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1. SYNONYMS
Continuous query processing; Temporal analytics; Dynamic social
networks; Incremental computation.

2. INTRODUCTION
Since the inception of online social networks, the amount of so-

cial data that is being published on a daily basis has been increasing
at an unprecedented rate. Smart, GPS-enabled, always-connected
personal devices have taken the data generation to a new level by
making it tremendously easy to generate and share social content
like check-in information, likes, microblogs (e.g., Twitter), multi-
media data, and so on. There is an enormous value in reasoning
about such streaming data and deriving meaningful insights from it
in real-time. Examples of potential applications include advertis-
ing, sentiment analysis, detecting natural disasters, social recom-
mendations, personalized trends, spam detection, to name a few.
There is thus an increasing need to build scalable systems to sup-
port such applications. Complex nature of social networks and their
rapid evolution, coupled with the huge volume of streaming social
data and the need for real-time processing, raise many computa-
tional challenges that have not been addressed in prior work.

Social network data comprises of two major components. First,
there is a network (linkage) component that captures the underlying
interconnection structure among the entities in the social network.
Second, there is content data that is typically associated with the
nodes and the edges in the social network. The social network data
stream contains updates to both these components. The structure
of the network may itself change rapidly in many cases, especially
when things like webpages and user tags (e.g., Twitter hashtags)
are treated as nodes of the network. However, most of the social
network data stream consists of updates to the data associated with
the nodes and the edges, e.g., status updates and other content up-
loaded by the users, communication among the users, and so on.
There is interest in performing a wide variety of queries and ana-
lytics over such data streams in real time. The queries can range
from simple publish-subscribe queries, where a user is interested
in being notified when something happens in his friend circle, to
complex anomaly detection queries, where the goal is to identify
anomalous behavior as early as possible.

In this paper, we present an introduction to this new research
area of stream querying and reasoning over social data. This area
combines aspects from several well-studied research areas, chief
among them, social network analysis, graph databases, and data
streams. We provide a formal definition of the problem, survey the
related prior work, and discuss some of the key research challenges
that need to be addressed (and some of the solutions that have been
proposed). We note that we use the term stream reasoning in this
paper to encompass a broad range of tasks including various types
of analytics, probabilistic reasoning, statistical inference, and logi-
cal reasoning. We contrast our use of this term with the recent work
by Valle et al. [104, 105] who define this term more specifically to

refer to integration of logical reasoning systems with data streams
in the context of the Semantic Web. Given the vast amount of work
on this and related topics, it is not our intention to be comprehen-
sive in this brief overview. Rather we aim to cover some of the key
ideas and representative work.

3. PROBLEM DEFINITION
An online social network is defined to be a community of peo-

ple (called users) connected via a variety of social relations, that
use online technologies to communicate with each other and share
information. Social data is defined to be the data arising in the
context of a social network that includes both the embedded struc-
tural information as well as the data generated by the users. Online
social networks continuously generate a huge volume of such so-
cial data that includes both structural changes to the network and
updates that are associated with the nodes or the edges of the net-
work. The task of “stream querying and reasoning” refers to ingest-
ing and managing such continuously generated data, and querying
and/or reasoning over it in real-time as the data arrives.

To make the discussion more concrete and formal, let Gt(Vt, Et)
denote the underlying social graph at time t, with Vt and Et denot-
ing the sets of nodes and edges at time t respectively. In general, Gt
is a heterogeneous, multi-relational graph that may contain many
different types of nodes and may contain both directed and undi-
rected edges (Figure 2 shows an example graph). Along with nodes
representing the users of the network, Vt may include other types of
nodes, e.g., nodes representing communities or groups, user tags,
webpages, and so on. Similarly, Et includes not only symmetric
friendship (or analogous) edges, but may include asymmetric fol-
lows edges, membership edges, and other types of semi-permanent
edges that are usually in existence from the time they are formed
till the time they are deleted (or till the current time). We distin-
guish such edges from transient edges that can be used to capture
specific interaction between two nodes in Vt (e.g., a message be-
ing sent from one node to another). A transient edge is typically
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Figure 1: High-level overview of a stream querying system
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Figure 2: Example of a multi-relational, heterogenous dynamic graph

Notation Description
Gt(Vt, Et) current state of the network
M≤t transient edges generated till time t
f1(), f2(), ... stream querying or reasoning tasks
N k(v) k-hop ego network of node v

Table 1: Notation

time-stamped and is only valid for the specific time instance. To al-
low us to clearly distinguish between these two types of edges, we
do not include such transient edges in Et; instead, we use M≤t to
denote all such transient edges that were generated from the begin-
ning (i.e., from time 0) till time t. This distinction is not necessary,
but affords clearer distinctions between different types of stream
reasoning tasks in many cases.

