
This paper is included in the Proceedings of the 
34th USENIX Security Symposium.

August 13–15, 2025 • Seattle, WA, USA
978-1-939133-52-6

Open access to the Proceedings of the 
34th USENIX Security Symposium is sponsored by USENIX.

For Human Ears Only: Preventing Automated 
Monitoring on Voice Data

Irtaza Shahid and Nirupam Roy, University of Maryland, College Park
https://www.usenix.org/conference/usenixsecurity25/presentation/shahid



For Human Ears Only: Preventing Automated Monitoring on Voice Data

Irtaza Shahid, Nirupam Roy

University of Maryland, College Park

{irtaza, niruroy}@umd.edu

Abstract
As voice communication becomes an essential part of modern
life, the exposure of sensitive information through audio calls
presents significant privacy risks. Malicious actors can gain
access to this data by compromising user devices, exploiting
communication channels, or attacking data servers, making it
vulnerable to automated monitoring systems that can identify
speakers and extract speech content. To address these privacy
concerns, we introduce VoiceSecure, the first microphone
module designed to prevent automated monitoring of speech
while preserving its natural sound for humans. By leveraging
the principles of human auditory perception, VoiceSecure

employs a set of speech modifications that are adaptively
tuned in real-time to obscure speaker identity and speech
content, without compromising the quality of the audio for
human listeners. This hardware-based solution mitigates
the risk of software-based attacks, integrating seamlessly
with commercial devices via audio jack or Bluetooth.
Comprehensive evaluation across state-of-the-art speaker
verification and speech recognition models, and a variety of
speech datasets, demonstrates that VoiceSecure outperforms
traditional methods of protecting speech from automated
monitoring while keeping it intelligible for humans.

1 Introduction
Online voice communication has assumed a fundamental
role in modern life, bridging distances with immediacy and
efficiency. Unlike text, which is stripped of tone and subtlety,
voice conveys intent and emotion with clarity, fostering more
genuine connections and direct exchanges. Besides traditional
phone calls, teleconferencing platforms like Zoom, Teams,
and Discord now serve as pillars of communication, quietly
reshaping interactions within both personal and professional
spheres. Being a rich source of personal and professional
information, online transfer of voice data makes it vulnerable
to various exploitations.

Today, over 95% of voice data is transferred digitally; with the
widespread adoption of technologies like VoIP (Voice over
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Figure 1: VoiceSecure, an offline hardware-software solution to
protect speech privacy in real-time voice communication.

Internet Protocol) [4], almost all phone calls, even traditional
landline calls, are converted to digital signals for transmission
over the internet. This makes the data readily available to
computers at various stages of the transmission, starting from
the user devices to internet middleboxes, application servers,
and even eavesdropping on transmission channels. It has
raised concerns about information security. Advancements in
voice-to-text technologies and natural language processing
algorithms make it possible to launch online monitoring
and mass surveillance of digital voice data. Voice is not
only a medium for information it carries, it also reveals
users’ emotions and nonverbal cues of personal feelings [83].
Moreover, voice is also a biometric identity of the person. Past
works have shown that these nonverbal information in voice
can be extracted computationally [11, 33, 71]. Unauthorized
voice monitoring is a growing threat to user privacy
as it can capture sensitive information, including secret
government discussions, personal conversations, financial
data, or health-related topics, exposing users to identity theft,
information leaks, data profiling, or unwarranted surveillance.
Moreover, without user consent, organizations or third parties
may exploit voice data to train highly personalized profiles or
avatars, potentially infringing on individual rights to privacy
and autonomy.

Recently surfaced events of digital espionage [44], monitoring
[68], privacy breach [23], and mass-surveillance [34, 65]



Method Speaker Identification Speech Recognition Naturalness Real-time Hardware

McAdams [47] 3 7 3 3 3

VoiceMask [51] 3 3 7 7 7

VCloak [19] 3 7 3 7 7

SMACK [80] 3 3 3 7 7

Stop Bugging Me [38] 3 7 7 3 3

MicPro [76] 3 7 3 3 3

VoiceSecure (Ours) 3 3 3 3 3

Table 1: Comparison of VoiceSecure with existing methods for protecting speech privacy. This table highlights the need for real-time speech
protection methods while maintaining the natural flow of communication.

on voice data have triggered actions by service providers.
The primary mode of this action is implementing data
encryption. Voice communication services, such as WhatsApp
and Facebook, offer end-to-end voice data encryption [1].
However, this does not fully address the overall vulnerability.
For instance, Zoom fails to ensure end-to-end security when
a resource-constrained device (e.g., a smartphone) is involved
in the conversation [35]. Similarly, when making calls from
Skype to mobile or landline phones, the portion of the call that
passes through an unencrypted Public Switched Telephone
Network (PSTN) makes it susceptible to basic eavesdropping
attacks [28]. Moreover, all of these end-to-end encryption
models require users to trust the application servers and
service providers’ infrastructure, leaving a loophole in the
entire system anyway. On the other hand, several attacks on
cellular telephony, including Voice over LTE (VoLTE) [56]
and 5G voice transmission [45], show the possibility of voice
eavesdropping.

The lack of trust in the network and application infrastructure
has led to an alternative approach to voice data privacy
– elimination of sensitive information before transmission.
Some techniques show ways to prevent automatic speaker
identification [15, 19, 22, 77] from the data, and some other
techniques aim to prevent automatic speech recognition
[16,18,80] from the shared data. It is a promising concept that
aims to understand the capabilities of AI-enabled attacks on
data privacy and propose a countermeasure by pre-processing
the voice data to mask sensitive features. Unfortunately, these
approaches are computationally heavy and require an offline
pre-processing stage, preventing their real-time application
in an online voice conversation. Attempts at real-time
applications are caught in the three-way tradeoff between
acceptable latency for voice communication, computation
capacity of a laptop or a smartphone, and efficiency of
attainable feature masking. Moreover, the solution by design
relies on online processing and the user device, which itself
can be compromised through malware [30, 31]. We ask the
question: Is it possible to develop a zero-trust real-time sys-
tem to prevent both automated voice monitoring and speaker
profiling?

In this paper, we introduce VoiceSecure, an innovative
hardware-software module designed to provide real-time
modification on voice data that protects user privacy
from automatic speech recognition and speaker profiling
while keeping speech natural for the human listener. This
process requires the elimination of machine-identifiable voice
personalization features and components that are essential
for automatic speech recognition. We call this process
‘feature-redaction’ of the voice data. This ensures users
can enjoy the same audio call experience without worrying
about privacy breaches over voice calls. We envision the
VoiceSecure module as an external microphone, capturing
speech audio, applying feature-redaction in real-time, and
transmitting it to the user’s device via either an audio jack or
Bluetooth connection. Figure 1 shows an application scenario.

Developing this system presents several challenges, primarily
due to the limited capabilities of the hardware module.
Current speech anonymization and masking techniques
[19, 77, 80] either only protect speaker identity or speech
content and are often too computationally intensive for
real-time processing on resource-constrained devices, such
as in live calls. Table 1 summarizes these methods,
detailed in Section 11. Therefore, a new, computationally
efficient feature-redaction technique must be designed. This
approach needs to jointly optimize to thwart both automatic
speaker identification and speech recognition while ensuring
real-time performance. It is crucial that the feature-redaction
process operates seamlessly, preserving the natural flow
of communication without disrupting the call experience.
Maintaining this imperceptibility is essential to uphold the
naturalness of the communication.

To address this challenge, we start by understanding
the inherent differences between how the human brain
perceives speech sounds and how machines such as
speaker identification and speech recognition models
process speech signals [39, 39, 85]. Specifically, Voic-

eSecure adopts a multi-step approach. Initially, VoiceSe-

cure eliminates inaudible frequency components from the
speech, leveraging the human tendency to focus on the
high-energy frequency and ignoring low-energy components



in understanding speech content. Additionally, VoiceSecure

introduces random temporal distortions by flipping small
time-domain speech windows, exploiting a phenomenon
elucidated in the psychoacoustic literature. Furthermore, Voic-

eSecure manipulates the pitch and formants of the speech
signal, which are crucial attributes for automatic speaker
identification. However, random alterations to these features
risk altering the sound to human listeners, potentially leading
them to believe they are conversing with a different individual.
To overcome this challenge, we observe that minor variations
in pitch or formants within small speech are not noticeable
by humans. VoiceSecure then design a reinforcement learning
agent to control these variations in real-time based on
the input speech signal to optimally prevent speech from
automated monitoring while keeping it intelligible to humans.

Summary of Contributions:
In developing the proposed system, we have made the
following three contributions:
• We propose the first microphone module to prevent

automatic speaker verification and speech recognition
while preserving speech intelligibility for humans.

