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Abstract
The research and industrial communities have made great strides in
developing sophisticated defect detection tools based on static anal-
ysis. However, to date most of the work in this area has focused on
developing novel static analysis algorithms, and neglected study of
other aspects of static analysis tools, in particular user interfaces. In
this work, we present a novel user interface toolkit called Path Pro-
jection that helps users visualize, navigate, and understand program
paths, a common component of many static analysis tools’ error re-
ports. We performed a controlled user study to measure the benefit
of Path Projection in triaging error reports from Locksmith, a data
race detection tool for C. We found that Path Projection improved
participants’ time to complete this task, without affecting accuracy,
and that participants felt Path Projection was useful.

1. Introduction
The research and industrial communities have made great strides in
recent years developing sophisticated defect detection tools based
on static analysis. Such tools have been used to find tens of thou-
sands of bugs in real-world systems, including Linux [17, 16, 14],
Microsoft productivity software [25, 30], and Java software [31],
and in some cases have been used to verify the correctness of mis-
sion critical systems [6, 13]. Large companies such as Microsoft,
Google, eBay, and Goldman-Sachs are now integrating tools into
their regular development processes [10, 27, 37], and companies
like Coverity [8] and Fortify [19], which provide defect detection
tools and services, have hundreds of customers.

Most research on defect detection tools has focused on design-
ing new static analysis algorithms. We believe it is equally impor-
tant to study the other aspects of static analysis tools. Indeed, Pin-
cus states that “Actual analysis is only a small part of any program
analysis tool [used at Microsoft]. In PREfix, [it is] less than 10%
of the ‘code mass’.” [33].

Generally speaking, static analysis tool users must perform two
tasks: triage, deciding whether a report is a true or false positive,
and remediation, fixing a true bug. An effective tool will assist
the engineer in performing these tasks. However, while many tools
provide support for categorizing and managing error reports, most
provide little assistance for determining whether a report is true or
false, and if true, how to fix it.

To address this problem, we present a new user interface toolkit
called Path Projection that helps users visualize, navigate, and un-
derstand program paths—call stacks, control flow paths, or data
flow paths—which are a common component of many static anal-
ysis tools’ error reports. Our toolkit accepts an XML error report
containing a set of paths, each consisting of a sequence of program
statements, and automatically produces a concise view of them in
conjunction with the source code. Path Projection aims to help en-
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gineers understand error reports more easily, to improve the speed
and accuracy of triage and remediation.

An underlying principle of Path Projection’s design is to keep
the path display as close to the original source code layout as pos-
sible, since that is what the programmer is most familiar with. To
follow this principle, we use three main techniques. We perform
function call inlining to textually insert the bodies of called func-
tions just below the call site, which rearranges the source code in
the order of the path. We perform code folding to automatically
hide potentially-irrelevant statements that are not involved in the
path. Finally, we show multiple paths side-by-side for easy com-
parison. While other interfaces incorporate some of these features,
we believe Path Projection’s combination and design of features is
novel.

We evaluated Path Projection’s utility by performing a con-
trolled experiment in which users triaged reports produced by
Locksmith, a static data race detection tool for C. When Lock-
smith finds a potential data race, it produces an error report that
includes a set of call stacks (the paths). Each call stack describes
a concurrently-executing thread that contains an access involved
in the potential race. For Locksmith, the triaging task requires ex-
amining each reported call stack to decide whether it is actually
realizable at run time, and then deciding whether there are at least
two realizable accesses that can execute in parallel.

To our knowledge, ours is the first work to empirically study a
user interface for defect detection tools using sophisticated static
analysis. While commercial vendors may study the utility of their
interfaces internally, no results of such studies are publicly avail-
able. Independent evaluation of commercial tools is also difficult
because of the tools’ licensing, which often forbids disclosure of
information.

In our study, we measured users’ completion time and accu-
racy in triaging Locksmith reports, comparing Path Projection to
a “standard” viewer that we designed to include the textual error
report along with commonly-used IDE features. Both interfaces in-
cluded a checklist specialized to each error report that enumerates
the sub-tasks needed to triage the report correctly. We did not re-
quire that users propose actual fixes to the code, since even when a
bug is clear its proper fix may be hard to determine.

In our within-subjects study, each user participated in one ses-
sion with one interface, and one session with the other interface.
Half the participants started with Path Projection, and the other
half began with the standard viewer, to help factor out learning
effects. In each session, after some introductory material, the user
was asked to triage three error reports. At the end of the experiment,
we asked users to qualitatively evaluate the interface and compare
both.

We found that Path Projection improved the time it takes to
triage a bug, and participants using it made about the same number
of mistakes as with the standard viewer. Moreover, in Path Projec-
tion users spent little time looking at the error report itself. This
suggests that Path Projection succeeds in making paths easy to see
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and understand in the source code view. Users clearly preferred
Path Projection over the standard viewer, and generally rated all
the features of Path Projection as somewhat or very useful. We also
observed that the checklist dramatically reduced the overall triag-
ing times for users of both interfaces, compared to an earlier pilot
study. Though this result is not scientifically rigorous (several other
features changed between the pilot and the current study), we be-
lieve it suggests checklists would be a useful addition to many static
analysis interfaces, and merit further study.

In summary, this paper makes two main contributions:

1. We present Path Projection, a novel toolkit for visualizing pro-
gram paths (Section 3). While mature static analysis tools can
have sophisticated graphical user interfaces (Section 7), these
interfaces are designed for particular tools and cannot easily be
used in other contexts. We show how to apply Path Projection
both to Locksmith and to BLAST [5], a software model check-
ing tool. We believe Path Projection’s combination and design
of user interface features is novel.