The information associated with the nodes and edges can be cap-
tured through a set of key-value pairs (also called attribute-value
pairs) associated with them. We once again can make a distinction
between semi-permanent information associated with the nodes or
the edges (e.g., user names, interests, or locations) and transient
information associated with them (e.g., status updates). The for-
mer type of information can be seen as being valid for a given time
period, whereas the latter is typically associated with a single time
instance.

Given this, we define a stream reasoning or querying task to be
a declaratively-specified query or an analysis or reasoning task that
is posed (submitted) once by the user, but is executed continuously
(or periodically with a user-specified frequency) as updates arrive
into the system (Figure 1). Along with a task, denoted f(), the user
must specify what forms the input to the task, when to compute the
output, and when to return the output to the user.

In many cases, the input is the current graph, i.e., the input is
Gt(Vt, Et) (that is continuously changing). An example of such a
task is dense subgraph maintenance [18] where the goal is to com-
pute and maintain the dense subgraphs in a dynamically chang-
ing graph. In other cases, the input to f() may be defined using
a sliding window, i.e., it may be defined as the set of all updates
that arrived in recent past. An example of such a task is continu-
ously identifying dense subgraphs in the graph formed by all mes-
sage edges over say the last 24 hours (i.e., the input to the task is
M≤t −M≤(t−24 hours)). As time progresses, the window slides
and new message edges will be added to the graph and old message
edges (that fall out of the window) will be deleted.

The second key issue is when to compute the output and when

to return it to the user. In some cases, the user may desire contin-
uous execution of the query, i.e., for every relevant change in the
input, f() needs to be recomputed (either from scratch or incremen-
tally). Anomaly detection queries typically need to be executed in
this fashion since anomalies must be detected as soon as they are
formed. But in other cases, the user may specify a frequency with
which to execute the query or the task (e.g., every hour or every
day). Finally, for simplicity, we will assume that the user should
be notified any time the output of f() is computed and is differ-
ent from the prior output. However, in many cases, the output may
need to be returned to the user only when he asks for it. In those
cases, partial pre-computation of the query results (with the rest of
the processing performed at query time) becomes a possibility.

4. HISTORICAL BACKGROUND
Stream querying and reasoning over social networks combines

aspects from several different research areas that have been very
well studied over the last few decades. Here we will provide very
brief background on three of the most closely related research ar-
eas: social network analysis, data streams, and graph databases.
A more detailed background, including references to related work,
can be found in an extended version of this article 1.

Social network analysis: Social network analysis, sometimes called
network science, has been a very active area of research over the
last decade, with much work on network evolution and informa-
tion diffusion models, community detection, centrality computa-
tion, and so on. We refer the reader to well-known surveys and
textbooks on that topic (see, e.g., [93, 97, 31]). There has been an
increasing interest in dynamic or temporal network analysis in re-
cent years, fueled by the increasing availability of large volumes of
temporally annotated network data and the real-time requirements
of various popular online services. Such analysis has the potential
to lend much better insights into various phenomena, especially
those relating to the temporal or evolutionary aspects of the net-
work. Many works have focused on designing analytical models
that capture how a network evolves, with a primary focus on social
networks and the Web (see, e.g., [6, 74, 72]). There is also much
work on understanding how communities evolve, identifying key
individuals, locating hidden groups, identifying changes, and visu-
alizing the temporal evolution, in dynamic networks [28, 101, 100,
57, 84, 22, 76, 44, 96, 32, 17, 10]. Most of that prior work, how-
ever, focuses on off-line analysis of static datasets. Berger-Wolf et
al. [28, 101], Tang et al. [100] and Greene et al. [57] address the
1http://www.cs.umd.edu/~jayanta/papers/SRQ-ESNAM.pdf
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problem of community evolution in dynamic networks. McCul-
loh and Carley [84] present techniques for social change detection.
Asur et al. [22] present a framework for characterizing the com-
plex behavioral patterns of individuals and communities over time.
In a recent work, Ahn et al. [11] present an exhaustive taxonomy
of temporal visualization tasks. Ren et al. [96] analyze evolution
of shortest paths between a pair of vertices over a set of snapshots
from the history. More generally a network analyst may want to
process the historical trace of a network in different, usually unpre-
dictable, ways to gain insights into various phenomena. We note
that, although some of the above work focuses on temporal aspects
of social network data, none of it tries to do stream query or reason-
ing in an online fashion. Instead the focus in this work is on offline
analysis of static datasets.