• We propose a set of signal processing-based modifications
for speech feature-redaction leveraging inherent properties
present in human perception.

• We design a reinforcement learning model to control
speech modifications in real-time to maximize speech
privacy while maintaining the naturalness of the speech.

• We implement VoiceSecure on an off-the-shelf
microcontroller, and evaluate its performance under
practical scenarios.

2 Adversary Model
Our adversary model assumes a highly skilled adversary
capable of accessing and analyzing voice calls, which often
contain sensitive information. The adversary could extract
distinctive voiceprints from the audio and conduct replay or
mimicry attacks on speaker verification systems commonly
used for authentication. Additionally, the intercepted speech
could be exploited to infer sensitive information, such as
financial details during a bank call or health issues during
a medical consultation. Once linked to specific speakers, this
sensitive information could lead to targeted and malicious
attacks.

We assume that an adversary could access the audio through
various methods, such as exploiting vulnerabilities in the
communication channel, compromising the user’s device, or
infiltrating the service provider, as illustrated in Figure 2.
Existing research [45, 56] highlights vulnerabilities in GSM
and LTE networks that attackers might exploit to intercept
sensitive voice data. Additionally, our model accounts for
scenarios where an adversary might compromise the user’s
device to directly access raw audio samples. We also consider

the possibility of an attacker infiltrating the service provider,
or situations where the service provider itself may access the
audio data [3, 27]. This comprehensive threat model covers
both network, device, and server-level attacks, ensuring robust
protection of speech privacy throughout the communication
process. It is crucial to note here that we are not preventing
attackers from accessing the speech data, our focus is on
preventing automated monitoring systems from analyzing
the speech content using advanced speaker verification and
speech recognition techniques.

Compromised Server
(Data Breach)

Compromised 
User Devices
(Malware)

Untrusted
Network
(Eavesdropping)

Adversary

Figure 2: VoiceSecure assumes that a skilled attacker can access
audio by compromising the user devices, exploiting vulnerabilities
in the communication channel, or infiltrating the data server.

Moreover, our adversary model assumes a black-box scenario,
allowing the attacker to employ any state-of-the-art model
for speaker verification and speech recognition. We make
no assumptions regarding the specific models or algorithms
the attacker may use, leaving them free to apply advanced
machine-learning techniques or pre-trained models to analyze
intercepted audio. This approach ensures that our system
is resilient against a wide array of potential adversarial
methods, protecting speech privacy against a broad spectrum
of strategies.

In addressing these concerns, our proposed solution must
fulfill three criteria:

(1) Speech Anonymity: The solution must prevent the
adversary from inferring speaker identities and sensitive
content from the speech audio.
(2) Usability: It is important that the resultant audio should
sound perceptually similar to human listeners to avoid any
disruption to the user’s call experience.
(3) Security: The solution should apply feature-redaction
before the audio is accessed by device software to mitigate
the possibility of any software-based spoofing attacks.

VoiceSecure is specifically designed to safeguard speech
privacy, whether during traditional phone calls or through
advanced teleconferencing applications. However, our
solution extends beyond just audio calls, offering protection
in scenarios where adversaries gain access to audio content
uploaded by users on social media platforms. While existing



Figure 3: Design Overview: VoiceSecure comprises of two modules. The “Adaptive Parameter Tuning module” listens to the speech audio and
predicts the optimal parameters for speech modification, and then the “Speech Modifier module” applies a set of speech modifications based on
the given parameters in real-time to generate a modified speech.

solutions may address similar scenarios, we emphasize that
VoiceSecure provides a versatile and adaptable solution
applicable across a wide range of applications.

Although VoiceSecure is developed primarily for English,
its design is inherently language-agnostic. This is due to
the significant phoneme overlap among languages and the
universal nature of psychoacoustic principles that guide
speech perception. As such, the underlying mechanisms of
VoiceSecure can be applied to other languages with minimal
adaptation, making it suitable for multilingual environments.

VoiceSecure does not account for scenarios where a human
attacker listens to the speech audio to identify the speaker
or access sensitive content. This situation is less relevant
to our application scenario, which focuses on protecting
users against mass surveillance. Assigning human operators
to listen to all user conversations is both inefficient and
impractical at scale. However, we acknowledge that our
system does not safeguard speech privacy from humans.
Our primary goal is to protect speech against automated
monitoring without affecting the flow of communication.

We also acknowledge the risk posed by local eavesdroppers
such as compromised smart home devices or intelligent voice
assistants. These devices, if compromised, could potentially
capture speech before transformation is applied. To mitigate
this, we envision VoiceSecure as a lightweight, pluggable
module that can be integrated directly into local devices,
including phones, laptops, or hardware peripherals, ensuring
that transformation occurs at the source before any data is
transmitted or accessed. Additionally, users can complement
this protection with existing privacy controls and device-level
settings to limit unwanted data collection from local endpoints.

3 Design Overview
The primary objective of VoiceSecure is to develop a system
that can protect user privacy by protecting human speech over
audio calls. VoiceSecure prevents the automated system from
identifying speaker identity and extracting sensitive content

from the speech signal. While modifying speech signals, Voic-

eSecure aims to keep sound perceptually similar to human
listeners in order not to interfere with user experience. Voic-

eSecure targets to apply feature-redaction before getting
accessed by the device software, mitigating the possibility
of any software-based spoofing attacks.

We envision VoiceSecure as a compact low-power microphone
module, similar to any off-the-shelf headphones, that can
seamlessly integrate with existing devices such as phones,
laptops, and tablets via audio jack or Bluetooth. This module
captures speech audio, applies carefully designed speech
modifications in real-time, and transmits the altered audio
to the connected device, ensuring no disruption to the natural
call experience. Figure 3 presents a systematic overview of
VoiceSecure, in which the microphone captures the speech
signal, the adaptive parameter tuning module predicts the
modification parameters, and the speech modifier uses these
parameters to generate a modified speech.

The development of VoiceSecure is divided into three phases:

Designing Speech Modifications: This phase involves
understanding how humans perceive speech signals and
how this differs from machine-based processing. Leveraging
this understanding, we design a set of speech alterations
that effectively deceive automatic speaker identification and
speech recognition systems. These modifications are carefully
crafted to maintain perceptual similarity for human listeners
while disrupting the accuracy of automated systems, ensuring
both privacy and usability.

Adaptive Parameter Tuning: The primary objective of
this module is to adaptively adjust modification parameters
in real-time based on the input speech signal to achieve
maximum speech privacy while preserving the natural flow
of communication for humans.

VoiceSecure Module Development: This phase involves
the implementation of designed modifications on a
microcontroller that can apply these modifications in real-time
and can seamlessly integrate with existing call devices.



4 Fundamental Concepts and Primers
Before delving into the details of VoiceSecure, we first discuss
the basics of human speech and how state-of-the-art speaker
verification and speech recognition systems work.

4.1 Human Speech Basics
Human speech is a complex and intricate process involving
various physiological and linguistic components. At its core,
speech production relies on the coordinated movement of
the vocal tract, including the lungs, vocal cords, pharynx,
and articulators such as the tongue and lips. These organs
work in harmony to produce sounds that convey meaning
and intention. Human speech is made up of various sound
components known as phonemes. A phoneme is the smallest
unit of sound in a language that can distinguish meaning.
These components are combined to form any speech. The
set of possible phonemes is fixed, and the English language
is made up of 44 unique phonemes. Phonemes can be
divided into vowels, consonants, fricatives, nasals, and stops
based on the type of corresponding sound they produce.
Since the possible number of phonemes is fixed for a
particular language, Automatic Speech Recognition systems
are commonly trained to identify the sequence of phonemes
from the speech signal and then combine them to decode the
actual content of the speech. In addition to the phonemes
that are used to articulate words, speech sounds exhibit
distinct pitches, harmonic structures, formants, rhythms, and
intonations, which are intricately linked with the speaker’s
biological traits. These distinctive features serve as pivotal
signatures for speaker identification, forming the base of
automatic speaker verification systems. Figure 4 shows a
spectrogram of the speech and its corresponding formants.

Beyond recognition and verification, speech and acoustic
signals have been explored in diverse domains, including
health monitoring [14, 59], security and privacy [54, 61, 62],
acoustic sensing [9, 10, 25, 26], and spatial perception [17,
41, 60, 67, 78]. These efforts expand the utility of sound
beyond communication, opening up novel directions at the
intersection of acoustics and human-computer interaction.