2. We present quantitative and qualitative evidence of Path Projec-
tion’s benefits in triaging Locksmith error reports (Sections 5
and 6). To our knowledge, ours is the first study to consider
the task of triaging defect detection tool error reports, and the
first to consider the user interface in this context. Our study re-
sults provide some scientific understanding of which features
are most important for making users more effective when using
static analysis tools.

We believe Path Projection is a valuable new toolkit that can
benefit a wide range of static analyses.

2. Background: Locksmith
Locksmith [34], our target static analysis, works by enforcing the
guarded-by pattern [38]: for each memory location shared among
threads, there must exist a lock that is consistently acquired at
every access to that location.1 Locksmith initially performs an alias
analysis to model the pointers and locks in the program. It then uses
a sharing analysis to determine what locations are thread-shared,
and a lock state analysis to compute the set of locks that guard
each program point. Finally, Locksmith issues an error report for
any shared location that is inconsistently guarded.

A sample Locksmith error report is shown in the pane labeled
(1) in Figure 1 (we will discuss the rest of this figure later). This
error report comes from aget, a multithreaded FTP client we exam-
ined previously [34]. The report lists the shared variable involved
in the race (prev); a set of call stacks leading to conflicting accesses
to the shared variable (indicated by “dereference” at the end of each
stack); and the locks held during the accesses. In this example, the
first call stack reaches the offending access via a thread created in
main, whereas the second call stack reaches the same offending
access via a different thread created in resume get. In both cases,
there are no locks held at the access.2

A key feature of Locksmith is that it aims to be sound, meaning
if it reports no data races in the input program, then that program
is indeed race free. However, this necessarily leads to some conser-
vatism in the analysis and may result in false positives, which are
reports that do not correspond to actual races in the code. In partic-
ular, Locksmith assumes that any branch in the code could poten-
tially be taken. Thus, as part of triaging this error report, the user

1 Locksmith also includes logic to support thread-local and read-only vari-
ables (which need not be protected by locks), as well as initialization (prior
to becoming shared, variables may be written to without holding a lock).
2 Note that this report format, used in our experiments (Section 6), is slightly
different than Locksmith’s current output, but the differences are merely
syntactic.

must check that the potentially-racing accesses are simultaneously
realizable, meaning there is some program execution in which both
accesses could happen at the same time.

To find such an execution, the user must examine the control
flow logic along each reported path and ensure it does not preclude
both paths from occurring at the same time. Tracing through several
control flow paths at once can be quite challenging to do by hand,
especially if the process involves examining more than a screenful
of source code. This kind of path tracing task is actually common
across many different static analysis tools (Section 7). The focus of
Path Projection and our empirical study is on improving user per-
formance on this task in particular, and when we refer to triaging
in the remainder of the paper, we will mean this task applied to
Locksmith.

Besides unrealizable paths, there are several other reasons Lock-
smith may report a false positive, e.g., the sharing analysis may
incorrectly deem two unrelated variables as shared, or the lock state
analysis may miss locks that are actually held. For many programs
that we have looked at, Locksmith’s lock state analysis is accurate,
and warnings often involve only simple sharing (e.g., of global
variables), so our current work focuses on tracing program paths.
In general, these other cases are certainly important, and we intend
to address them in future work, for example, using techniques from
MrSpidey [18] or CQual [20].

Example scenario Figure 1 shows a screenshot of our standard
viewer, which displays the Locksmith error report (1) side-by-side
with syntax-colored program source code (2). This interface is our
baseline for comparing against Path Projection, and represents the
assistance a typical editor or IDE gives users in understanding
Locksmith error reports.

The first step in triaging is to identify pairs of accesses that are
not guarded by the same locks (or are guarded by no locks), and
thus could result in a race. This is trivial given the error report,
and in fact we automatically identify these pairs and generate a
checklist (3). We will focus on tab “1–2” to check for potential
races between threads in paths 1 and 2. We defer further discussion
of the checklist to Section 4.

We need to trace through the control-flow of the program to
see under what conditions the two dereferences are reachable. The
call stacks in the error report show exactly what code to examine.
In the screenshot in Figure 1, we are tracing path 1, and we have
split the source code view horizontally to show two regions of code
at once (4). We begin by tracing path 1 from the thread creation
site, which can be reached by clicking on the hyperlink (5), and
look for any branch conditions that may prevent the thread from
being created. We can continue tracing to the access by clicking on
the hyperlinks or scrolling through the code. As we navigate from
function to function, we can further split windows to keep various
context together on the screen, and close splits when the window
becomes too crowded.

After tracing path 1, we need to trace through path 2 in the same
way, and ultimately decide whether both paths are simultaneously
realizable. This is quite tedious, even though aget is slightly less
than 2,000 lines of code. Worse, this is only one of 62 warnings that
Locksmith reports for aget, and the procedure has to be repeated
for each warning.

3. Path Projection
Program paths are commonly used by static analysis tools to report
errors. However, as the previous section illustrates, tracing program
paths becomes difficult when the user needs to examine discontin-
uous lines of code across many different files.

Standard code editors provide some support for tracing program
paths. For example, they typically allow the user to view more
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Figure 1. Standard viewer (picture in color; labels described in text)
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than one file to be by opening multiple windows or by splitting a
window. Code folding is another commonly available feature used
to hide irrelevant code.

The key issue, however, is that the user has to invoke and man-
age these features manually. In particular, the user has to carefully
consider the tradeoffs of these features, e.g., after opening or split-
ting windows, the user may have to move, resize or close other
windows to make them visible or simply to reduce screen clutter.