Data streams: Data stream management is another research area
that has seen tremendous amount of work over the last decade
(see [5, 91, 54] for comprehensive surveys), resulting in several
data management systems being built (e.g., NiagaraCQ [92], Tele-
graphCQ [81], STREAM [87], Aurora [3], HiFi [42], to name a
few). That work was spurred by the increasing volumes of data be-
ing generated in an online fashion that needed to be processed and
analyzed in real-time. continuous query evaluation. Unlike a one-
time query, for a continuous query (also sometimes called a stand-
ing query), the system is expected to keep the answer up-to-date
as new data arrives. Such queries are often observed in publish-
subscribe systems or complex event processing systems [42, 43, 34,
39, 49, 48, 46, 8, 107], where a centralized system is typically in
charge of ingesting the published data from the data sources, and
deciding if any updates need to be sent to the subscribers (whose
subscriptions can be viewed as continuous queries) or if any events
need to be generated. Efficiently supporting continuous queries
over rapidly changing data streams has seen much work over the
last decade.

Several SQL extensions have also been proposed to express con-
tinuous queries over data streams. Similarly, languages have also
been designed for specifying event patterns to be matched against
data streams (e.g., SASE [61]). Continuous query processing also
bears strong resemblance to materialized view maintenance, an area
that has also seen much work [59]. The key difference between
the two research areas has been that: continuous query processing
systems are designed to simultaneously support large numbers of
relatively simple queries over highly dynamic data, whereas view
maintenance techniques usually focus on a small number (usually
just one) of more complex queries. The former also tend to build in-
termediate data structures like predicate indexes to efficiently iden-
tify the queries whose results are affected by new updates. An-
other line of work has focused on development of one-pass algo-
rithms that can incrementally compute some quantities of interest
over very large volumes of data (e.g., statistics or aggregates) while
using very small amounts of memory (see, e.g., [91]).

Graph databases: Since social networks are naturally represented
as graphs, specialized graph data management systems are a natural
option to store social network data. There has been much work on
single-site graph databases (e.g., [16, 60, 62, 99, 64], Neo4j [1]),
and in recent years, on distributed graph databases and program-
ming frameworks for specifying batch analysis tasks over graphs
(e.g., HyperGraphDB [66], InfiniteGraph [67], GraphBase [56],

Trinity [30], Pegasus [71], Pregel [82], GraphLab [79, 78], Gi-
raph [20], etc). There is also much work on executing specific
types of queries efficiently over graphs (both in centralized or dis-
tributed settings) through strategic traversal of the underlying graph,
e.g., reachability [103, 63, 68, 108], keyword search queries [55,

102, 29, 70], subgraph pattern matching [64, 51, 35, 65], short-
est paths queries [106, 53, 58], etc. However, distributed manage-
ment of dynamic graph data is not as well-studied, especially in the
data management research community. Recently there has been
an increasing interest in large-scale, distributed graph data man-
agement, with several new commercial and open-source systems
being developed for that purpose. Some of the key systems in-
clude Neo4j [1], HyperGraphDB [66], InfiniteGraph [67], Graph-
Base [56], Trinity [2], Pegasus [71], Pregel [82], GraphLab [79,
78], Giraph [20], etc. There have also been several programming
frameworks that have been proposed There has also been much
work on executing specific types of queries or performing specific
types of analysis, e.g., subgraph pattern matching queries [35, 65],
reachability queries [103, 63, 68], data mining [71], modeling net-
work evolution [6, 74, 72], and so on. But those works either have
limited focus or, in the case of Pegasus [71], are meant for batch
processing.

