receive, and calls to and re-
turns from the desired procedure. Pseudocode for the algo-
rithm is shown in Fig. 2. It consists of four short code seg-
ments, one for each of the four application events that re-
quire instrumentation. Since all of the code segments re-
quire constant time to execute, the complexity of the com-
putation is linear in the number of events. The only data
structures are one copy of the per process structure (shown
in Fig. 2, lines 1-7) and the piggybacked data for messages
that have been sent but not received (stored in message
buffers).

For clarity, we described the inclusive critical path for a
single selected procedure (i.e., cumulative time spent in the
procedure and procedures it calls). To compute the noninclu-
sive critical path for a procedure, we need to insert instru-
mentation before and after each subroutine called by the
selected subroutine. Before the called subroutine, we could
use the same instrumentation shown in lines 39-41 of Fig. 2.
After the subroutine returns, we use the instrumentation
shown in lines 35-38 of Fig. 2.

2.3 Critical Path of Partial Program Execution
The algorithm presented in the previous section works as
long as we want to compute the critical path for the entire
program’s execution and report the result at application
termination. However, we also would like to be able to
compute the critical path for a fraction of the program’s
execution. Selecting a fraction of the program’s execution is
equivalent to dividing the PAG into three disjoint pieces
(sets of vertices). The first piece contains those events before
we want to compute the critical path, the second the events
we wish to compute the critical path for, and the third piece
the events after the selected interval. To have a single criti-
cal path through the selected subset of the PAG, we must
insert a single start node that has the first selected event
from each process as its successor. Likewise, we require a
final node that is the successor to the selected node in each
process (i.e., we assume that a selected region is terminated
by a barrier).

Since our algorithm doesn’t explicitly build the PAG, we
must identify the desired division of the PAG into parts by
sending data attached to application messages. First, we
will describe how to stop critical path analysis and, then,
we will return the question of starting it during execution.

Closely related to stopping critical path profiling during
program execution is sampling intermediate values for the
critical path profile. In this case, we compute the critical
path profile up until a well-defined point and report its
value. Sampling the critical path is the same as stopping the
critical path at some point during program execution. We
now describe how to calculate intermediate values of the
critical path starting from the beginning of the program’s
execution.

To compute the intermediate critical path, we periodi-
cally sample each process in the application and record
both its current critical path length and the share of the
critical path due to the selected procedure. This information
is forwarded to a single monitoring process. During the
computation, the current global critical path length is the

maximum value of the individual sample values from each
process. The value of the critical path for the selected pro-
cedure is the procedure component of the longest critical
path sample. The sampling step is shown in Fig. 3.

Since sampling of intermediate values of the critical path
in each process possibly occurs at different times, an im-
portant question is can we combine the samples into a met-
ric value that represents a consistent snapshot of the critical
path during program execution? Our goal is to show that
the sequence of intermediate values of the Critical Path at
the central monitoring process corresponds to a consistent
view. Conceptually, a consistent snapshot is one that is
achieved by stopping all processes at once and recording
the last event in each process. However, it is sufficient to
show that a sample corresponds to a set of events (one per
process) that could have been the last events if we had
stopped all of the processes. To explain this property, we
introduce two additional definitions:

Happen Before: Denotes the transitive partial ordering of
events implied by communication operations and the
sequence of local events in a process. For local events,
one event happened before another event if it oc-
curred earlier in the program trace for that process.
For remote events, send happens before the corre-
sponding receive event. Formally, it is the set of
precedence relationships between events implied by
Lamport’s happened before relationship [14]. If event
x happens before event y, we denote this by x → y.

State Slice: For any event e in a program trace PT and any
process p, a state slice is the last event in a process
that is required to happen before e based on the hap-
pen before relation. Formally, slice[p, e] = (PT[p, i] :
PT[p, i] → e and (∀j > i ¬ (PT[p, j] → e))), where p is a
process in PT, e is an event in PT, and i and j are inte-
gers between one and the number of events in process
p. slice[*, e] is the set of events, one per process, that
are the last events required to precede e.