4.2 Automatic Speaker Verification (ASV)
Automatic Speaker Verification (ASV) systems are innovative
systems designed to identify speakers based on their
unique vocal characteristics. These models utilize advanced
algorithms to analyze speech patterns, pitch, formants,
intonation, and other vocal attributes to verify a speaker’s
identity with a high level of accuracy. There are
signal-processing-based methods that can extract these
attributes from the speech signal and then compare them
for speaker verification. Although these methods have shown
good performance and are favorable in terms of computation,
they are not robust against various environmental factors.
Recently, machine learning-based techniques have also been
used for speaker identification [20,63]. Deep neural networks
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Figure 4: a) The spectrogram of the spoken consonant ‘s’ followed
by the vowel ‘a’ recorded with a microphone, b) The locations of the
first two formants (F1 and F2) for the vowel sound ‘i’ and ‘a’ [55].

are trained to compute hierarchical features from the speech
and learn robust speaker representations that are agnostic to
the speech content, recording channel, and ambient noise.

4.3 Automatic Speech Recognition (ASR)
Speech Recognition systems are widely used in applications
like voice assistants. These systems are designed to
transcribe spoken language into text, enabling seamless
human-computer interaction. Initially, these models extract
features from the speech signal, employing techniques such as
Discrete Fourier Transform (DFT), Mel Frequency Cepstral
Coefficients (MFCC), Linear Predictive Coding, and the
Perceptual Linear Prediction Method. Subsequently, various
statistical models like Hidden Markov Models, Gaussian
Mixture Models, and Deep Neural Networks are utilized for
decoding actual content from the extracted features. Recently,
there has been a surge in end-to-end learning-based methods,
combining whole feature extraction and decoding phases into
a unified model, thus enhancing efficiency and accuracy in
Automatic Speech Recognition.

5 Designing Speech Modifications
Designing effective speech modifications is a pivotal aspect
of VoiceSecure, as it seeks to obscure critical information
from automated speaker identification and speech recognition
systems while maintaining intelligibility and naturalness for
human listeners. Simply adding noise or indiscriminately
altering speech signals would not only prevent automatic
systems from extracting sensitive information but could also
disrupt communication for users. Therefore, VoiceSecure

leverages a more sophisticated approach by carefully crafting
speech modifications that strike a delicate balance between
security and naturalness.

To achieve this, VoiceSecure capitalizes on the inherent
differences between human auditory perception and how
automated systems process speech signals. While automated
systems analyze speech features such as pitch, formants, and
spectral patterns, the human brain processes speech in a
fundamentally different way, heavily relying on auditory cues
that are not necessarily tied to the raw features in the signal.
By exploiting these differences, VoiceSecure ensures that



modifications can obscure speech from automated systems
while preserving its intelligibility for human listeners.

5.1 Psychoacoustic Speech Perception
Human auditory perception is marked by complex
non-linearities that distinguish how we hear sounds from
how they might be physically represented or recorded.
The field of psychoacoustics investigates these unique
perception processes, revealing that the brain does not
process speech simply as a series of sound waves, but
instead as a set of complex, context-dependent features
[39,85]. Further, research shows that the brain has specialized
mechanisms for processing speech, which are distinct from
how non-speech sounds are perceived [42]. Drawing from
extensive psychoacoustic literature, VoiceSecure leverages
these insights to design speech modifications that evade
automated systems while maintaining the naturalness of the
audio for human listeners.

The key psychoacoustic principles foundational to design
VoiceSecure’s speech modifications are as follows [39].

Fundamental Frequency Perception: Humans can tolerate
slight variations in fundamental frequencies, perceiving
two complex tones as distinct yet similar even when their
frequencies are slightly mistuned [39]. This tolerance allows
for subtle pitch alterations without significantly affecting
intelligibility.

Closure Principle: The brain uses the closure principle
to fill in missing auditory information, maintaining sound
continuity even when segments of speech are missing. This
principle allows for small disruptions in the signal without
compromising speech comprehension.

Speech Signal Reversal: Reversing small speech segments
still maintains intelligibility because speech is processed
in phoneme-sized blocks. This property allows for the
introduction of small distortions that are imperceptible to
listeners but can confuse automatic systems.

Haas Effect: The Haas effect demonstrates that slight delays
between two versions of a sound arriving at the ear can
influence its perceived spatial and temporal attributes [75].
By exploiting this phenomenon, we can create echoes that
deceive speaker identification systems without affecting
human perception.

These insights underscore the complex nature of human
auditory perception and provide invaluable insights into the
development of VoiceSecure.

5.2 Implementing Speech Modifications
Building on the psychoacoustic principles outlined above,
VoiceSecure employs a multi-faceted approach to speech

Figure 5: The spectrogram comparison between the original speech
and the speech modified by VoiceSecure reveals that the modified
speech maintains a high degree of perceptual similarity.

modification that targets both the human auditory system
and automated recognition systems.

Eliminating Inaudible Frequency Components: Voic-

eSecure starts by removing inaudible low-amplitude
frequencies from the speech signal, capitalizing on the
human tendency to focus on higher-energy voiced regions
for comprehension. These low-amplitude frequencies do not
contribute significantly to speech intelligibility and can be
discarded without perceptibly affecting the human listener’s
understanding of the message [85].

Manipulating Pitch and Formants: Automatic speaker
recognition systems rely heavily on the pitch and formant
structures of speech. VoiceSecure subtly modifies these
features to confuse speaker identification systems. While
pitch alterations can be detected by humans, the range of
modifications is designed to remain within a perceptible
range, preserving intelligibility while disrupting recognition
by automated models [39].

Introducing Temporal Distortions: Temporal distortions,
such as flipping small time-domain speech windows, are
introduced based on psychoacoustic principles [39]. These
distortions can disorient automatic speech recognition
systems, which typically depend on continuous temporal
features while remaining undetectable to the human listener.

Utilizing the Haas Effect: By introducing slight delays
between the two versions of the speech signal, VoiceSecure

generates echoes that act as background noise for automatic
systems. These echoes effectively obscure the origin of the
speech, complicating automatic speaker recognition processes.
However, these modifications remain imperceptible to human
listeners, as the delay is minimal and does not significantly
affect the naturalness of the speech [75].

Selecting Modification Windows: Drawing from the
closure principle, VoiceSecure selects small speech windows
(approximately 50 milliseconds) for modification. These
windows can be altered with minimal perceptible effect on
human listeners, as small variations within these intervals go
unnoticed by the brain. By strategically selecting modification
windows with appropriate intervals between them, VoiceSe-
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cure ensures natural speech flow and intelligibility.

Combining Time Windows: To prevent abrupt transitions
between modified speech windows, which could introduce
perceptible artifacts, VoiceSecure uses cubic spline fitting
to smooth out the transitions. This technique ensures that
modifications are seamlessly integrated into the speech,
avoiding unnatural jumps or glitches that might otherwise
disrupt the user experience. Figure 5 shows the spectrogram of
speech before and after applying the designed modifications.
It clearly highlights that the modified speech maintains a high
degree of perceptual similarity to the original audio.

While randomly applying these modifications could result
in significant distortions of the speech signal, altering the
perception of the speaker’s identity or disrupting the natural
flow of conversation, VoiceSecure carefully tunes these
parameters. This meticulous adjustment ensures that the
modifications are effective at deceiving automated systems
while remaining imperceptible and non-intrusive for humans.

6 Adaptive Parameter Tuning
VoiceSecure employs a suite of speech modification
techniques, each controlled by a distinct set of
parameters. These parameters dictate key aspects of
speech transformation, including the minimum energy
in audible frequencies, the degree of pitch and formant
shifts, and the timing and strength of added echoes. The
optimal effectiveness of VoiceSecure hinges on dynamically
determining the ideal combination of these parameters in
real-time, based on the characteristics of the input speech.
This approach is essential for protecting user privacy against
speaker identification and automatic speech recognition
(ASR) systems while preserving audio quality for humans.

A fixed set of parameters, though potentially effective
in certain scenarios, poses limitations. Primarily, static

modifications lack adaptability, allowing adversaries to
potentially reverse-engineer these patterns and restore the
original speech content. To address these challenges, we
developed a machine learning model that dynamically
predicts optimal modification parameters, adjusting in
real-time to the unique properties of each speech segment.
This model processes each incoming speech window, predicts
the optimal modification parameters, and passes these to
the modifier to transform the speech accordingly. This
approach continuously achieves an optimal balance between
security and intelligibility, safeguarding the speech signal
from speaker identification and ASR systems without
compromising naturalness or clarity for human listeners.