5. PROPOSED SOLUTION AND METHOD-
OLOGY

The area of stream querying and reasoning over social networks
is still in its infancy, and as a result, the research in this area is
somewhat fragmented with several ongoing attempts at unifying
the different research themes. Here we begin with a broad classifi-
cation of the different types of stream querying and reasoning tasks
and give examples of different types of tasks that have been studied
in prior literature. We then discuss some of the key research chal-
lenges in effective stream querying and reasoning that need to be
addressed.

5.1 Classifying Tasks by Scope
Here we attempt to classify stream reasoning and querying tasks

by their input scope, i.e., what data forms the input to the task at
any time. Broadly speaking, there are two crucial dimensions along
which the tasks may differ.

5.1.1 Temporal Scope
The first key dimension captures the temporal scope of the task,

and has a direct impact on the amount of state that must be stored,
and reasoned about.

Entire stream: At one extreme, the temporal scope of a stream
reasoning task may stretch from the beginning of the stream to the
current time. Note that, not all the data generated so far may be
of interest – e.g., the task may only see a subset of the data by
choosing to focus only on certain attributes of the nodes or edges.
However, the data of interest may have arrived into the system at
any point in the past. For example, in a social network with lo-
cation data, a stream reasoning task may wish to process all the
location updates ever produced by a user for predicting future user
movements. We expect such types of stream reasoning tasks to be
somewhat uncommon given the large volumes of data generated in
most online social networks.

Current state of the network: Many stream reasoning tasks will
take the current state of the network (i.e., Gt(Vt, Et)) as the input.
An example of this task is online dense subgraph maintenance [18]
where the goal is to maintain the dense subgraphs of the current
social network at all times.

Sliding window: The third alternative, that falls in between the two
extremes above, is that the reasoning task defines a sliding window
on the data stream, and the input consists of all updates that arrive
during that window. For instance, one may be interested in ana-
lyzing all messages that were exchanged during the last 24 hours



among the users of a networks to identify anomalous behavior in
real-time. Another example of such a task is detection of personal-
ized trends where the goal is to find the most commonly seen words
or phrases in the recent status updates or blog posts by the friends
of a user.

5.1.2 Network Traversal Scope
The second key dimension is what we call network traversal

scope of a query, which refers to the portion of the network that
provides the input to a stream reasoning query or task.

Global scope: Many stream reasoning tasks require reasoning over
the entire network. An example of such a task is computation of
PageRank (or other centrality measures like betweenness central-
ity, eigenvector centrality, etc.). Dense subgraph maintenance task
discussed above is also an example of a task with global scope.

Ego-centric scope: On the other hand, in many cases, a reason-
ing task or a query may only focus on a local neighborhood in the
network, often termed ego networks. For example, if the goal is
to identify social circles for a user [83], then only a 1- or 2-hop
neighborhood around the user may be of interest (Figure 3). Per-
sonalized trend detection task, discussed above, is another example
of such a task. Note that, in many cases, we may want to execute
the same task for every node in the network (e.g., we may wish to
do continuous trend detection for every user of the social network),
and in total, updates in the entire network may need to examined.
However, those should be treated as separate tasks each of which
is ego-centric in scope. The most common example of an ego net-
work is the network over the immediate set of neighbors of a node.
However, in general, an ego network of node could be defined as
k-hop neighborhood containing all nodes reachable within k hops
from the node (and all the incident edges among those).
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Figure 3: Stream queries often have ego-centric scope: figure
shows 1-hop ego-networks of u1, u7, and u8, and 2-hop ego-
networks of u1 and u8.

5.2 Types of Stream Reasoning Tasks
Next we attempt to provide a categorization of different stream

reasoning and querying tasks by type. Given the wide variety in
the stream reasoning tasks of interest, unlike the categorization by
scope, the categorization that follows is less precise and not fully
disjoint. Our intention here is not to be comprehensive, but rather
to discuss some representative stream reasoning tasks.