This places a significant cognitive burden on the user to extract
and organize relevant information from the source code and the
error report, and distracts from the actual task of understanding a
program path. If paths are long or complicated, as they often are, it
can be hard to keep track of the context of the path while managing
windows and folded code. In our experience, it is all too easy to get
lost on a long path and have to backtrack or retrace it many times.

3.1 Design Guidelines
To develop a better interface for tracing program paths, we can look
to guidelines developed by researchers in information visualization.
We found three strategies described by Card et al. [7] to be partic-
ularly applicable for our task:

1. Increase users’ memory and processing resources and reduce
the search for information. The Locksmith error report is com-
pact, but examining the path in the actual source code may in-
volve many different source code lines spread across many dif-
ferent files. We would ideally like to put all the necessary infor-
mation for triaging an error report on one screen, so the user can
see all the information at the same time. We would also like to
allow the user to hide any unimportant information, to further
reduce the cognitive burden.

2. Use visual representation to enhance pattern detection. We
would like to visually distinguish the source code lines appear-
ing in the Locksmith error report from the other lines in the
program, since the lines in the error reports are presumably very
important. We would also like to bring important threading API
calls, e.g., invocations of pthread X functions, to the user’s at-
tention.

3. Encode information in a manipulable medium. We need to give
the user good mechanisms for searching and comparing the
information we present to them.

Another key guideline we would like to follow is that “code
should look like code.” We want the user to be able to relate
any visualization back to the original source code. This is based
on our experience as programmers: we spend a large fraction of
time editing source code in standard textual form, and relatively
little working with abstract visualizations. Understanding Lock-
smith error reports requires looking at source code in great detail.
A visualization that looks like source code will be familiar, which
should increase acceptance and could increase comprehension.

3.2 Interface Features
Figure 2 shows the Path Projection interface for the same program
shown in the standard viewer in Figure 1. The core feature of Path
Projection is that it makes multiple program paths manifest in the
display of the source code. To achieve this, Path Projection uses
three main techniques:

Function call inlining Path Projection inlines function calls
along a path. In the left path in the example, we see that the bod-
ies of signal waiter (called by pthread create), sigalrm handler,
and updateProgressBar are displayed in a series of nested boxes
immediately below the calling line (1). We color and indent each
box to help visually group the lines from each function (Princi-
ple 2). This feature is where our interface name comes from—we

are “projecting” the source code onto the error path. Our motivation
is to reduce the need for the programmer to look at the error report,
since the path is apparent in the visualization. We also underline
the racing access (innermost boxes) to make it easy to identify.

Notice that in Path Projection, we actually visually rearrange
function bodies in the original source code to conform to the or-
der they appear in the path. Moreover, we may pull in functions
from multiple files (in our example, three separate files) and dis-
play them together. Together, these regroupings help keep relevant
information close together to reduce search and free up cognitive
resources (Principle 1).

In the standard viewer, the user could achieve a similar result
by splitting the display into several pieces to show the functions
along the path. However, this quickly becomes tedious if there are
several functions to show at once, and it adds significant mechani-
cal overhead to viewing and navigating a path. Moreover, without
code folding, which we discuss next, it can be difficult to see all the
relevant parts of the functions simultaneously.

Code folding To keep as much relevant information on one screen
as possible (Principle 1), we filter by default irrelevant statements
from the displayed source code. For example, in the function
updateProgressBar in the left path, we have folded away all lines
(2) except the implicated access (line 193) and the enclosing lexical
elements (the function definition and open and close curly braces).
The user can tell code has been folded by noticing non-consecutive
line numbering.

Our code folding algorithm is a syntax-based heuristic that tags
lines in the program as either relevant or irrelevant. Irrelevant lines
are hidden when the code is folded. For each line l listed in the
error report, we tag as relevant line l itself; the opening and closing
statements of any lexical blocks that enclose l; and the beginning
and end of the containing function. For lexical blocks that include
a guard (i.e., if, for, while, or do), we include the guard itself, and
for an if block, we show the line containing the else (though not the
contents of the else block). For example, the call to sigalrm handler
(4) is in the error path, and so we reveal it, the closing if and while
blocks, and the beginning and end of the signal waiter function.
Our code folding heuristic resembles the degree-of-interest model
proposed by Furnas [21]. A more sound approach would be to use
program slicing [41] to determine relevant lines; and in a sense, our
code folding algorithm can be thought of as an extremely simple
but imprecise slicing technique.

Since our code folding algorithm is heuristic and may hide
elements that the user actually needs to examine, we allow the
user to click the expansion button in the upper-left corner of a box
to reveal all code in the corresponding function. When unfolded,
source lines tagged as irrelevant are colored gray to ensure the path
continues to stand out. For example, we have unfolded the body of
main (5) in Figure 2.

While code folding is common in many IDEs, most require the
user manually perform folding on individual lexical blocks, which
can be time consuming and tricky to get exactly right. In contrast,
we use the path to automatically decide which lines of code to
reveal or fold away, requiring no user effort. Furthermore, since
we display each path in a separate column, we can apply our code
folding algorithm to each path individually.

Side-by-side paths This error report contains two paths, each of
which is displayed side-by-side in its own column ((3), left side
of Figure 2). This parallel display makes relationships between
the paths easier to see than in the standard interface, which would
require flipping between different views (Principle 1). Each column
is capped at a maximum width, and users can horizontally scroll
columns individually. This helps prevent files that are unusually
wide from cluttering the display.
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Figure 2. Path Projection (picture in color; labels described in text). This and additional screenshots can be found at at
http://www.cs.umd.edu/projects/PL/PP.
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1 Trace:
2 In function a (
3 On line a:5 , call b (
4 On line b:10, call c (
5 On line c:15 , call d
6 )
7 )
8 On line a:20, call e (
9 On line e:25 , call f

10 )
11 )

1 Trace:
2 In function <path name=”a”>a (
3 On line <detour line=”5” name=”b”>a:5, call <path name=”b”>b (
4 On line <detour line=”10” name=”c”>b:10, call <path name=”c”>c (
5 On line c:15 , call d
6 )</path></detour>
7 )</path></detour>
8 On line <detour line=”20” name=”e”>a:20, call <path name=”e”>e (
9 On line e:25 , call f

10 )</path></detour>
11 )</path>

Figure 3. A textual path-based report (left) can be converted into the pathreport XML format (right) using <path> and <detour> (some
attributes omitted for brevity).