Our model’s training process is guided by a loss function
designed to balance speech privacy and intelligibility
preservation. The goal is to modify speech in a way
that degrades automated model performance (e.g., speaker
identification or ASR), while ensuring the output remains
intelligible to humans. We formulate the loss as follows:

min
p2P

�(WER(x̃,x)�Similarity(x̃,x)+STOI(x̃,x))

Here, x represents the original speech signal, and p denotes
the set of modification parameters. The function f (x, p)
transforms x into a modified version x̃, designed to reduce
recognizability while preserving intelligibility. The loss
incorporates three components: The term WER(x̃,x) the
word error rate between the original and modified speech,
Similarity(x̃,x) which captures the cosine similarity in
speaker identity, and STOI(x̃,x), the Short-Time Objective
Intelligibility metric, which quantifies how understandable
the speech remains to human listeners.

We aim to maximize WER and minimize speaker similarity to
ensure privacy from automated monitoring systems, while
maximizing STOI to preserve human intelligibility. This
formulation discourages excessive modifications that would
degrade intelligibility, and likewise discourages leaving
the speech unchanged, which would preserve intelligibility
but fail to reduce recognizability. Together, these terms
guide the model to learn transformations that effectively
protect both content and identity while maintaining clear and
understandable speech.

6.1 Model Architecture and Framework
Designing and training a model to dynamically predict
modification parameters for speech presents a new challenge.
The model must process each speech window, predict optimal
modification parameters, apply these through a speech
modifier function, and evaluate the modified speech in terms
of Word Error Rate, speaker similarity, and Short-Time
Objective Intelligibility. However, the non-differentiable
nature of the speech modifier and evaluation metrics makes
conventional backpropagation infeasible, highlighting the
need for an alternative approach.



Instead, our problem aligns naturally with a reinforcement
learning framework, where each speech window represents
a state, modification parameters serve as actions, the speech
modifier acts as the environment, and rewards reflect our
objective of maximizing WER, STOI, and minimizing speaker
similarity. This approach allows the model to iteratively
refine its predictions through trial and error, bypassing
the non-differentiability challenge. Figure 6 illustrates the
training process for our system.

There are various reinforcement learning strategies to
address such challenges, including Q-learning, policy gradient
approaches, and hybrid techniques such as actor-critic. While
Q-learning is effective for discrete action spaces, it struggles
to handle continuous actions efficiently, which are central
to our task. Policy gradient methods, on the other hand,
directly optimize actions but struggle due to high variance in
gradient estimates, leading to unstable training. Among these
strategies, the actor-critic framework emerged as the most
suitable for our system. In this architecture, the actor predicts
the modification parameters for each speech window, while
the critic evaluates the value of each state, providing feedback
to guide the actor toward better actions. The actor-critic
framework’s ability to balance exploration and exploitation,
coupled with its effectiveness in handling continuous action
spaces, makes it ideal for predicting smooth and dynamic
modification parameters. This approach enables the model to
progressively refine its strategies while optimizing for privacy
and intelligibility.

To enhance the model’s contextual awareness, we
incorporated a long short-term memory (LSTM) layer
into the Actor-Critic framework, allowing the model
to capture temporal dependencies between windows.
Additionally, each state includes the past ‘N’ speech windows
and corresponding ‘N’ actions, equipping the model with
historical information necessary for making well-informed
parameter predictions. This architectural choice enables the
model to consider both current and past speech features
along with previous modifications, resulting in smoother,
temporally coherent transformations across windows. Figure
7 illustrates the model architecture, which takes as input
the current speech window (1024 raw samples), two past
speech windows (2×1024), and two past action predictions
(2×6). The architecture consists of a single LSTM layer
with 256 units, followed by two output layers: one of
size 6 for action prediction and another of size 1 for the
value estimate. We set the window size to 1024, as larger
windows increase computational cost and risk introducing
perceptual distortions. Similarly, we use two past windows
to provide sufficient context for smoother modification,
while avoiding the overhead associated with longer temporal
dependencies. Our system is trained to generalize across all
users, eliminating the need for user-specific model retraining.

Figure 7: The Adaptive Parameter Tuning model consists of an
input layer that processes the current speech window along with
past windows and past actions. This is followed by an LSTM layer
and two output layers: an action layer for predicting modification
parameters and a value layer for tuning the model.

6.2 Customized Loss for Robust Learning
The model’s training loss comprises multiple components
designed to encourage both security and naturalness. The
primary loss term, a combination of Word Error Rate (WER),
speaker similarity, and Short-Time Objective Intelligibility
(STOI), serves as the main objective, which we aim to
minimize. This primary loss is formulated as:

Lp =�(WER(x̃,x)�Similarity(x̃,x)+STOI(x̃,x))

where x represents the original speech signal and x̃ denotes
the modified speech signal.

To ensure that the model does not converge on a fixed set
of parameters for an entire speech signal, we introduce a
temporal variation loss. This component encourages diversity
in the parameters across windows, helping to avoid a
static, easily reversible transformation pattern. The temporal
variation loss is computed as the sum of the squared
differences between consecutive predicted parameters:

Lt =� 1
T

T

Â
t=1

k pt+1 � pt k2

where pt and pt+1 are the predicted parameters at consecutive
time steps t and t +1. By promoting temporal variation, this
loss ensures the model generates dynamic transformations
over time, preventing predictable or static patterns. However,
large variations can result in perceptible distortions or "jitters"
in the speech signal.

To mitigate this, we introduce a target-change constraint
to regulate the magnitude of variations in the parameters.
This constraint minimizes excessive shifts, preserving the
naturalness and consistency of the audio while maintaining
diversity. The target-change loss can be formulated as:

Lt =
1
T

T

Â
t=1

k| pt�1 � pt |�Dtarget k2



Where Dtarget is the maximum allowable change in
parameters between consecutive windows. This constraint
limits the degree of modification, ensuring the speech remains
intelligible.

We also apply a diversity loss to prevent random oscillations
and promote the exploration of a broader parameter space. By
incorporating the mean parameters of past N windows p, this
loss encourages diversity and randomness in the predicted
modifications. The mean-action loss is given by:

Ld =� 1
T

T

Â
t=1

k pt � pt k2

Finally, we use a value loss for the critic model, which ensures
that the critic accurately estimates the expected reward for
each state. This value loss is calculated as the squared
error between the predicted reward and the actual reward,
facilitating stable learning in the actor-critic setup. The value
loss is formulated as:

Lv =k Rpred �Ractual k2

The final loss function combines these components, producing
a robust training objective that optimally balances privacy
preservation with intelligibility. The overall training objective
is then:

Ltotal = l1Lp +l2Lt +l3Ld +l4Lv

Where l are hyperparameters that control the relative
importance of each loss component. This final loss function
ensures that the model effectively balances privacy and
intelligibility in the generated speech. We train our model on
the LibriSpeech 40-speaker dataset [46], using X-vector and
DeepSpeech to compute losses based on speaker similarity
and word error rate, respectively. To evaluate the robustness
and generalizability of our system, we test it across four
diverse speech datasets (Table 3) and compare its performance
against three state-of-the-art speaker identification and speech
recognition systems (Table 2). Sections 8 and 9 detail the
experimental setup and present the evaluation results.

7 VoiceSecure Prototype Development

We developed a compact microphone module that can be
easily integrated with existing devices through either an
audio jack or Bluetooth, making it highly versatile for
diverse communication platforms. This module captures live
speech audio, applies frame-by-frame modifications in real
time, and transmits the modified output to any connected
device. To perform speech processing, we implemented the
modifications in Python.

To optimize for lightweight, efficient deployment, we trained
our adaptive speech modification model in PyTorch and

Figure 8: VoiceSecure module: (left) connected to commercial
headphones during an audio call; (right) close-up of the module
showing two audio ports.

converted it to ONNX format [21], reducing its size to 12
MB while preserving functionality. This ONNX format is
compatible with a range of hardware, allowing for real-time
performance on resource-constrained devices.

For prototyping, we used a Raspberry Pi 3 B+ [48] equipped
with a 1.4GHz quad-core processor and 1GB of RAM. With a
connected commercial microphone, the Raspberry Pi enables
seamless integration via both audio jack and Bluetooth,
providing a flexible platform for implementing VoiceSe-

cure’s feature-redaction techniques in compact, standalone
modules. Figure 8 illustrates our module, with a commercial
microphone connected to the system (left) and the processing
module performing real-time modifications (right).

8 Experimental Setup

8.1 State-of-the-art Speech Models
To develop and assess VoiceSecure, we employed a selection
of state-of-the-art models for both speaker verification
and speech recognition, as listed in Table 2. For speaker
verification, we used X-Vector [63], ECAPA-TDNN [20],
and I-Vector [72]. X-Vector is a neural network architecture
designed to extract speaker embeddings, capturing specific
vocal characteristics for accurate speaker verification across
diverse acoustic conditions. ECAPA-TDNN builds on this
by adding channel attention and aggregation mechanisms,
enhancing its ability to distinguish between speakers even in
challenging audio environments. Additionally, we used the
I-Vector as a baseline, providing a compact representation
of speaker characteristics and enabling benchmarking against
the more advanced neural models.