In addition to collecting intermediate values that corre-
spond to consistent snapshots of a program’s execution, we
also want to report values in a timely manner. An interme-
diate value of the critical path should correspond to a point
in the program’s execution that is a bounded amount of
time since the last sample from each process. If we simply

Fig. 3. Sampling the Critical Path during program execution.
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use the state slice associated with the current longest value
to define such a point, we can’t ensure that the point is
timely. The reason for this is that if one process doesn’t
communicate with the other processes, the event for the
noncommunicating process in the state slice might be arbi-
trarily early.

To ensure the timeliness of samples, we need to combine
the state slices for the latest sample from each process. To
do this, we compute G, the latest event from each process
known at the monitoring station. For sample i, G[p, i] =
max(G[p, i − 1], slice[p, i]). Hence, the events in the com-
bined state slice G will be no earlier than the last sample from
each process. However, we must show that G produces a
consistent snapshot of the program. The proof of this prop-
erty of our sampling algorithm appears in Appendix A.

We would also like to be able to start computing the
critical path once the program has started execution. To
ensure the computed metric is meaningful, we need com-
pute the critical path starting from a point that corresponds
to a consistent snapshot of the program’s execution. How-
ever, to start computing our metric, a central process must
send messages to each application process requesting it to
start collecting critical path data. In general, it is impossible
to ensure that all of the processes will receive this message
at the same time. Even if we could, we need to account for
messages that were being transmitted (in flight) at the time
we start to compute the critical path.

We assume that every message that is sent between two
processes either contains a critical path message if the
sending process has started recording CP, or not if it the
sender has not. We further assume that any receiver can
detect whether or not a message has a critical path message
attached to it. Without loss of generality, we can assume
that there is only one type of critical path message (i.e., we
are computing the critical path for a single procedure).
There are four cases to consider:

1)�A message without CP data arrives at a process that is
not computing the critical path.

2)�A message with CP data arrives at a process that is al-
ready computing the critical path.

3)�A message with CP data arrives at a process that is
not computing the critical path.

4)�A message without CP data arrives at a process that is
already computing the critical path.

Cases 1 and 2 require no special treatment since they oc-
cur either before or after the point where the critical path
computation starts. We handle Case 3 by starting to collect
critical path data at that point. We handle Case 4 by doing
nothing; the sending event occurred before we started cal-
culating the Critical Path.

To ensure that we can start calculating the critical path
during program execution, we must establish that no mat-
ter when each process receives the message to start calcu-
lating the critical path (either directly from the monitoring
station or from another process) that the resulting calcula-
tion will correspond to computing the critical path starting
from a consistent state during the execution of P.

This is a special case of the consistent global snapshot
problem described by Chandy and Lamport in [6]. Chandy

and Lamport describe an algorithm to record the global
state of a computation by sending a marker token along
communication channels. In our scheme, the receipt of a
critical path start message is equivalent to receipt of a
marker token in their scheme. We won’t repeat their
proof here, but the key idea of the proof is that it is pos-
sible to order the events in the computation such that all
events before starting to calculate the critical path occur
before all events after starting to calculate the critical
path and that the reordering of events is a feasible exe-
cution of the program.

2.4 Online Critical Path Zeroing
Critical Path profiling provides an upper bound on the
improvement possible by tuning a specific procedure.
However, it might be the case that slightly improving a
procedure on the critical path could cause that procedure
to become subcritical and that most of the effort to tune
that procedure would be wasted. To provide better guid-
ance in this situation, we previously proposed a metric
called logical zeroing [11] that computes the reduction in
the length of the critical path length due to tuning spe-
cific procedures. However, computing logical zeroing
also required collecting a large amount of data and
building a post mortem graph. Fortunately, a variation of
our online critical path algorithm can be used to com-
pute logical zeroing.

The key idea of this algorithm is the same as critical
path; we piggyback instrumentation data onto application
messages. The only difference is at merge nodes, where
we compare the “net” path lengths for both the remote
and local sample. The “net” path length is the path length
minus the share of the path due to the selected procedure.
Fig. 4 shows the pseudocode for the computation of logi-
cal zeroing at a “merge” (receive) node. The changes are at
lines 6-7; before comparing the two path lengths, we sub-
tract the corresponding share of each path due to the se-
lected procedure. The only other change required is when
the critical path value is sampled; we report the “net”
critical path length, not the share of the critical path due to
the selected procedure.