Triaging Locksmith’s error report requires comparing more than
one path, making this feature a necessity. However, we believe that
side-by-side paths would be useful for other tools too. For example,
a model-checker may display known-good paths for comparison
with the error path.

In our experiments, participants used a wide-screen monitor to
make it easier to see multiple paths simultaneously. Since wide-
screen displays are commonly available and popular, we think
designing an interface with such displays in mind is reasonable.

Additional interface features Path Projection includes several
other features to make it easier to use. We include a multi-query
search facility (6) that allow users to locate multiple terms and keep
them highlighted at the same time. Each term is distinguished by
a different color in the source code, and the user can cancel the
highlighting of any term individually. Any source line containing a
match is automatically marked as relevant, as are any lexical blocks
enclosing the match. For example, in the screenshot in Figure 2,
calls to pthread join, which are not included in the error report,
have been marked as relevant due to the search (7). This facility
follows Principle 3, since it allows the user to manipulate code
folding in a natural way. In our experiments, we initialized multi-
query to find the four pthread functions shown in the screenshot,
since in our pilot study we found users almost always want to locate
uses of these functions.

Our interface also includes a reveal definition facility that uses
inlining to show the definition of a function or variable. In the
screenshot, the user has clicked on nthreads, and its definition has
been inlined below the use (8). While this feature seems potentially
handy, we found it was rarely used by participants in our experi-
ments.

Lastly, Path Projection still includes the original error report
from which the visualization was generated, to act as a back-up and
to provide consistency with the standard view. As with the standard
view, the report is hyperlinked to the source display.

3.3 Applying Path Projection to Other Tools
We intend Path Projection to be general toolkit that may be used
by static analysis tool developers to visualize their error reports. To
this end, Path Projection is implemented as a standalone tool that
takes as input an XML-based error report and the source code under
analysis.

XML format Our XML format, called pathreport, describes one
or more program path using three kinds of tags. It is designed
to easily convert a textual path-based report by marking it up
appropriately. Briefly, the three tags are:

<path> marks text that corresponds to a continuous block of
code, such as a function. A <path> can contain any number
of <detour> and <marker> tags.

<detour> marks text that corresponds to a reference in some code,
such as a call site. The parent <path> provides the context for
this reference, e.g., the function in which the call site appears.
Each <detour> tag must in turn contain exactly one <path>
tag.

<marker> tags mark any other texts, such as function names, vari-
able names, or line numbers, that point to code that may be
interesting.

These tags also require attributes to precisely indicate informa-
tion such as the file where a function is defined. Together, <path>
and <detour> recursively describe a program path, and <marker>
can be used to mark any interesting line of code along the path.

Figure 3 shows how a path-based textual report can be marked
up with <path> and <detour>. Note that on line 2, <path> marks
the entire call to a. Within that, two <detour> tags on line 3 and
line 8 mark the call sites to b and e that appear in a.

Path Projection on BLAST In addition to Locksmith, we have
applied Path Projection to counterexample traces produced by
BLAST [5], a software model checking tool. Such traces are not
call stacks, as in Locksmith, but rather are execution traces that
include function calls and returns. We use a short awk script to
post-process a BLAST trace into our XML format. We reformat
the line annotations from the original report for brevity, but retain
the indentations as they reveal relationships between implicated
lines.

Figure 4 shows an example of BLAST in Path Projection, gen-
erated from a post-processed counterexample trace that describes
how a failing assertion (not shown) can be reached. The counterex-
ample trace shown is 102 lines long, much longer than is typical
with Locksmith. Note that BLAST’s counterexample trace is not
a call stack, as in Locksmith, but an execution trace that includes
function calls and returns.

We find the error report confusing in its textual form, e.g., line
4 implicates a call to initialize in line 157 of tcas.c, and lines 5-6
are indented to indicate the function body; but the indented lines
after line 8 do not correspond to the body of atoi. As such, it can
be quite difficult to match function calls and returns in a long error
report. Occasionally, there are also missing line numbers, such as
on line 5 in the error report. Furthermore, it is not obvious from the
error report that many implicated lines are actually not interesting.

Path Projection makes the structure of the path much clearer. We
can quite easily tell that the beginning of the path contains a call to
initialize (1), and that the subsequent 24 lines in the error report cor-
respond to the input program’s command-line interface. The next
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Figure 4. Path Projection applied to a post-processed counterexample trace produced by BLAST (picture in color; labels described in text).

7 2008/8/2



Path i
Y N

Is the thread created in a loop (loop count > 1)? ○ ○
If yes, there is likely a race. Are there reasons to show otherwise? ○ ○
Explain:

(a) Single path i

For threads leading to dereferences in Paths i and j:

Are they parent-child (or child-parent), or child-child?
○ Parent-child / ○ Child-child

Parent-child (or child-parent) threads. Y N
Does the parent’s dereference occur after the child is spawned? ○ ○

Before its dereference, does the parent wait (via pthread_join)
for the child?

○ ○

If no, there is likely a race. Are there reasons to show otherwise? ○ ○
Explain:

Child-child threads. Y N
Are the children mutually exclusive (i.e., only one can be spawned
by their common parent/ancestor)?