For speech recognition, we incorporated DeepSpeech [6],
Whisper [53], and Wav2Vec 2.0 [8] to evaluate transcription
accuracy. DeepSpeech is an end-to-end model based
on a recurrent neural network (RNN) that translates
speech spectrograms into text, offering reliable transcription



Speaker Verification Speech Recognition
X-Vector [63] DeepSpeech [6]

ECAPA-TDNN [20] Whisper [53]
I-Vector [72] Wav2Vec2 [8]

Table 2: List of state-of-the-art speaker verification models and
speech recognition systems used for evaluation.

DataSet # Speakers # Utterances Usage
LibriSpeech [46] 40 2703 Train
LibriSpeech [46] 900 27000 Test
VoxCeleb1 [43] 1211 6054 Test

CommonVoice [7] - 2945 Test
VCTK [70] 110 5000 Test

Table 3: List of commonly used speech datasets for evaluation.

for continuous speech. Whisper, developed by OpenAI,
leverages a transformer architecture for high-accuracy
transcription across languages and accents, with robustness
in noisy, real-world conditions. Finally, Wav2Vec 2.0, a
self-supervised model trained directly on raw audio, excels in
transcribing speech under low-resource and noisy conditions.
Together, these models provide a comprehensive framework
to evaluate VoiceSecure effectiveness in both protecting
speaker identity and speech content across various use cases.

8.2 State-of-the-art Speech DataSets
Table 3 lists the datasets used to train and evaluate the
performance of VoiceSecure. Initially, we train our adaptive
speech modification controller using the LibriSpeech [46]
40-speaker dataset. For testing both speaker verification
and speech recognition, we then use the LibriSpeech [46]
919-speaker dataset. Additionally, we use the VoxCeleb1
[43] 1211-speaker dataset and the VCTK [70] dataset to
evaluate speaker verification performance. For evaluating
speech recognition accuracy, we utilize the CommonVoice
[7] and VCTK [70] datasets.

8.3 Baseline Methods for Comparison
To benchmark the performance of VoiceSecure, we selected
two widely used signal processing-based anonymization and
masking techniques: McAdams [47] and VoiceMask [51].
These methods were chosen due to their low computational
requirements and applicability on resource-constrained
devices, which makes them suitable for real-world
deployment. MicPro [76] is a recent anonymization
method designed specifically to obscure speaker identity.
However, it is not designed to protect against speech
recognition. In contrast, VoiceSecure is designed to preserve
both speaker identity and speech content from automated
systems. We excluded generative model-based approaches
such as Vcloak [19] and Smack [80], which, despite
their impressive privacy-preserving capabilities, require
significantly more computational resources, making them

impractical for lightweight, real-time deployments on edge
devices. For McAdams and VoiceMask comparison, we
follow the configuration guidelines provided in the GitHub
implementations [73, 82]. Specifically, we set the McAdams
coefficient to 0.8 and the VoiceMask warping factor to
0.1 based on the parameters used in typical evaluations
of these baseline methods. This setup allows us to assess
the effectiveness of VoiceSecure in comparison to these
established techniques.

8.4 Evaluation Metrics
To evaluate the performance of VoiceSecure, we employ the
following metrics commonly used in the field:
(1) MisMatch Rate (MMR): measures the rate at which
the automatic speaker verification (ASV) model incorrectly
verifies speaker identity, reflecting the model’s robustness in
preserving speaker privacy.
(2) Equal Error Rate (EER): represents the point at which
the false acceptance rate (FAR) equals the false rejection rate
(FRR).
(3) Word Error Rate (WER): measures the accuracy of
automatic speech recognition systems by comparing the
number of substitution, deletion, and insertion errors in the
recognized transcription against the true speech.
(4) Short-Time Objective Intelligibility (STOI): assesses
the intelligibility of speech signals by evaluating the similarity
between the original and modified speech signals, helping to
ensure that modifications maintain natural communication.
(5) Latency: measures the time delay introduced by VoiceSe-

cure, critical for real-time applications and user experience.

9 Evaluation
This section summarizes VoiceSecure’s overall performance,
evaluated across six advanced speaker verification and
speech recognition systems using four widely-used speech
datasets. We compare VoiceSecure ’s results to two popular
signal-processing-based anonymization and masking methods
and also assess performance against environmental noise to
demonstrate the robustness of identification and recognition
models in noisy conditions. Our results indicate that VoiceSe-

cure achieves a 52% Word Error Rate and a 33% Speaker
MisMatch Rate while preserving 72% speech intelligibility.

9.1 Comparison with Baseline Methods
This section compares VoiceSecure with two baseline
methods across various speaker verification and speech
recognition models. As shown in Figure 9, VoiceSe-

cure surpasses McAdams in safeguarding speaker identity
(achieving a higher mismatch rate and equal error rate)
and in concealing speech content (higher word error rate).
While in terms of speech protection, VoiceSecure performs
similarly to VoiceMask, it achieves 12% greater intelligibility,
as displayed in Figure 9. The overall results demonstrate



Figure 9: Performance comparison of VoiceSecure against baseline methods across four metrics: speaker mismatch rate, equal error rate, word
error rate, and speech intelligibility evaluated on three speaker verification and speech recognition models.

Method LibriSpeech VoxCeleb VCTK
McAdams 20% 33% 97%
VoiceMask 26% 37% 64%
VoiceSecure 33% 40% 92%

Table 4: Performance comparison of methods across multiple
datasets in terms of mismatch rate.

Method LibriSpeech VCTK CommonVoice
McAdams 27% 68% 83%
VoiceMask 48% 100% 92%
VoiceSecure 52% 106% 92%

Table 5: Performance comparison of methods across multiple
datasets in terms of Word Error Rate (WER). Note that WER above
100% is not an error, and according to the official JiWER docu-
mentation, values above 100% can occur in cases with significant
insertions or discrepancies [2].

VoiceSecure’s balance between privacy protection and speech
quality, making it a robust solution for real-world applications
where intelligibility and security are both crucial.

9.2 Comparison across Diverse Datasets
To assess the robustness of VoiceSecure in different settings,
we tested our system on a variety of commonly used speech
datasets. Table 4 demonstrates that VoiceSecure outperforms
existing methods, consistently achieving higher or comparable
mismatch rates, effectively protecting speaker identity across
all tested datasets. Similarly, Table 5 shows that VoiceSecure

surpasses other methods in obscuring speech content across
three distinct datasets by consistently achieving higher word
error rates. These results highlight that VoiceSecure is highly
generalizable to diverse scenarios and effective for unknown
speakers without the need for additional training.

9.3 Comparison with Benign Noises
In this section, we conduct a comparative analysis of VoiceSe-

cure’s performance against common environmental noises,
including Additive White Gaussian Noise, Babble noise,
crowd talking, city sidewalks, and restaurants. As depicted
in Figure 10, VoiceSecure consistently achieves a higher
mismatch rate and word error rate, indicating its superior
efficacy in concealing sensitive information from automated
systems. This highlights the point that these state-of-the-art
speech models are highly robust against environmental noise,
and simple addition of noise is not enough to protect speech.

Figure 10: Performance comparison of VoiceSecure under various
benign noise conditions, shown in terms of speaker mismatch rate
(left) and word error rate (right).

9.4 Subjective Quality
We conducted a user study to evaluate the real-world
performance of VoiceSecure in preserving speech naturalness
and intelligibility during phone conversations. The primary
goal of the study was to determine whether the modified
speech remains perceptually identical to the original speaker’s
voice, ensuring a natural communication experience.

The study was approved by our Institutional Review Board
(IRB) and carried out in accordance with established ethical
guidelines. We recruited 22 adult participants (ages 18–35)
via departmental email. All of whom were regular users
of voice calls and affiliated with a university setting.
Participation was voluntary, driven by general interest in
speech technology, and no monetary compensation was
provided. All participants provided informed consent prior to
the study. No personally identifiable information (PII) was
collected or stored, and all responses were anonymized before
analysis to ensure confidentiality.

During the study, participants were presented with 15 pairs of
short audio clips, each consisting of two different utterances
from the same speaker. One utterance was unmodified (clean),
while the other was modified using either VoiceSecure or a
baseline method (McAdams or VoiceMask). For each pair,
participants rated two aspects using a 10-point Likert scale:
Speaker Confidence, indicating how confident they were that
both clips were from the same speaker, and Clarity, reflecting
the perceived intelligibility and naturalness of the modified
audio. Each session lasted approximately 20 minutes.