Fig. 4. Computing Logical Zeroing.
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3 INITIAL IMPLEMENTATION

We have added an implementation of our online critical
path algorithm to the Paradyn Parallel Performance Tools.
We were interested in learning two things from our imple-
mentation. First, we wanted to quantify the overhead in-
volved in piggybacking instrumentation messages onto
application messages. Second, we wanted to demonstrate
that the information supplied by critical path analysis pro-
vides additional guidance to programmers compared to
CPU time profiling.

Our initial implementation works with PVM programs
on any platform that the Paradyn tools support. There is no
fundamental reason to use PVM, but for each message
passing library we need to write a small amount of code to
support piggybacking critical path messages onto data
messages. Due to the semantics of PVM and our desire not
to modify the PVM source code, we were forced to use an
implementation of piggybacking that requires that a sepa-
rate message be sent right after every message, even if we
are not currently computing the critical path. Although this
extra message does add a bit of overhead, we show below
that it is not significant. It is possible to eliminate this extra
message with a slight modification of PVM.

3.1 Overhead of Instrumentation
To quantify the overhead of piggybacking instrumentation
messages onto application data, we constructed a simple
two process test program. Each process “computes” for
some interval of time and then sends a message to the
other process. By varying the amount of data transferred
and the amount of “computation” done we can simulate
programs with different ratios of computation to commu-
nication. We can also vary message size and frequency.
Since “piggybacking” messages incurs a per message
overhead, the more frequently messages are sent, the
higher the overhead. PVM runs on a range of different
networks from Ethernet to custom MPP interconnects. To
permit investigating the per procedure overhead of pig-
gybacking messages, our test application contained 32
procedures that were linked into the executable but never
called. We then varied the number of selected procedures
from 0 to 32. To gauge the impact of our instrumentation
on different platforms, we conducted tests on two sys-
tems. The first was a pair of Sun Sparcstation-5s connected
by 10 Mb/s Ethernet. The second was two nodes of an
IBM SP-2 connected by a 320 Mb/s high performance
switch. For all reported results, the times shown were the

minimum time of three runs. Variation between runs was
less than 1 percent.

The table in Fig. 5 shows two versions of the program run
on the SPARC/Ethernet configuration. The first column
shows the number of items (procedures) whose Critical
Path is being computed. The first version computed for 75
percent of its execution time and spent the remaining 25 per-
cent of the time sending and receiving messages (shown in
the second and third columns). The second version spent
60 percent of its time in computation and 40 percent in mes-
sage passing (shown in the fourth and fifth columns). Each
program sends the same size and number of messages, but
we varied the “computation” component between the two
programs. Message Passing used a 10Mb/s Ethernet.

The time required to send an empty piggyback message
is shown in the third row. For the 75 percent computation
case, sending empty messages added a 1.9 percent over-
head to the application and for the 60 percent computation
case it was 3.4 percent. This provides an indication of the
overhead required to simply enable the piggyback mecha-
nism and send an empty message. We were also interested
in measuring the per procedure cost of computing the Criti-
cal Path. For each version, we varied the number of proce-
dures for which we calculated the critical path for from one
to 32 procedures. In addition, we report the time required
to run the uninstrumented version of the program. None of
the critical path items (procedures) were called by the ap-
plication, so the reported overhead represents the incre-
mental cost of computing the critical path for a procedure
compared to the cost of computing a simple CPU profile.

The data shown in Fig. 6 is for the IBM SP-2 configura-
tion. In this case, we held the computation to communica-
tion ratio fixed at 75 percent computation and varied the
message passing frequency and message size. We used a
message passing rate of approximately five, 50, and 150
messages per second per processor. For these three cases,
the size of each message was 48,000, 4,800, and 480 bytes
respectively. In all three cases (five, 50, and 150 messages
per second per processor), the overhead of sending the
empty critical path message was less than 1 percent. As
expected, when we increased the number of critical path
items being computed, the overhead went up. Notice that
the overhead for the 32 procedure case for 150 mes-
sages/sec results in an overhead of almost 50 percent!
Clearly, this would not be acceptable for most applications.
However, for the four and eight procedure cases, the over-
head is 6 and 11 percent, respectively. We feel this amount
of overhead would be acceptable for most applications. If

Fig. 5. Overhead required to compute per procedure critical path.
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an even lower overhead were necessary for an application,
it could be run several times and the critical path profile
information could be computed for a small number of pro-
cedures each time.