○ ○

If no, there is likely a race. Are there reasons to show otherwise? ○ ○
Explain:

(b) Pair of paths i and j

Figure 5. Checklist tabs

interesting line is a call to alt sep text (2), which is implicated fur-
ther down the report, on the last line visible in Figure 4 (obscured
due to indentation). However, this is obvious at first glance in Path
Projection.

We believe that this example shows how Path Projection can
be quite useful to understand complicated error reports. We think
that using Path Projection can also suggest ways to improve error
reports, e.g., BLAST should not indent function calls with no
corresponding body.

4. Checklist
In our pilot study we found that even with extensive pre-experiment
tutorials, participants had trouble determining how to accomplish
this triaging task, and would often get distracted with irrelevant
features, such as locating the definition of a global variable. This
inconsistent behavior confounded our attempts to measure the ben-
efits of the PP interface, since it varied significantly depending on
the participant. To address this issue, we developed a tabbed check-
list that breaks down this task into smaller sub-tasks, one per tab,
that identify conditions under which reported thread states, if in-
dividually realizable, could execute in parallel and thus constitute
a true race. A single error report could identify several races, so
users must complete all tabs, at which point they may click Submit
to complete the triage process.

A checklist is automatically generated for each Locksmith error
report, and is identical in both interfaces—(3) in Figure 1 and (9)
in Figure 2. The first tab, labeled Locks (not shown), asks the users
to document where the locks held at the end of each path were
acquired. This tab is merely an experimental device: since users
tend to examine the code before moving to the checklist, we insert

this tab first to measure this initial startup period. The remaining
tabs have two flavors, both illustrated in Figure 5.

The tab shown in Figure 5(a) is generated once for each path i
that ends in an access with no locks held. The user is asked to
check whether the access could occur in a thread created in a
loop. If it could have, then the same access may occur in two
different threads, constituting a race. For example, consider Path 2
in Figure 2. The write to prev (underlined in red) occurs in a thread
created on line 171 of Aget.c. Notice that that line appears in a for
loop that actually creates multiple threads. Thus, what Locksmith
reports as Path 2 is actually a summary of nthreads total paths, all
of which may reach the same access. Since no lock is held at the
access, and it is a write, we have found a data race. The last part of
this tab asks the user to look for any logic that would prevent the
data race from occurring. For example, perhaps nthreads is always
1, so only one thread is spawned, or perhaps the given state is not
realizable due to inconsistent assumptions about the branches taken
on the path. While we could attempt to break this condition down
into further subtasks, we chose this more open-ended question to
reduce visual clutter and complexity.

The tab in Figure 5(b) is generated once for each pair of paths i
and j that end with inconsistent sets of locks held. First, the user
selects whether the two threads are in a parent-child or other (child-
child) relationship. In the first case, the user must check (a) that the
access in the parent occurs after the child is created, and (b) that
there is no parent-child synchronization with pthread join. Case
(a) is necessary for the parent and child to access a location in
parallel. Case (b) is necessary because even if the parent accesses
the location after creating its child, it might wait for the child
to complete before performing the access, making parallel access
impossible. If both (a) and (b) are true, then there is likely a race,
and the user is asked to look for other program logic that would
prevent a race.

In the second case, a child-child relationship, the user checks
whether the two children are mutually exclusive. For example, they
may be spawned in different branches of an if statement, only one
of which can execute dynamically. Again, if they are not mutually
exclusive, the user looks for other logic that would prevent a race.

Though we did not carefully consider the benefits of the check-
list experimentally, we observed anecdotally that participants’ com-
pletion times for our current study were reduced in both variance
and magnitude (by an average of 3:46 minutes, or 41%), com-
pared to the pilot study. This improvement strongly suggests that a
tool-specific checklist has independent value, and that tool builders
might consider designing checklists for use with their tools. An in-
teresting direction for future work would be to explicitly study the
benefit of checklists in performing triaging.

5. Experimental Evaluation
We evaluated Path Projection’s utility in a controlled user study. In
our experiment, participants are asked to perform a series of triag-
ing tasks, using either Path Projection (PP), described in Section 3,
or the standard viewer (SV), described in Section 2. To eliminate
bias due to participants’ prior experience with editors, we imple-
mented our own standard viewer instead of using an existing editor.

For each task, the participant is presented with a Locksmith
error report for a program selected from a test corpus of open source
programs. The participant’s goal is to determine whether the error
report constitutes an actual data race or whether it is a false positive.
In this task, PP provides an advantage over SV in triaging if it is
faster, easier, and/or more accurate.

5.1 Participants
We recruited a total of eight participants (3 undergraduate, 5 grad-
uate) for this experiment via e-mail and word-of-mouth advertising

8 2008/8/2



Session 1 Session 2
1 PP/1.1 PP/1.2 PP/1.3 SV/2.1 SV/2.2 SV/2.3
2 SV/1.1 SV/1.2 SV/1.3 PP/2.1 PP/2.2 PP/2.3

Figure 6. User interface/problem number schedules

in the UMD Computer Science Department. We required the par-
ticipants to have prior experience with C and with multithreaded
programming (though not necessarily in C). All participants had
taken at least one college-level class that involved multithreaded
programming. On a scale of 1 (no experience) to 5 (very experi-
enced), participants rated themselves between 3 and 4 when de-
scribing their ability to debug data races. Two participants had pre-
vious experience in using a race detection tool (Locksmith and
Eraser [38]).

5.2 Design
Each participant was asked to perform the triaging task in two ses-
sions, first with one interface and then with the other. Thus, our ex-
periment is a within-subjects design consisting of two conditions,
using PP and using SV. Since participants experienced both inter-
faces, we were able to measure comparative performance, and we
could ask participants to qualitatively compare the two interfaces.