Figure 11 summarizes the subjective ratings collected during
our user study. As shown in Figure 11 (left), VoiceSecure

achieves higher average speaker confidence scores compared



Figure 11: Subjective comparison of VoiceSecure against McAdams
and VoiceMask, evaluated in terms of confidence in speaker similar-
ity (left) and perceived speech clarity (right).

to both McAdams and VoiceMask. Figure 11 (right) shows
that VoiceSecure outperforms VoiceMask in speech clarity but
slightly trails McAdams. To assess the statistical significance
of these trends, we performed paired two-tailed t-tests on
the speaker confidence and speech clarity scores between
VoiceSecure and the two baseline methods. Each participant
rated 15 examples, and we aggregated these responses into a
single mean score per method per participant, resulting in 22
independent samples for comparison. This approach satisfies
the independence assumption required for the paired t-test.
For speech clarity, VoiceSecure significantly outperformed
VoiceMask (p<0.001) and also differed significantly from
McAdams (p<0.001). For speaker confidence, although Voic-

eSecure received higher mean scores than both McAdams and
VoiceMask, the differences were not statistically significant
(p=0.076 and p=0.014, respectively), indicating that perceived
speaker identity remained comparable across methods. This
result is consistent with our objective evaluation, where
McAdams achieves higher intelligibility at the expense of
privacy, while VoiceSecure aims for a more balanced approach.
In contrast, VoiceMask offers lower intelligibility and weaker
privacy protection relative to VoiceSecure. In general, these
findings highlight the ability of VoiceSecure to maintain
speech clarity while preserving speech privacy, making it
a good candidate for real-world application.

9.5 Performance across Different Speakers
In this section, we assess the performance of VoiceSecure

across a diverse range of speakers, which is essential for
ensuring the system’s robustness. Using the LibriSpeech
dataset with 919 speakers, we perform two evaluations. First,
for each speaker, we calculate the mean cosine similarity
between speaker embeddings of the original and modified
speech. Figure 12 (left) presents a cumulative distribution
function (CDF) of cosine similarity, showing that VoiceSe-

cure consistently achieves lower similarity, making it more
challenging for speaker identification models to recognize
the speaker. Second, we compute the mean Word Error Rate
(WER) for each speaker. Figure 12 (right) illustrates that
VoiceSecure effectively hinders automated speech recognition
across speakers, consistently achieving high WER and thereby
supporting robust privacy protection across diverse voices.

Figure 12: The CDF plot illustrating cosine similarity between
speaker embeddings (left) and word error rate (right) across a diverse
range of speakers.

Figure 13: Ablation study showing the impact of individual trans-
formations and fixed-parameter approach in terms of both speaker
mismatch rate (left) and word error rate (right).

9.6 Ablation Study
VoiceSecure applies a combination of speech transformations
to protect user speech from automated monitoring. To
understand the individual contribution of each transformation,
we conduct an ablation study using the LibriSpeech dataset.
In this study, we systematically disable one transformation at
a time while keeping the others active.

The transformations examined include: inaudible frequency
removal, pitch modification, formant shifting, temporal
flipping, and echo addition. We evaluate the impact of each
component by measuring the degradation in VoiceSecure’s
effectiveness in terms of speaker identification and speech
recognition. Speaker Mismatch Rate (MMR) is computed
using X-vector, and Word Error Rate (WER) is measured
using DeepSpeech.

Figure 13 presents the results of this analysis. The dotted
line represents the baseline performance of VoiceSecure with
all transformations enabled. The figure highlights the unique
contribution of each transformation and demonstrates how
their combined effect enables robust speech protection.
Inaudible frequency removal is the most impactful component,
contributing the largest gains in both WER and MMR,
because it removes frequency cues that are informative to both
ASR and speaker embedding models. Pitch modification plays
an important role in speaker anonymization, as it disrupts
vocal traits critical for speaker identification. Temporal
flipping affects ASR more than speaker identification,
suggesting its role is primarily in content disruption. Echo
addition and formant have minimal effect on privacy but
improve perceptual smoothness, helping the modified speech
remain natural to human listeners.



Figure 14: Adversarial evaluation results. (a–c) Speaker Mismatch Rate (MMR) across LibriSpeech, VoxCeleb, and VCTK using X-vector,
ECAPA, and i-vector under different enrollment–test configurations. (d) Word Error Rate (WER) of Whisper-base before and after fine-tuning
on VoiceSecure modified speech, evaluated on CommonVoice and VCTK.

In addition, we compare our reinforcement learning-based
adaptive method with a fixed-parameter approach to assess
its effectiveness in enhancing speech privacy. For this
comparison, we modify samples from the LibriSpeech dataset
using both methods and evaluate the resulting audio using
the same MMR and WER metrics. As shown in Figure 13,
the adaptive tuning approach consistently outperforms
the fixed-parameter approach, offering improved protection
against both speaker identification and ASR systems.

9.7 Latency
This section evaluates the latency performance of VoiceSe-

cure, which is crucial for real-time operation. In this test, we
configured VoiceSecure to listen to an incoming speech and
apply modifications in real-time on a frame-by-frame basis.
We record data for 30 minutes and compute the time taken
to process each frame. Figure 15 presents the cumulative
distribution function (CDF) of 28,125 frames, showing that
VoiceSecure achieves a median latency of 25 milliseconds.
The red line represents the maximum acceptable latency
threshold for audio communication systems, confirming that
VoiceSecure operates within the required limits for seamless,
real-time interaction [58, 66].

Figure 15: The CDF plot of latency showcases the distribution of
processing delays across frames, with a marked line indicating the
acceptable latency threshold for real-time audio applications.

10 Adversarial Evaluation
To assess the robustness of VoiceSecure against adaptive
adversaries, we conducted a targeted adversarial evaluation
simulating realistic threat scenarios. Specifically, we
modeled a knowledgeable attacker who has access to our
transformation pipeline and aims to circumvent speech
protection by adapting automated systems for speaker
identification and speech recognition.

Speaker Identification Attack: In this evaluation, we
simulate a knowledgeable adversary attempting to defeat
speaker anonymization by enrolling and testing speaker
samples that have been modified by VoiceSecure. The goal is
to assess whether speaker embeddings remain discriminative
despite having access to the modified samples.

We use three standard speech datasets: LibriSpeech,
CommonVoice, and VCTK. We process the audio from
each dataset through the VoiceSecure pipeline to generate
protected versions. Speaker identification performance is
evaluated in three configurations: using clean speech for both
enrollment and testing, using clean speech for enrollment and
VoiceSecure-modified speech for testing, and using VoiceSe-

cure-modified speech for both enrollment and testing. These
scenarios allow us to evaluate both worst-case and adaptive
attacker behavior. We employ X-vector, ECAPA-TDNN, and
i-vector, three widely used speaker identification models.

Figure 14(a), (b), and (c) show the speaker mismatch results
for LibriSpeech, VoxCeleb, and VCTK datasets, respectively.
As expected, clean-clean configurations yield the lowest
mismatch rates, reflecting strong speaker identity preservation.
However, when clean speech is used for enrollment and
VoiceSecure-modified speech for testing, the mismatch rate
increases sharply across all models and datasets, indicating
that speaker embeddings from clean and transformed audio
are no longer well aligned. In the adaptive setting, where
both enrollment and testing are done on protected speech,
the mismatch rate drops slightly but still remains higher than
the clean baseline. These results demonstrate that while a
knowledgeable attacker can reduce the mismatch rate slightly
by adapting to the transformation, VoiceSecure still provides
strong protection against speaker identification attacks.

ASR Adaptation Attack: In this evaluation, we simulate
an adversary attempting to defeat speech content obfuscation
by adapting an automatic speech recognition (ASR) model
to VoiceSecure. This scenario models a determined attacker
who has access to a large amount of protected speech and
fine-tunes their ASR system accordingly.

We begin by applying VoiceSecure to speech samples
from the LibriSpeech dataset, 27000 speech samples with
durations ranging from 3 to 30 seconds. These transformed



audio samples are then used to fine-tune the open-source
Whisper-base ASR model. The goal is to reduce the WER by
learning to decode the protected speech, effectively reversing
the impact of VoiceSecure. After fine-tuning, we evaluate
the model on the CommonVoice and VCTK speech datasets
protected using VoiceSecure. We compare the WER of the
fine-tuned model against two baselines: (1) the Whisper-base
model evaluated on clean speech, and (2) the Whisper-base
model evaluated on protected speech.