3.2 Case Studies
To evaluate the effectiveness of Critical Path computation on
applications, we measured the Critical Path and CPU time
profiles for three application programs. Each program used
the PVM message passing primitives for communication.

First, we measured the performance of Integer Sort, one
of the NAS benchmarks. The program was run on eight
nodes of an IBM SP-2 using the High Performance Switch
for message passing. The results are shown in Fig. 7. This
table summarizes the Critical Path values and CPU time for
the top three procedures. For each metric, we present the
value of the metric and the percentage of the total metric
value. Since the total value varies with different metrics, the
percentage value is the important one for comparison. The
percentage is the “score” for each procedure, indicating the
important assigned to it by that metric.

This example shows the benefit of the additional informa-
tion provided by Critical Path compared to CPU time profil-
ing. Although create_seq is only 12 percent of the total
execution time of the overall program, it was responsible for
over 66 percent of the length of the critical path. Ranked by
fraction of the CPU time consumed, create_seq is the third
most important procedure, yet it is the most important when

ranked by Critical Path. The reason for this is that the routine
is completely sequential. Other sequential metrics would not
have easily identified the importance of create_seq.

Second, we measured a implementation of the Traveling
Salesperson Problem (TSP) using Critical Path Analysis and
CPU profiling. Although this is a small problem (taken
from a program written as part of an introductory parallel
programming class), it is illustrative of the types of per-
formance problems that can happen in client-server appli-
cations. The program consists of one manager process and
eight worker processes. Fig. 8 shows the CPU and Critical
Path values (including time spent in called functions) for
the two most important functions in the application. The
first column shows the procedures (including called proce-
dures) that consume the largest amount of CPU time in the
application. The second and third columns show the share
and percent of the critical path length due to each proce-
dure. The fourth and fifth columns show the CPU time and
percent of total CPU time consumed by each procedure.
BeManager is the main procedure of the master process,
and MinCircuit is the main procedure of the worker proc-
esses. This table shows that, based on CPU time, the
MinCircuit procedure is the most important procedure
to tune, consuming 80 percent of the time. However, the
Critical Path value shows that the BeManager is responsible
for 48 percent of the Critical Path time. The value is much
larger for the BeManager procedure due to the master pro-
cess becoming a bottleneck when eight clients are ex-
changing partial solutions with it (due to the program’s
dynamic load balancing).

We also measured an implementation of the GFDL
Modular Ocean Model [5] developed by Webb [25]. The
results of computing the CPU time profile, Critical Path
Profile, and Critical Path Zeroing are shown in Fig. 9. The
results show the importance of using Critical Path Zeroing
to identify the potential decrease in the Critical Path
length by improving selected procedures compared to
CPU time profiling or even Critical Path Profiling. Al-
though all three metrics indicate that s_recv is the most

Fig. 6. Comparison of overhead for different message rates. The first
column shows the number of items (procedures) whose Critical Path
are being computed. The second and third columns show the execution
time and overhead when the test application sends five mes-
sages/second. The fourth and fifth columns show the results when the
message passing rate is increased to 50 messages/second. The sixth
and seventh columns show the results for a sending 150 mes-
sages/sec. All messages were sent using a 320Mbps SP-2 high per-
formance switch. The row denoted base reports the time with no in-
strumentation enabled, and the 0 item case is when the piggyback
mechanism is enabled, but not procedures are selected.

Fig. 7. NAS IS Benchmark Results. The first column shows the proce-
dures that consume the largest amount of CPU time in the application.
The second and third columns show the share and percent of the criti-
cal path length due to each procedure. The fourth and fifth columns
show the CPU time and percent of total CPU time consumed by each
procedure. The table is ordered by decreasing amount of CPU time
consumed. The procedure create_seq is the most important proce-
dure according to Critical Path metric, but only the third most important
based on CPU Time.