A within-subjects design potentially suffers from order effects,
since participants may be biased towards the interface given first.
To compensate, we perform counterbalancing on the interface or-
der: participants are randomly placed into one of the two schedules
shown in Figure 6.

Participants in the first schedule use PP in the first session and
SV in the second, whereas participants in the second schedule use
SV first and PP second. However, all participants receive the same
set of problems, numbered 1.1–2.3, in the same order, which allows
us to directly compare our observations of each problem without
the need to account for order effects.

5.3 Procedure
At the beginning of each session, we ask participants to review a
short tutorial and quiz on pthreads and data races, as well as a
tutorial on Locksmith with emphasis on the items in the triaging
checklist (below, Section 4). Then we introduce the user interface
(PP or SV) with another tutorial. We make sure that participants
are familiar with each interface by encouraging them to try every
feature and to triage a simple data race problem using the interface.

Following the tutorial is a single practice trial and three actual
trials, all of which follow the same procedure. In each trial, we first
ask participants to triage a real Locksmith error report generated
from Locksmith’s test corpus (below, Section 5.4). We log partic-
ipants’ mouse movements during the trial and measure the total
time to completion. Triaging ends when participants complete and
submit the triaging checklist. Immediately after, we present partic-
ipants with the same problem and ask them to explain out loud the
steps they took to verify the warning. This allows us to compare
their descriptions with our expectations.

We do not tell participants whether their answers are correct,
for several reasons. Firstly, it is difficult for the experimenter to
quickly judge the correctness of the answer, since identifying a data
race may involve understanding many subtle aspects in a program.
Secondly, we do not want the participants to become reliant on
receiving an answer or to guess at an answer. Finally, in a real
triaging scenario, users will not have the benefit of an oracle to
confirm their intuitions.

We have found this two-stage procedure to be very effective in
our pilot studies. In particular, it allows us to ask about specific
interesting behaviors observed without interrupting the participant
during the task. The participants also benefit from a limited form

of feedback. By recalling their work to the experimenter, they can
confirm their initial understanding, or notice mistakes made. Fur-
thermore, we have found that participants gain a better understand-
ing of the user interface by demonstrating it to another person. This
also helps mitigate the effects of what turned out to be a long learn-
ing curve in triaging error reports. The experimenter may also ask
for clarification to certain points, which may reveal inconsistencies
or mistakes.

After the experiment, participants complete a questionnaire and
are interviewed to determine their opinion of the user interface.
Users are asked to evaluate each tool based on ease-of-learning,
ease-of-use, and effectiveness in supporting the triaging task.

We ran the experiment on Mac OS X 10.5.2. To avoid bias due
to OS competency, all shortcuts are disabled except for cut, copy,
paste, find, and find-next, and participants are informed of these
shortcuts. We also display the interface on a 24-inch wide-screen
1920-by-1200 resolution LCD monitor.

5.4 Programs
Each trial’s error report was drawn from one of four open source
programs, all of which we have previously applied Locksmith to:
engine, aget, pfscan, and knot. We also chose reports in which
imprecision in the sharing and lock state analysis do not contribute
to the report’s validity, so as to focus on the task of tracing program
path as discussed in Section 2.

Reports from engine and pfscan are used during the tutorial and
practice trials. Trials 1.1–1.3 use error reports from aget, and trials
2.1–2.3 use error reports from knot. By using different programs
in each trial, we prevent participants from carrying over knowledge
of the programs from the first interface to the second. The three
selected reports within each program are significantly different
from each other, e.g., they do not follow the same paths. This helps
avoid bias that could arise if participants were given very similar
triaging tasks for the same program.

Of the six reports, four contain 3 paths, and two contain 2 paths;
eight paths have a call depth of 3, and the two deepest have a call
depth of 8. Overall, there were 23 (non-Locks) tabs to complete for
the experiment, 8 of which are true positives and 15 of which are
false positives.

We also simplify the task slightly by making four small,
semantics-preserving changes to the programs themselves. Doing
so makes it simpler to ensure that our participants have a common
knowledge base to work from, and reduces measurement variance
due to individual differences. First, we made local static variables
global. Second, we converted wait/signal synchronization to equiv-
alent pthread join synchronization when possible. We made both
changes in response to confusion by some participants in our pilot
study who were unfamiliar with these constructs. Third, we deleted
lines of code disabled via #if 0 or other macros. Finally, in a few
cases we converted gotos and switch statements to equivalent if
statements. These last changes remove irrelevant complexity from
the triaging task.

6. Experimental Results
6.1 Quantitative Results
Completion time We measured the time it took each participant
to complete each trial, defined as the interval from loading the user
interface until the participant submitted a completed checklist. The
top part of Figure 7 lists the results, and the chart in the lower-
left corner of the figure shows the mean completion times for each
interface and session order combination. We found in general that
PP results in 18% shorter completion times than SV.