5.2.1 Publish-subscribe Queries
Perhaps the simplest kind of queries over streaming data are

what are commonly referred to as publish-subscribe queries. These
queries form a subclass of the more general class of event monitor-
ing queries, where the users specify events or updates of interest
and they should be notified as soon as a matching event is detected
in the data stream. We make a loose distinction between simple
event monitoring queries (what we call publish-subscribe queries),
and more complex event monitoring or anomaly detection queries
(discussed subsequently). For publish-subscribe queries, the events
are typically defined over one or a few data stream updates (i.e.,
they have very limited temporal and traversal scopes). For exam-
ple, a user may be interested in tweets that contain a particular key
word, or a user may want to know as soon as a friend is online. In a
location-enabled social network, a user may be interested in getting
notified when one of his friends checks-in in a nearby restaurant or
cafe. The key challenge with executing simple event monitoring
queries is not so much the complexity of detecting the events, but
rather dealing with the very large update rates as well as a very
large number of queries.

5.2.2 Complex Event Processing (CEP)
On the other hand, in complex event processing, the events (of-

ten called patterns) to be detected often have larger temporal or
network traversal scopes, or both. For example, actions done on the
same object by two users in a social network might be temporally
correlated in applications involving influence computation. For ex-
ample, detection of trending news in a social network might require
traversal beyond users’ immediate friends, i.e., friends of friends’
and so on. Hence, unlike simpler publish-subscribe queries, effi-
ciently detecting the events can be a major challenge in CEP. An
example of such a query is a continuous subgraph pattern matching
query, where the goal is to detect matches to a given query graph
in real-time. Choudhury et al. [41] use such queries for continuous
detection of accidents from incoming traffic information. Complex
event processing systems often support specification of the events
using a high-level declarative language. For example, in recent
work, Anicic et al. [19] proposed a language called EP-SPARQL
that extends the SPARQL query language with support for spec-
ifying complex event processing queries over RDF data streams.
Similarly, Mozafari et al. [90] present a language for detecting hier-
archical patterns over hierarchical data (e.g., XML data), that may
be generalizable to graph-structured data as well. Choudhury et
al. [41] have discussed continuous detection of accidents from in-
coming traffic information such application in their work on contin-
uous queries for multi-relational graphs. They present the problem
as a subgraph pattern matching problem on streams in real-time.
Zhao et al. [50] have also looked at a similar problem where they
use an incremental algorithm to compute the changes to the exist-
ing pattern match rather than expensive re-computation. Gao et al.
in their work on LBSN [52]define two behaviour models: (i) a his-
torical model (HM) and (ii) a social-historical model (SHM) and
compare their performance in order to provide meaningful location
related service. Chandramouli et al. [38] has looked into problem
of streaming recommendation problem that supports real-time in-
cremental processing to support on-demand recommendation using
stream processing system.

5.2.3 Anomaly Detection
Anomaly detection queries can be seen as a form of complex

event processing, however, due to their importance, we discuss
them separately. The goal with real-time anomaly detection is to
identify anomalous behavior in a dynamic network as quickly as



possible. Two issues need to be addressed: (1) how to define what
constitutes an “anomaly”? (2) how to efficiently detect anomalies
in presence of very high data rates? Generally speaking, anoma-
lous behavior can be defined as behavior that deviates significantly
from normal behavior. However, in highly dynamic and rapidly
changing environments like an online social network, there is of-
ten no clear definition of normal behavior, making it a challenge to
identify anomalous behavior. There have been many proposals for
defining anomalous behavior in social networks over the years. For
example, Akoglu et al. [14] present an approach called Oddball,
that is based on analyzing the ego-networks of the nodes in the net-
work. Aggarwal et al. [7] propose a probabilistic algorithm that
maintains summary structure models about graph streams to detect
outliers. We refer the reader to the tutorial by Akoglu and Falout-
sos [13] for a more comprehensive discussion of different anomaly
detection algorithms.

Perhaps because of a lack of a clear definition of an anomaly,
there is much less work on efficient techniques for real-time anomaly
detection. From the efficiency perspective, an important issue is the
scope (both temporal and network traversal) of an anomaly detec-
tion task. For example, if the goal is to identify users with anoma-
lous behavior, then the network traversal scope could be limited
to ego networks of the users. However, in many cases, detecting
anomalous behavior may require global reasoning over the entire
network.