Fig. 8. TSP application.

Fig. 9. Metric values for Ocean application. The first column shows the
procedures that consume the largest amount of CPU time in the appli-
cation. The second and third columns show the amount and percent
that the critical path length is reduced if the weight assigned to that
procedure is set to zero. The fourth and fifth columns show the CP time
and for each procedure. The sixth and seventh columns show the CPU
time and percent CPU time for each procedure. The table is ordered by
decreasing amount of CPU time consumed.
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important program component to fix, the weight assigned
to it varied from 18 to 30 percent. CP Zeroing provides a
lower value for this procedure because other subcritical
paths in the program limit the improvement possible by
just tuning this one routine.

4 SUPPORT FOR SHARED-MEMORY PROGRAMS

Critical Path and Critical Path Zeroing are useful tech-
niques for shared memory programs, too. In this section,
we describe how the basic ideas of critical path can be ap-
plied to a shared memory program and present a few short
case studies that demonstrate the utility of the information
gathered. We also explain how the idea of Critical Path
Analysis can be extended to apply not just to individual
synchronization events, but to higher level events such as
items entering and leaving a work queue.

4.1 Computing Critical Path for Shared-Memory
Programs

In shared memory programs, the basic abstractions for syn-
chronization between threads of execution are locks and
barriers. For each of these operations, we need to have the
correct representation in the program activity graph. Fig. 10
shows the PAG representation for spin locks and barriers.
For spin locks, the nth call to endLock (lock aquire) de-
pends on the n − 1st call to unLock having been completed.
For Barriers, the last thread of control to arrive at the nth
use of a barrier must happen before any thread may leave
the barrier (shown as the lvBarrier event). In the case of
Critical Path Zeroing, the last event to arrive at a barrier is
determined by its net time rather than its current time.

The other significant difference between the message
passing and shared-memory versions of the online critical
path algorithm is how the information is shared between
processes. In the shared-memory version, a data structure

for each synchronization object (e.g., lock or barrier) is main-
tained in shared-memory and updated by the instrumentation
code in each thread of control. However, in the message pass-
ing case, Critical Path data is exchanged via messages.

Tracking individual Spin Locks produces a useful metric
for Critical Path. However, the nondeterminism present in
many parallel programs can create problems for Critical
Path Zeroing to accurately predict the correct execution
time if a procedure is tuned. Since Critical Path Zeroing is
based on using the PAG for a single program execution,
changes due to tuning could alter the structure of the
graph. For programs that are general race free [21] (i.e., lack
nondeterminism), changing the weights assigned to arcs in
a PAG will not result in structural changes to the graph.
However, for programs that rely on nondeterminism, such
as task queues, changing the value of one arc in the graph
can result in changes in graph structure.

To correctly predict the performance for these cases, the
PAG structure should track the items entering and leaving
work queues rather than the mutual exclusion that is used
to implement the work queue. To track activity in a work
queue, we match the en-queue of an item with its subse-
quent removal from the queue. An example of how objects
in an event queue can be tracked is shown in Fig. 11. For the
shared memory programs described below, we have im-
plemented item-based tracking of work queues. It is possi-
ble to track objects in an event queue for message passing
programs, too. However, due to the substantially coarser
grained communication in most message passing pro-
grams, tracking of event queues has not been required to
provide a useful information to programmers.

4.2 Impelementation and Evaluation of
Shared-Memory CPA

To evaluate the effectiveness of the shared-memory version of
the online critical path algorithm, we implemented a version

                   

        (a)         (b)

Fig. 10. PAG for Spin Locks and Barriers. (a) The left graph shows a typical PAG representation for a Spin Lock. The unLock of the previous use of
the lock must proceed the endLock of the next use. The time spent waiting to acquire a lock is the time between the startLock and endLock
events. (b) The right graph shows the PAG for a barrier. The lvBarrier events of all processes must wait for the final arBarrier event as shown by
the diagonal lines.
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of the algorithm that runs on DEC Alpha shared memory
multi-processors and ran the Splash-II benchmarks appli-
cations [26]. For all programs, we ran Critical Path Zeroing,
Critical Path, and UNIX prof/gprof profiling. For many of
the applications, the results for critical path and traditional
profiling produced nearly identical results. This is to be ex-
pected. For programs with good load balancing, the results
for Critical Path and traditional profiling should be similar.
However, for two of the applications, we noticed a significant
difference between the two measurement techniques. The
results for those two applications are shown below.