More precisely, the mean completion time is 4:56 minutes for
PP, and 6:02 minutes for SV. A standard way to test the significance
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Completion times and accuracy for each trial
Session 1 Session 2

Trial 1.1 1.2 1.3 mean 2.1 2.2 2.3 mean

User SV PP
1 8:36 14:14 9:44 10:51 7:07 4:48* 4:02 5:19
2 5:07* 3:10 5:50 4:42 4:16 2:29* 2:10* 2:58
5 7:46 2:34 5:38* 5:20 5:13 3:43* 1:18* 3:25
7 5:40 6:23 7:35 6:33 3:05 3:53* 2:32 3:10

6:51 3:43
User PP SV

0 6:27* 6:09 8:32* 7:03 9:42 5:16* 3:11* 6:03
3 6:38 7:18 8:35 7:30 11:18 6:21 3:39 7:06
4 8:21 2:11 4:43 5:05 5:26* 4:27* 2:46* 4:13
6 7:11 2:52 4:50** 4:57 4:33 4:06* 1:58* 3:32

6:09 5:14

# Tabs 3 2 6 6 3 3

* one incorrectly answered tab in the checklist

Session 1 Session 2

0
10

0
20

0
30

0
40

0

Completion time (sec)

Standard Viewer
Path Projection

Session 1 Session 2

0
20

40
60

80
10

0
12

0

Duration in error report (sec)

Standard Viewer
Path Projection

Figure 7. Quantitative data

of this result is to run a user interface (within subjects) by presen-
tation order (between subjects) mixed ANOVA on the mean of the
three completion times for each participants in each session.3 How-
ever, this test revealed a significant interaction effect between the
interface and the presentation order (F (1, 6) = 6.046, p = 0.004).
(As is standard, we consider a p-value of less than 0.05 to indicate a
statistically significant result.) We believe this is a learning effect—
notice that for the SV-PP order (SV first, PP second), the mean
time improved 3:08 minutes from the first session to the second,
and for the PP-SV order the mean time improved 55 seconds. We
ran two one-way, within-subjects ANOVAs, analyzing each presen-
tation order separately, and we found that both of these improve-
ments were statistically significant (F (1, 3) = 12.78, p = 0.038
and F (1, 3) = 19.33, p = 0.022, respectively).

However, notice that the SV-PP improvement is much greater
than the PP-SV improvement. We applied Cohen’s d, a standard
mean difference test, which showed that the SV-PP improvement
was large (d = 1.276), and the PP-SV improvement was small-to-
medium (d = 0.375). This provides evidence that while there is a
learning effect, PP still improves user performance significantly.

Note that when analyzing completion times, we did not distin-
guish correct and incorrect answers. Indeed, it is unclear how this
affects timings, especially since in many cases, only one tab out of
several will contain an incorrect answer.

Accuracy The chart at the top of Figure 7 also indicates, for each
trial, how many of the checklist tabs were answered incorrectly.
The total number of checklist tabs in each trial is listed at the bot-
tom of the chart. We did not count the Locks tab in either of these

3 We ran all statistical tests in R and SPSS. For ANOVA, we confirmed that
all data sets satisfied normality using the Shapiro-Wilk test.

numbers. User mistakes are evenly distributed across both inter-
faces. Participants made 10 mistakes (10.9%) under PP, compared
to 9 mistakes (9.8%) under SV. For each participant, we summed
the number of mistakes they made in each session, and we com-
pared the sums for each interface using a Wilcoxon rank-sum test.
This showed that the difference is not significant (p = 0.770), sug-
gesting the distribution of errors is comparable for both interfaces.
This shows that using PP, participants are able to come to similarly
accurate conclusions in less time.

Most of the participant mistakes occurred in trials 2.2 and 2.3,
in which two potentially-racing paths actually contain a common
unrealizable sub-path, making the data race report a false positive.
In trial 1.3, one participant completed two tabs incorrectly, but there
was only one underlying mistake: misidentifying the same child
thread as a parent thread (and thus affecting the answers to two
tabs).

Time spent in error report We found that under PP, participants
spend much less time with the mouse hovering over the error report
compared to SV. The chart in the bottom right of Figure 7 shows
the mean times for each session and interface. We found that on
average, participants spend 20 seconds in the error report under PP,
compared to 1:34 minutes under SV. This dramatic difference is
highly significant (F(1,3)=15.634, p < 0.001) according to a user
interface (within subjects) by presentation order (between subjects)
mixed ANOVA.

We believe this difference is because PP makes the paths clearly
visible in the source code display, whereas in SV, hyperlinks in the
error report are heavily used to bring up relevant parts of the code.
As additional evidence, participants themselves reported the same
result: one noted that the error report is “necessary for the standard
viewer, but just a convenience in [PP].”

Time spent in checklist Finally, we found that participants spend
27 seconds more on average with the mouse hovering over the
checklist in PP compared to SV. Since checklist times across dif-
ferent trial numbers are incomparable, we applied a user interface-
by-trial between-subjects ANOVA, which indicated a statistically
significant result (p = 0.007).

We were surprised by this result, because we expected roughly
equal times for this in both interfaces. In retrospect, however, we
realized that participants need not scroll or click on the error report
very often under PP, and hence they may leave the mouse cursor
idle over the checklist.

6.2 Qualitative Results
In addition to quantitative data, we also examined participants’
answers to the questionnaires we administered. The questions are
on a 5-point Likert scale, and we analyze them using either the
Wilcoxon rank-sum test for paired comparisons, or the Wilcoxon
signed-rank test otherwise.

Overall impressions The upper chart in Figure 8 gives a box plot
summarizing participants’ opinions of the interfaces. Comparing
the median responses for the first three questions, we see that
participants felt PP took longer to learn, led to more confidence
in answers, and made it easier to verify a race. However, none of
these results is statistically significant (p = 0.308, 0.629, 0.152,
respectively), perhaps due to the small sample size (N = 8).
When asked to compare the interfaces head-to-head, all but one
participant preferred PP (p = 0.016).