5.2.4 Continuous Aggregates/Statistics Computation
In these types of queries, the goal is to incrementally maintain

or compute an aggregate or a statistic over the network [86]. An
example of such a task is maintaining the top-k trending hashtags
in Twitter, i.e., hashtags with the highest activity over a recent win-
dow in past. Another well-studied task is the computation of global
clustering coefficient in presence of streaming updates to the net-
work structure [69, 26]. A simpler aggregate query might be to
continuously maintain, for all users, their friends that are (physi-
cally) closest to them (the aggregate function here is MIN). There
are two key properties of aggregate functions that have significant
impact on the computational complexity of the computation task:
duplicate sensitivity and decomposability. A duplicate-insensitive
aggregate function will return the same value even if some of its
inputs are repeated. Examples include MAX, MIN, UNIQUE, etc.
Duplicate-insensitive aggregates are amenable to additional opti-
mizations during computation [80]. On the other hand, whether
the aggregate function is holistic or decomposable has a significant
impact on the optimizations that we can perform [80]. A holis-
tic aggregate function (e.g., MEDIAN) requires all the input values
to compute the final result, whereas decomposable aggregate func-
tions are amenable to optimizations centered around partial aggre-
gate computation and can be computed with much less memory.
Clustering coefficient is an example of the latter type of aggregate
function since the number of triangles can be counted (mostly) in-
dependently for each node.

5.2.5 Maintenance of Views or Other Derived Infor-
mation

In this type of a task, the goal is to incrementally maintain the
result of running an algorithm or performing a computation on the
social network in presence of updates. Such tasks can be seen as a
generalization of materialized view maintenance in traditional rela-
tional databases. In traditional view maintenance, the goal is to in-
crementally maintain the result of a declaratively-specified query;
however, in social networks, the focus is often on more complex
reasoning tasks. Examples of such tasks include incremental main-

tenance of PageRank, dense subgraphs, spanning trees, shortest
paths, communities, and so on. In general, for any graph algo-
rithm that is of interest in social network analysis, the question of
incremental maintenance of the result in a dynamic setting may
need to be addressed. For example, Bahmani et al. [23] address
the problem of incrementally maintaining PageRank over a social
network. Several works have considered considered the problem of
incremental maintenance of dense subgraphs (e.g., [18]). The key
challenge here is to avoid re-computation from scratch, and so far,
most of the proposed techniques are heavily focused on a specific
task.

5.3 Research Challenges and Future Directions
In this section, we look at the some of the key research chal-

lenges in supporting stream reasoning and querying tasks over so-
cial networks and briefly review the prior work on addressing those
challenges. We stress that the area of stream reasoning over so-
cial network is still in its infancy, and the solutions discussed here
should be considered as the starting point for future research on this
topic.

5.3.1 Query Language
One of the major challenges in building general-purpose data

management techniques or systems for stream reasoning over so-
cial networks is the lack of a high-level declarative query language
for specifying the tasks. This issue arises in the context of graph
data management in static settings as well. Well-established re-
lational or XML query languages are not appropriate for graph-
structured data because they lack support for specifying graph traver-
sals. Although there have been proposals for graph query lan-
guages, none has gained wide acceptance; perhaps the only ex-
ception is the SPARQL query language, but the use of that query
language has been largely limited to RDF datasets. This lack of
a declarative language has led to a significant repetition of work
by researchers that are developing tools for stream reasoning and
querying over social networks. Clearly it is impossible to specify
all of the wide range of tasks that we discussed in the previous sec-
tion using a high-level, declarative language. However, we believe
that it is possible to develop a declarative query language that will
serve the needs of many stream reasoning and querying tasks; fur-
ther, those tasks that cannot be fully expressed in the language can
use the language to do part of the computation, with the remaining
part done using a program written in a procedural language that in-
gests the result (analogous to how user defined functions (UDFs)
are often used in conjunction with SQL in relational databases).