The values for the three metrics for the Raytrace ap-
plication are shown in Fig. 12. For this application, the
two critical path based metrics show that the sequential
routine ReadGeoFile is about four times more impor-
tant (3.5 vs. 13.5 percent) than the CPU profile metric
indicated. This difference is due to the routine being en-
tirely sequential.

The table shown in Fig. 13 shows the results of comput-
ing the three metrics for the Choleski Kernel. The table
shows the 10 procedures that contribute the largest amount
to the application’s running time ordered by decreasing
value of the CPU Profile metric.2 For four of the procedures
(marked inc), we show the inclusive time consumed by the
target procedure and all procedures it calls. We used the
inclusive metric for these routines since they contained fre-
quent calls to small helper routines and, so, the reported
routine and its called subroutines would likely be tuned as
a unit. For the rest of the procedures, we present the value

2. The values reported for the CPU Time profile were obtained using
UNIX Gprof. We also computed the metric using a direct timer based ap-
proach (as opposed to Gprof’s sampling.) The results were almost the same,
so we chose to show only the Gprof results here.

for the procedure without the time spent in any of its called
routines. Due to differences in absolute measures, the differ-
ent metrics can be best compared in a head-to-head fashion
by looking at the percent columns that show the relative
weight assigned to each procedure.

The differences between the results for the Prof metric
and the Critical Path metrics is pronounced. Although all
three metrics indicate the same two procedures as the top
target for tuning, the weight assigned to each procedure is
substantially different. For the ModifyTwoBy routine, the
CPU Profile metrics predicts that tuning this procedure will
reduce the running time of the application by over 1/3;
however, the Critical Path and Critical Path Zeroing metrics
each predict the improvement will be less that 1/4. For the
procedure OneMatmat, the CPU profile metric predicts that
tuning the procedure will reduce the running time of the
application by 24 percent, but the CP Zero metric shows
that the improvement will likely be less than half that
amount, about 10.4 percent. For the third and fourth proce-
dures, the difference between the three metrics is more pro-
nounced. The CPU profile indicates that procedures Get-
Block and OneDiv are the third and fourth most important.
However, the Critical Path based metrics indicate that
FillInNZ and CreateBlockedMatrix2 are the third and
fourth most important procedures. Of equal importance to
rank is the weight assigned to each of these procedures.
According the CPU Profile metric, the third and fourth
ranked procedures are less than 5 percent each; however,
the FillInNZ and CreateBlockedMatrix2 routines are
each responsible for almost 9 percent of the application’s
running time. We investigated the discrepancy between the
two metrics and discovered that the procedures that received

Fig. 11. Spin Lock vs. Event Queue Tracking. Two PAGs showing the different ways that the dependencies for an event queue can be represented.
The left side shows a three process program tracking each spin-lock event. The right graph shows the same three process program when the
contents of the event queue are tracked. In the right graph, the dequeue of object Y has an arc that forces it to follow the enqueue of the same
object. On the left the graph, the dequeue of Y is also required to follow the enqueue of object X, even though these two events are not required to
happen in that order.
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higher weight with the Critical Path based metric execute
sequentially on one processor while the rest of the proces-
sors idle. Thus, the Critical Path metrics were able to rank
the sequential routines as more important for tuning the
application’s execution time.

5 DISCUSSION

Critical Path Profiling is a useful metric for many parallel
programs. Its primary benefit is to help programmers un-
derstand where they can most productively spend time
tuning their programs. This benefit comes from two factors:

1)� Identifying procedures that may not be the largest
consumers of CPU time but are, in fact, critical to per-
formance since other activities in the program must
wait for their completion.