Figure 14(d) presents the WER across these three conditions.
While fine-tuning on protected speech leads to a modest
reduction in WER compared to the unadapted baseline,
the performance remains substantially worse than the
clean-speech case. This indicates that even with access to
thousands of protected examples, the adapted ASR model
cannot fully recover intelligible transcriptions. These results
demonstrate that VoiceSecure effectively impairs speech
recognition even under adversarial adaptation, preserving
speech content privacy in the face of realistic ASR retraining
attacks. Moreover, collecting a sufficiently large corpus
of protected speech with ground-truth transcriptions is
non-trivial. An attacker would either need to manually
transcribe protected audio using human annotators or
employ our system to generate protected samples along with
corresponding labels, both of which introduce significant
logistical and operational barriers.

Discussion: While VoiceSecure demonstrates strong
resilience to adversarial attacks, its robustness can be further
enhanced by applying the transformation multiple times.
However, doing so naively may degrade intelligibility, so
a more effective approach is to train an adaptive controller
that dynamically determines the number of passes and
parameter configurations at runtime. This would make
it significantly harder for attackers to curate consistent
samples for fine-tuning or enrollment. We leave this adaptive
reprocessing strategy as promising future work to strengthen
defense against increasingly sophisticated threats.

11 Related Work
Attacks on Verification Models
Existing voice anonymization and masking methods are
primarily based on signal processing (SP), voice conversion
(VC), and voice synthesis (VS). Signal processing methods
[47, 69] modify speaker-related features such as formants,
pitch, and tempo, but often degrade audio quality by
overlooking intelligibility and naturalness. Voice conversion
[49, 50, 64, 79] and voice synthesis [24, 29, 32, 40] methods
convert speech into a different sounding voice, achieving
anonymity but sacrificing the user’s natural vocal identity,
making them less suitable for use cases that require both
privacy and naturalness.

Adversarial methods have also been proposed to fool ASV
systems by adding imperceptible perturbations [15, 22, 36,

37, 84], but these are typically generated via slow, iterative
processes and are impractical for real-time deployment.
More recent systems like FAPG [77] and VCloak [19]
offer improved intelligibility and naturalness, yet primarily
focus on anonymizing speaker identity and fail to protect
speech content from ASR systems. In contrast, VoiceSe-

cure is designed to protect both speaker identity and speech
content from automated monitoring, all while preserving the
naturalness of speech for human listeners.

Adversarial Attacks on Recognition Models
Adversarial attacks on automatic speech recognition involve
creating examples that are transcribed differently by machines
while appearing natural to humans [74]. Early efforts
designed obfuscated commands unintelligible to humans
but effective against GMM-based ASR systems [12], while
CommanderSong [81] embedded adversarial perturbations
into music to fool DNN-based models. Gradient-based
methods further optimized adversarial audio using CTC loss
[13]. Researchers have also looked at ways to improve the
practicality and stealthiness of adversarial audio examples.
Metamorph [16] studied mechanisms to enhance the survival
of the adversarial audio examples in over-the-air transmission,
while Schonherr et al. [57] adopted a psychoacoustic model
lowering the signal guided by human hearing thresholds
to increase the stealthiness of adversarial audio examples.
Similarly, imperceptible and robust adversarial examples were
generated by researchers to successfully attack the Lingvo
ASR system in real-world scenarios [52]. While effective,
most of these attacks assume white-box access to the target
model. To address this, black-box approaches have been
explored using signal pre-processing [5] or local model
approximations, as in Devil’s Whisper [18]. However, none
of these methods generate real-time perturbations capable of
simultaneously deceiving both ASR and ASV systems.

Recently, SMACK [80] proposed semantic adversarial
perturbations by altering pitch, tone, and phoneme duration to
fool both ASR and ASV systems. However, it is not capable
of generating perturbations in real-time, which limits its
effectiveness in live call scenarios. In this paper, we propose
a real-time system that can jointly deceive both speaker
verification and speech recognition systems.

12 Conclusion
VoiceSecure presents an innovative microphone module that
protects user privacy from automated speaker identification
and speech recognition while preserving natural audio
quality. It combines signal-processing-based modifications
with a reinforcement learning model that adaptively tunes
parameters in real time. Implemented on an off-the-shelf
microcontroller, VoiceSecure integrates easily with existing
devices. Evaluations show that it outperforms existing
methods in safeguarding voice data from automated
monitoring while maintaining human intelligibility.
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14 Ethical Consideration
This study was conducted with strict adherence to ethical
guidelines to ensure participant privacy, transparency, and
voluntary engagement. We recruited 22 adult participants,
aged between 18 and 35, all of whom were regular users
of voice calls and affiliated with a university setting. No
personally identifiable information (PII) was collected or
stored at any stage of the study. All responses were
anonymized before analysis to maintain confidentiality. Our
study is approved by the IRB. Participants were presented
with pairs of short audio samples from the same speaker: one
unmodified and the other modified using either VoiceSecure

or a baseline method, and were asked to evaluate speech in
terms of clarity and similarity to the original speaker. Each
session lasted approximately 20 minutes, and no monetary
or material compensation was provided. All participants
were informed about the nature of the study and voluntarily
consented to participate. When implementing and testing our
system, we refrained from targeting any specific commercial
or open-source systems running online. All evaluations were
conducted offline using controlled environments on desktops
to ensure that our research does not interfere with or disrupt
any external systems.

Our work aims to empower users by protecting their
speech from automated monitoring, thereby mitigating the
risks of mass surveillance and safeguarding privacy. While
we acknowledge the dual-use nature of such technology,
enhancing privacy for legitimate users but potentially being
misused by malicious actors to evade detection, this is
not a significant concern. Our system is designed to
preserve intelligibility for human listeners, ensuring that
authorities with proper legal authorization can still monitor
and identify malicious individuals through traditional means.
This approach strikes a balance between privacy protection
and accountability.

15 Open Science
In compliance with open science principles, we publicly
release our source code, pre-trained models, and dataset to
facilitate reproducibility and foster further research in the
field.1.
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A Artifact Appendix

A.1 Abstract
We present the artifact for the paper, titled "For Human Ears
Only: Preventing Automated Monitoring on Voice Data". It
includes the datasets, code, and models necessary for training
and reproducing the major results presented in the paper. As
voice communication becomes an essential part of modern
life, the exposure of sensitive information through audio calls
presents significant privacy risks. Malicious actors can gain
access to this data by compromising user devices, exploiting
communication channels, or attacking data servers, making it
vulnerable to automated monitoring systems that can identify
speakers and extract speech content. To address these privacy
concerns, we introduce VoiceSecure, the first microphone
module designed to prevent automated monitoring of speech
while preserving its natural sound for humans. By leveraging
the principles of human auditory perception, VoiceSecure
employs a set of speech modifications that are adaptively
tuned in real-time to obscure speaker identity and speech
content, without compromising the audio quality for humans.

This artifact supports the goals of open science and repro-
ducibility by providing all necessary components to replicate
the core results of the paper. It includes source code, pre-
trained models, processed datasets, evaluation metrics (WER,
MMR, STOI), and scripts to generate all key figures and ta-
bles. The artifact allows evaluators to apply VoiceSecure trans-
formations, measure their impact on speech recognition and
speaker identification systems, and verify that the transforma-
tions preserve intelligibility—thereby validating the paper’s
major claims.

A.2 Description & Requirements
This section lists all the information necessary to recreate the
same experimental setup we have used to develop our system.

A.2.1 Security, privacy, and ethical concerns

Our artifact presents no known security, privacy, or ethical
risks to evaluators or their systems. It does not require admin-

istrative access, disabling of any security mechanisms, or the
use of potentially harmful scripts or binaries.

A.2.2 How to access

The complete artifact is permanently archived and accessi-
ble via Zenodo at the following DOI: https://doi.org/10.
5281/zenodo.15603263 This archive includes:

• VoiceSecure source code

• Pre-trained models

• Scripts for evaluation, metrics computation, and figure
generation

• Instructions for training on custom datasets

• Precomputed results used in the paper

• A detailed Readme to guide setup and execution

A.2.3 Hardware dependencies

None. The artifact is designed to run on standard consumer-
grade hardware. No GPU is required. All evaluations can be
performed using a CPU machine with at least 8 GB of RAM.

A.2.4 Software dependencies

The artifact requires:

• Python 3.8, with packages listed in the provided require-
ments.txt

• MATLAB R2021a or later, with the following tool-
boxes: Audio, Signal Processing, and 5G Toolboxes.