There are several starting points for designing such a query lan-
guage. Several languages have been proposed in recent years that
build upon SPARQL, e.g., Streaming SPARQL [33], Continuous
SPARQL (C-SPARQL) [25], EP-SPARQL [19]. Although these
languages focus on RDF data streams, they could be adapted to use
in social networks by treating social network data as RDF data. Ex-
ample 1 shows a C-SPARQL query that, given a stream of tweets
along with the identified hashtags in it, returns all the hashtags with
their cumulative frequencies within the last hour. Some of the key
extensions to SPARQL include the use of “REGISTER QUERY”
keyword to specify a continuous query that should be evaluated
continuously, and a way to specify a window over the stream (us-
ing keyword “RANGE”),

Another option is to generalize XPath. For example, Mozafari
et al. [90] propose XSeq, an extension to XPath to express both
sequential and Kleene-closure expressions for XML streams. Ex-
ample 2 shows an XSeq query that reports Twitter users who have
been active for over a month. A key challenge here is that XPath



Example 1: C-SPARQL Example [25]. Given the static user
information and a stream of tweets, the query asks computes
the total number of tweets per hashtag in last hour.
1: REGISTER QUERY NumberOfTweetsPerHashTag COMPUTE

EVERY 10m AS
2: PREFIX ex: <http://example/>
3: SELECT DISTINCT ?hashtag ?total
4: FROM STREAM <http://twitter.com/alltweets> [RANGE 1h STEP

10m]
5: WHERE
6: ?user ex:from ?country .
7: ?user ex:tweets ?tweet .
8: ?tweet ex:has ?hashtag FILTER (?country="USA")
9: AGGREGATE { (?total. COUNT(?tweet). ?hashtag }

is designed to operate on tree-structured data, not graph-structured
data. However, recent theoretical work suggests that it may be pos-
sible to use XPath for specifying graph queries [75].

Finally, the option that we have taken in our work [89, 86] is
to extend Datalog [95] for this purpose. In recent years, Datalog
has been shown to be an effective centerpiece in enabling declara-
tive specification in a range of domains including networking [77],
data cleaning [21], machine learning [36], and social network anal-
ysis [89, 98]. Compared to the above two languages, Datalog seems
more amenable to be extended to support a large class of complex
aggregate queries (e.g., global queries like PageRank computation,
shortest paths, etc., can be specified using recursion). Datalog
snippet in Example 3 specifies computation of local clustering co-
efficient, a measure of connectedness of a node’s neighborhood.
With some extensions, Datalog can also be used to specify social
network transformation tasks as we showed in our prior work [89,
88]. Such flexibility may make a Datalog-based language a supe-
rior option in the end to specify a wide variety of stream reasoning
tasks over social data.

Example 2: XSeq Example: In a stream of tweets, report users
who have been active over a month. A user is active if he posts
at least a tweet every two days.
1: return first(T)@userid
2: from /twitter/ Z* ($T)*
3: where tag(Z) = ’tweet’ and tag(T) = ’tweet’
4: and T@date-prev(T)@date < 2
5: and last(T)@date-first(T)@date > 30
6: partition by /twitter/tweet@userid

Example 3: Datalog Example [89]: Compute the clustering
coefficient of each node.
1: NeighborCluster(X, COUNT<Y, Z>) :=
2: Edge(X,Y), Edge(X,Z), Edge(Y,Z)
3: Degree(X, COUNT<Y>) := Edge(X, Y)
4: ClusteringCoeff(X, C) :=
5: NeighborCluster(X,N), Degree(X,D), C=2*N/D*(D-1)

5.3.2 Efficient Execution Strategies
Irrespective of how the stream reasoning tasks are specified, we

must devise efficient execution strategies that can handle the very
high update rates expected in online social networks. Below we
briefly survey the key ideas that have been used successfully in past
research on data streams for low-latency execution.

Incremental computation: The naive option of re-executing a
query or a reasoning task when a new update arrives is likely to
be infeasible except for very low rate data streams. Instead the
goal of incremental computation is to maintain sufficient interme-
diate state in memory so that the new answer can be computed in
an incremental fashion with minimal work. Such incremental tech-
niques are unfortunately often specific to the task at hand. Eppstein
et al. [47] is an early survey on the topic of dynamic graph algo-
rithms. In recent work, Angel et al. [18] and Agrawal et al. [4]
devise techniques for maintaining dense subgraphs; Bahmani et
al. [23] present an approach to incremental computation of PageR-
ank; Kutzkov et al. [73] present an incremental algorithm for com-
puting clustering coefficient; Chandramouli et al. [38] explore real-
time recommender system through incrementally maintaining their
recommender model; and so on. A key research challenge here
is to identify incremental techniques that are applicable to a wide
variety of tasks (one way to do that is to focus on a high-level
query language as we discussed in the previous section, e.g., C-
SPARQL [24]). There is also often a natural trade-off between the
amount of intermediate state that is maintained, and the amount
of work that needs to be done when a new update arrives. Better
understanding of this trade-off also presents a rich area for future
work.