2)�Providing feedback about the limited impact a tuning
option might have due to secondary and tertiary paths.
This allows programmers to avoid spending time tun-
ing procedures that will not result in a significant im-
provement in the application’s execution time.

Critical Path provides the most value added compared
to traditional profiling techniques for applications that ei-
ther have a load imbalance or that contain processes exe-
cuting different procedures at the same time. For exam-
ple, client-server programs, control-parallel programs, and
coupled data-parallel applications benefit from the addi-
tional information provided by Critical Path Analysis.

There are also some limitations to the technique. First,
for many data parallel programs with good load balance,
critical path provides an accurate metric, but no addi-
tional information over simple sequential metrics. Sec-
ond, like any measurement tool, the results are based on

a single execution of the program. The programmer is
left with the responsibility of selecting a representative
execution to measure.

Like any system that employs software-based instru-
mentation, our instrumentation can perturb the measure-
ments and result in different event orderings and timings.
Experience with both our new online algorithm, and pre-
vious offline algorithms has shown that most programs
can tolerate a moderate level of instrumentation overhead
(5-10 percent) without the instrumentation making any sig-
nificant change in the length of or the procedures along the
Critical Path. If perturbation were a major concern, we
could employ the event-based perturbation compensation
algorithms suggested by Malony [15]. However, instead we
use a measurement based-technique to control the amount
of instrumentation overhead [12].

6 RELATED WORK

A graph representation of an execution of a parallel pro-
gram similar to our PAG has been used extensively in the
past [4], [7], [10], [19], [24]. Implicitly walking a PAG by
attaching instrumentation messages onto applications mes-
sages has been used for online detection of race conditions
in parallel programs [8], [13]. Similar instrumentation has
also been used to reduce the number of events that must be
logged for program replay [22].

Many metrics and tools have been developed to quantify
the performance of parallel programs. The Paradyn [18]
and Pablo [23] tools provide a wealth of performance met-
rics. One similar metric to Critical Path profiling is Nor-
malized Processor Time [1]. Unlike NPT, Critical Path can
be computed for either shared memory or message passing
programs. Also, Critical Path provides information about

Fig. 12. CP vs. traditional profiling for the raytrace application. The results are for computing Prof, CP, and CP Zero for each three procedures. Both
CP and CP Zero assign a significantly higher importance to ReadGeoFile than CPU profiling does.

Fig. 13. Critical path vs. traditional profiling for the Choleski kernel. The results are for computing Prof, CP, and CP Zero for each three procedures.
Both CP and CP Zero assign significantly less importance to GetBlock and OneDiv than CPU profiling does. Likewise, the importance of the
procedures FillInNZ and CreateBlockedMatric2 is much higher with CP and CP Zero than CPU Profiling.
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the relationships between sequences of events, while NPT
relies on comparing the instantaneous behavior across all
processors. Other metrics focus on specific sources of bot-
tlenecks in parallel programs such as memory [16].

Many metrics and measurement techniques have been
developed for sequential programs. Path Profiling [2] pro-
vides an efficient way to measure the frequently executed
paths (sequences of basic blocks) through a sequential pro-
gram and to associate both time and hardware events with
each path. Digital’s Continous profiling [3] combines hard-
ware measurement with operating system support to
measure time spent both in application programs, as well as
executing operating system services. Hardware measure-
ment facilities are included with many micro-processors
today [1], [17], [28]. All of these sequential techniques com-
plement Critical Path Profiling. In most cases, they can be
used after Critical Path has isolated a performance problem
to a specific procedure.

7 CONCLUSION

We have presented an online algorithm to compute the
critical path profile of a parallel program and a variant of
critical path called critical path zeroing. We showed that it
is possible to start collecting the critical path during pro-
gram execution and that sampling intermediate results for
critical path profiling is possible and produces a meaning-
ful metric. In addition, we showed that it is possible to
compute this algorithm with minimal impact on the appli-
cation program and presented a brief case study that dem-
onstrated the usefulness of critical path for a PVM message
passing program. Finally, we showed how the message
passing online Critical Path algorithm can be extended to
work with shared-memory programs.