A.2.5 Benchmarks

The following datasets and models were used in the experi-
ments presented in the paper:

• Speech Datasets: Open-source corpora including Lib-
riSpeech, VoxCeleb, CommonVoice, and VCTK.

https://doi.org/10.5281/zenodo.15603263
https://doi.org/10.5281/zenodo.15603263
https://www.openslr.org/12
https://www.openslr.org/12
https://www.robots.ox.ac.uk/~vgg/data/voxceleb/
https://commonvoice.mozilla.org/en
https://datashare.ed.ac.uk/handle/10283/2950


• User Study Responses: Collected from human listeners
to evaluate perceptual intelligibility using STOI.

• Speech Recognition: Whisper, DeepSpeech, and
Wav2Vec2.

• Speaker Verification: x-vector, ECAPA-TDNN, and i-
vector models.

All benchmark data (except raw VoxCeleb audio due to li-
censing) and model outputs—including speaker embeddings,
mismatch rates (MMR), WER, and STOI scores—are in-
cluded in the artifact package. Pre-trained speaker verification
models are bundled with the artifact. Open-source speech
recognition models are supported and installed via dependen-
cies specified in requirements.txt.

A.3 Set-up
This section provides detailed steps to install and configure
the environment necessary for evaluating the VoiceSecure
artifact. Following the instructions below, evaluators will be
able to run a basic test to verify the correct installation and
functionality of all required components. Please note that the
full setup process may take approximately 2 hours.

A.3.1 Installation

1. Download the artifact files from Zenodo: https://
doi.org/10.5281/zenodo.15603263 The download
includes two zip files: Data2.zip (23 GB), and VoiceSe-
cure_Artifacts_Scripts.zip (1.5 GB).

2. Unzip both files into a common directory. Your direc-
tory structure will look like:

• Data2/

• ScriptForApplyingVoiceSecure/

• ScriptForTrainingModel/

• ScriptForComputingMetrics/

• ScriptsForCompiledResults/

• ScriptForDataSetCreation/

• Trained_Model/

• Testing_Installation/

• requirements.txt

• README.md

3. Install Miniconda (if not already installed):
bash Miniconda3-latest-Linux-x86_64.sh
source /miniconda3/bin/activate

4. Create and activate a conda environment:
conda create –name py38 python=3.8.18
conda activate py38

5. Install Python dependencies:
pip install -r requirements.txt

6. MATLAB Dependencies: MATLAB (R2021a or later)
with the Audio, Signal Processing, and 5G toolboxes.

7. To run DeepSpeech-based evaluations:

• Clone from the GitHub: https://github.com/
SeanNaren/deepspeech.pytorch

• Navigate to the repo

• pip install -r requirements.txt

• Ensure this repo is added to your environment path.

A.3.2 Basic Test

To verify that the installation has been completed suc-
cessfully, we provide a testing script located in the
Testing_Installation/ directory. This script performs
checks to ensure that all major components of the system
are functional, including the VoiceSecure model, the speaker
embedding models (x-vector, ECAPA), and the ASR mod-
els used for computing word error rates (Whisper, Deep-
Speech, Wav2Vec2). To run the test, execute the script
TestPythonInstallation.py. If the setup is correct, the
script will print seven confirmation messages, each beginning
with the word "Functional", corresponding to the various
components being tested. At the end, it will display the mes-
sage "Installation complete", indicating that all neces-
sary modules are working as expected.

A.4 Evaluation workflow
VoiceSecure is a speech transformation method designed to
obfuscate speaker identity and speech content while preserv-
ing intelligibility for human listeners. To evaluate its effec-
tiveness, we perform three key types of evaluation:

1. Speaker Verification: We use three state-of-the-art
speaker verification models (X-Vector, ECAPA-TDNN,
and i-Vector) to extract speaker embeddings from both
the original and VoiceSecure-modified speech. We then
compute the speaker mismatch rate (MMR), which quan-
tifies how often the modified speech is misidentified
as originating from a different speaker. A higher mis-
match rate indicates stronger anonymization, which is
the desired outcome.

2. Word Error Rate (WER): To assess the impact of
VoiceSecure on speech recognition accuracy, we eval-
uate the modified speech using three automatic speech
recognition (ASR) models: Whisper, DeepSpeech, and
Wav2Vec2. We compute the WER for both original and
modified speech. A higher WER reflects greater disrup-
tion to ASR systems, which is the intended effect.

https://doi.org/10.5281/zenodo.15603263
https://doi.org/10.5281/zenodo.15603263
https://github.com/SeanNaren/deepspeech.pytorch
https://github.com/SeanNaren/deepspeech.pytorch


3. Speech Intelligibility: We measure intelligibility using
the Short-Time Objective Intelligibility (STOI) metric,
which correlates strongly with human perceptual scores.
In this context, a higher STOI score is desirable, as it in-
dicates that the modified speech remains understandable
to human listeners despite the applied transformations.

Our artifact includes all necessary scripts to apply VoiceSe-
cure modifications, compute speaker embeddings, mismatch
rate, WER, and STOI scores. It also provides original and
transformed speech samples, along with pre-computed embed-
dings, mismatch rates, WERs, and STOI scores. In addition,
we include MATLAB scripts that generate the key figures and
tables from the paper using the pre-evaluated data.

A.4.1 Major Claims

(C1): VoiceSecure achieves a 52% Word Error Rate, 33%
Speaker Mismatch Rate, and 72% intelligibility, demon-
strating its ability to protect privacy while preserving
human understanding. (Section 9)

(C2): Compared to existing baselines, VoiceSecure offers a
better trade-off between privacy and intelligibility, out-
performing McAdams in both speaker anonymization
and ASR obfuscation, and exceeding VoiceMask by 12%
in intelligibility. (Section 9.1, Figure 9)

(C3): Subjective evaluations confirm that VoiceSecure main-
tains perceived speech clarity while enhancing privacy,
making it suitable for real-world deployment. (Section
9.4, Figure 11).

A.4.2 Experiments

(E1): [60 human-minutes + 20 compute-hours] This experi-
ment evaluates VoiceSecure’s effectiveness in anonymiz-
ing speaker identity and obfuscating speech content, sup-
porting major claim C1.
Preparation: Ensure all dependencies are installed.
Confirm the availability of the pre-trained VoiceSecure
model and evaluation datasets.
Execution: Run the scripts in
ScriptForApplyingVoiceSecure/ to apply the
transformation and generate modified speech samples.
Then execute ComputeSpeakerEmbeddings.py and
ComputeWER.py to compute and store speaker em-
beddings and word error rates, respectively. For this
experiment, we recommend using the LibriSpeech
dataset along with the X-Vector and DeepSpeech for
speaker embeddings and word error rates, respectively.
As this process is computationally intensive, we
also provide pre-modified speech samples as well as
pre-computed embeddings and word error rates. Finally,
run the scripts in ScriptForComputingMetrics/ to
compute the speaker mismatch rate, mean word error
rate, and speech intelligibility scores.

Results: The experiment outputs speaker mismatch
rates, word error rates, and intelligibility scores, support-
ing claim 1.

(E2): [60 human-minutes + 30 compute-hours] This experi-
ment supports major claim C2 by comparing VoiceSe-
cure against baselines across various state-of-the-art
speaker verification and speech recognition systems in
terms of privacy protection and intelligibility.
Preparation: Ensure Data2/LibriSpeech_Dev/ con-
tains speaker embeddings (for three models), word error
rates (for three models), and intelligibility scores for both
original and processed speech samples (noise, McAdams,
VoiceMask, and VoiceSecure).
Execution: Use the scripts in ‘ScriptForComputingMet-
rics/’ to compute and store MMR, WER, and STOI
for all methods. Then run the ‘ScriptsForCompile-
dResults/Plotting_Compiled_Results’ MATLAB script
to generate comparison figures.
Results: This reproduces Figure 9 in the paper, demon-
strating that VoiceSecure achieves a superior trade-off
between privacy and intelligibility compared to existing
methods.

(E3): [10 human-minutes + 0.1 compute-hour] This exper-
iment supports major claim C3 by analyzing listener
feedback on perceived speech intelligibility after trans-
formation.
Preparation: Navigate to Data2/UserStudy/ and ver-
ify that the listener response data is present.
Execution: Run the provided MATLAB script ‘Scripts-
ForCompiledResults/Plotting_UserStudy_Results’ to
process user study responses and generate aggregated
perceptual scores.
Results: The experiment reproduces the user study re-
sults (Figure 11) in the paper, validating that VoiceSecure
maintains high perceived intelligibility while offering
strong privacy protections.

A.5 Notes on Reusability
The scripts in ScriptForApplyingVoiceSecure/ allow
users to apply VoiceSecure-based modifications to any speech
dataset, enabling privacy protection across diverse use cases.
Additionally, the script in ScriptForTrainingModel/ en-
ables training the model from scratch on custom datasets,
allowing adaptation to different domains or data conditions.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/
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