Sharing across multiple queries: Unlike traditional data man-
agement systems, in stream query processing systems, we may
have thousands to millions of continuous queries running simulta-
neously. For instance, a personalized trend detection query where
the goal is to monitor trends in every user’s ego network can be
seen as a collection of a large number of independent queries, one
for each user. Sharing of computation across these queries is cru-
cial in order to limit the computational cost. Such sharing has been
shown to be an effective way to deal with high rate data streams
in past work on data streaming systems [81, 45]. However, these
types of techniques have not been well studied in social network
setting. In a recent work, we designed novel techniques based on
graph compression to exploit such sharing for continuous aggregate
computation in social networks [86].

Approximate computation: One way to mitigate the execution
complexity is to consider computing approximate answers instead
of exact answers. This is especially attractive in scenarios where
exact computation can be shown to be prohibitively expensive. For
example, Becchetti et al. [27] show how one can incrementally
compute local clustering coefficient with small error bounds where
the exact algorithm [15] can require O(n2.3727) time. Although
there is much work on this topic in the data streams community,
only recently have researchers started investigating similar prob-
lems for network algorithms. Zhao et al. [109] present a graph
sketching technique, called gSketch, and show it can be used to an-
swer several primitive frequency estimation techniques. Similarly,
Ahn et al. [12] present graph sketching techniques for approximat-
ing cut values and for approximating the number of matches to a
subgraph pattern query.

Sampling: Another general technique to deal with the high update
rates is use random sampling to reduce the size of the data that
needs to be processed. We may sample at two levels in a social net-
work: first, we can try to sample from the network structure itself
to reduce the size of the graph that needs to be processed; second,
we can sample from the updates to the content. The latter is gener-
ally well-understood and the theory developed in the data streams
literature could be extended for some types of queries. However,
sampling the network structure is tricky since a naive random sam-
ple is likely to yield a network with very different properties than



the original network. We refer the reader to Ahmed et al. [9] for a
detailed discussion of network sampling, both in static and stream-
ing settings.

Parallel Computation: The increasing scale of most online so-
cial networks necessitates use of parallel and distributed solutions.
Unfortunately computations on social networks are not easily dis-
tributable because of their highly interconnected nature. In fact,
partitioning a social graph, which is key to distributed graph pro-
cessing, is a hard problem to tackle because of overlapping com-
munity structure, and existence of highly connected dense compo-
nents (cores) in most social networks. One of the simplest exam-
ples of a stream query on social data is a publish-subscribe query
that asks to fetch all updates from all friends (this is also called
feed following). Answering such queries with very low latencies is
challenging if the data is distributed across a set of machines – for
most users, their friends’ data is likely to be located across mul-
tiple machines necessitating expensive distributed traversals. One
extreme option is to replicate the data sufficiently so that, for each
user, the required data (i.e., status updates of all their friends) is
located on some machine [94]. However, both the memory over-
head and the replica maintenance overhead can be very high for
that solution [85]. More intelligent and sophisticated techniques
for partitioning and replica maintenance must be developed to ad-
dress these issues for more general stream reasoning and querying
tasks. Another key challenge is designing appropriate distributed
programming frameworks to support specifying general-purpose
stream querying and reasoning tasks. Although there has been
some progress on addressing this challenge in recent years (e.g.,
Kineograph [40], GraphInc [37]), much more needs to be done to
scalably support a variety of complex stream querying and reason-
ing tasks.

6. CONCLUSIONS
Stream querying and reasoning over social data is an emerging

research area that combines aspects from social network analysis,
graph databases, and data streams, and is motivated by an increas-
ing need for real-time processing of continuously generated social
data. In this paper we presented a brief overview of this field, and
discussed some of the key research challenges therein. There has
been much work on specific problems in this field over the last few
years. However, designing general-purpose data management sys-
tems that enable declarative specification of stream querying and
reasoning tasks, and that can efficiently execute such tasks over
high rate data streams, remains a fruitful direction for future re-
search.
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