APPENDIX A
In this appendix, we show that combing critical path sam-
ples corresponds to a feasible execution of P. In other
words, we are not restricting ourselves to computing the
critical path of the exact total ordering of the events in the
computation, but instead to that of the family of feasible
executions that satisfy the happened before relation.

Consider the sending of critical path samples to the
monitoring station. Sending a sample message is an event
in the application process. During program execution, a
series of samples will arrive from the application processes.
Let CP(i) represent the send sample event corresponding to
the ith sample to arrive at the monitoring station. Therefore,
slice[p, CP(i)] is the last event in process p that must have
preceded the sample. For each sample i, let G[p, i] be the
latest event for process p from all of the state slices for sam-
ples 0 to i (i.e., G[p, i] = max(G[p, i − 1], slice[p, i]). G[p, 0] =
PT[p, 1]. Let G[*, i] denote the set of events for all processes p
in G[p, i].

To show that the series of critical path samples corre-
spond to a sampling of states during a feasible execution of P,
we must show that all states G[*, 0], G[*, 1], …, G[*, n] cor-
respond to a sequence of global states in feasible execution
P′ of P.

THEOREM. For all i, G[*, i] corresponds to a feasible global state
of P.

PROOF. The proof is by induction. G[*, 0] is trivially a feasible
state since it represents that start of the program’s exe-
cution. Now, assume G[*, i] is a feasible state. Let S de-
note the set of events that occur between G[*, i] and
G[*, i + 1]. S consists of the events in each process
that must occur after G[*, i] and at or before G[*, i + 1].
G[*, i + 1] is a feasible state of P if there exists a total
ordering of S that satisfies the happen before con-
straint. To see that G[*, i + 1] is feasible, consider what
it would mean if it were not. This would imply that
there is no ordering of the events in S that satisfy hap-
pen before. For this to be the case, it requires that there
exists events x, y, z in S such that x → y, y → z, and
z → x. However, this is not possible by the definition of
HB; therefore, G[*, i + 1] is a feasible state of P. o

Finally, the sequence G[*, 0], G[*, 1], …, G[*, n] corre-
sponds to a series of events in a single feasible execution of
P. This can be shown by a construction, since G[*, 0] is the
start of the computation, and we can construct a total or-
dering of the events in P such that G[*, 1] is a global state
and, from there, such that the rest are global states. The
constructed total ordering is then a feasible execution of P.

APPENDIX B
In this appendix, we present a simple algorithm to permit
finding all items whose share (fraction) of the critical path is
larger than 1/m, where m is an integer. Two key observa-
tions make this algorithm possible:

1)�There are at most m items whose share of the critical
path is greater than 1/m.

2)�Since the major cost in computing the critical path
corresponds to the sending of instrumentation mes-
sages, computing the aggregate critical path for a col-
lection of procedures has about the same cost as com-
puting the critical path for a single procedure.

We start the algorithm with n items to consider. We di-
vide our n items into 2 ∗ m  disjoint buckets each with

n m/ ( )2 ∗  or n m2 1∗ +2 7  items. We then compute the

aggregate share of the critical path for each bucket. This
step requires the same overhead as computing the CP share
for 2 ∗ m  procedures (i.e., sending 2 ∗ m  values per mes-
sage). At the end of the program, we compare the critical
path share for each bucket. The critical path share of at most
m buckets will be 1/m or larger. We discard the procedures
in those buckets whose CP share is less than 1/m. This
eliminates at least half of the procedures. We then repeat
our algorithm with the remaining procedures put into 2 ∗ m
buckets until the buckets contain only a single item (proce-
dure). This pruning of procedures makes it possible to
identify the up to m procedures responsible for at least 1/m
of the overall execution of the program in O(m log2 n) steps.

It is easy to remove the restriction that we must run the
program n times to identify the program components that
are responsible for more than 1/m of the total length of the
critical path. To do this, we use the observation that, within
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a single phase of a program’s execution, its performance
remains consistent. We can use the ability of our critical
path algorithm to compute the critical path for part of a
program’s execution to compute the critical path for a fixed
interval of the program, and then evaluate the next step in
the search algorithm.
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