However, we should also note that several participants felt that
they were unable to fairly assess PP due to the novelty of the
interface and the limited amount of exposure to it in the experiment.
One participant rated PP worse than SV in all metrics, yet stated he
preferred PP due to its potential, saying, “once you get comfortable

10 2008/8/2



●

●

Quick
to learn

Confident
of answer

Easy to
verify race

Prefer
Path Projection

1
2

3
4

5

Overall impression

Standard Viewer
Path Projection

●

●

●

Error
report

Checklist Function
inlining

Code
folding

Multi−
query

Query reveals
folded code

1
2

3
4

5

Usefulness of features

Figure 8. Participants’ overall impression (1: disagree, 5: agree),
and usefulness rating for particular features in Path Projection (1:
not useful, 5: very useful)

with seeing [only] pieces of your code, I feel it will be more
efficient.”

Usefulness of features Finally, participants generally rated all
the features of PP as somewhat or very useful. The bottom chart
in Figure 8 shows a box plot of participants’ responses, and all
answers are statistically significant in favor of PP compared to a
neutral response of 3 (p < 0.032).

While participants felt that the error report was very useful, they
also commented that it served mostly as an initial overview under
PP, whereas it was critical under SV. This matches our quantitative
result indicating participants spent much less time in the error
report under PP.

The checklist was very well received overall. One participant
said, “[It] saved me from having to memorize rules.” Interest-
ingly, two participants felt that, while the checklist reduces mis-
takes, verifying the data race takes longer. This conflicts with our
own experience—as we mentioned earlier, participants in our pilot
study, which did not include the checklist, took notably longer to
triage error reports than participants in our current study.

We thought that participants would be wary about function in-
lining and code folding, since the former is an unfamiliar visual-
ization and the latter hides away much code. However, participants

rated both very highly, saying particularly that code folding was
“the best feature,” “my favorite feature,” and “I love using this fea-
ture [code folding].”

Most participants found multi-query useful, but two did not.
When we asked them why, they replied that they felt that the code
folding was already doing an adequate job without it. However,
they had forgotten that the multi-query was in use by default with
the four preset queries (shown in Figure 2). We believe that multi-
query is actually extremely useful in combination with code fold-
ing.

6.3 Threats to Validity
There are a number of potential threats to the validity of our results.
The core threat is whether our results generalize. We had a small
number of participants, all of whom were students rather than
expert programmers who had significant experience debugging data
races. The set of programs (N = 2) and error reports (N = 6)
in the experiment was small. Moreover, participants were asked to
triage error reports for unfamiliar programs, rather than code bases
they had developed themselves. Lastly, despite long tutorials before
each experiment, we were unable to eliminate the learning effect
across our trials.

However, even with these limitations, our experiment did pro-
duce statistically significant and anecdotally useful information for
our population and sample trials. We leave carrying out a wider
range of experiments to future work.

One minor threat is the small set of changes we made to the
programs (Section 5.4) to avoid confusion in our participants. Us-
ing more expert programmers as test subjects would obviate the
need for this. Also, the SV interface represents a typical IDE, but
is not an actual, production-quality IDE. We chose this approach
on purpose, so that familiarity with a particular IDE would not be
a factor, but we may have omitted features that would be useful for
our task.

7. Related Work
Error report triaging is essentially a program comprehension task.
In our study, the particular task is to determine whether two deref-
erences could possibly execute simultaneously in two different
threads. There is a substantial body of tools aimed at assisting in
program comprehension tasks typically (but not exclusively) asso-
ciated with code maintenance or re-engineering (e.g., SHriMP [40],
and Code Surfer [1], to name just two more recent tools). As far as
we are aware, none of these tools has been specifically designed to
support users of static analysis for defect detection.

Conversely, many defect detection tools that use static analysis
provide custom user interfaces [3, 30, 9, 26, 22, 1, 18, 8], IDE plug-
ins [28, 19, 39, 23], or both [35]. However, we are not aware of
any prior studies that measure the impact of the user interface on a
static analysis tool’s efficacy. Indeed, many proprietary tools have
licenses that specifically prohibit publishing the results of studies
about their tools.

Most of the above tools report the errors in part by using pro-
gram paths, e.g., to illustrate a suspect data flow or an erroneous ex-
ecution trace. We surveyed these tools based on publicly-available
screenshots and literature and compared their features with Path
Projection. As can be seen from Table 1, most interfaces share
some features with Path Projection, though the implementation of
these features is rarely the same. Code Sonar has many features in
common with Path Projection, but we believe some of its interface
choices could be improved. For example, several of Code Sonar’s
features insert additional colored lines of text into the source code.
We find this results in a multitude of interleaving colored lines that
make the source code hard to understand.
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Features (legend below)

Tool HLR HPC CF FCI AC AQ OV

Path Projection × × × ×
SDV [3] × ×
PREFix [30] × ×
PREFast [30] × n/a1 ×
Prevent [8] × ×
Code Sonar [22] × × × × ×
MrSpidey [18] × × × ×
Fortify SCA [19] × × ×
Klocwork [28] × ×
Fluid [39] × ×
FindBugs (GUI) [35] × × n/a1

FindBugs (Eclipse) × × n/a1

CQual [23] ×

Feature legend
HLR : hyperlinked error report AC : annotated code with analysis
HPC : highlighted path in code AQ : analysis queries
CF : code folding OV : other visualization (see text)
FCI : function-call inlining

1PREFast and FindBugs are intraprocedural, so FCI does not apply.

Table 1. Summary of tool interface features

Several tools provide features not present in Path Projection,
e.g., they insert summaries of the internal results of their analysis
at corresponding lines in the source code. For example, SDV and
Code Sonar visualize the state of an automaton-based specification
at lines in the path. A few tools provide means to query an analysis’
internal results at a given program line or expression. For example,
MrSpidey allows the user to query possible run-time values for a
given expression, based on a value-flow analysis. Some tools pro-
vide more graphical visualizations of paths. Fortify SCA illustrates
a path as UML-style interaction diagram, and MrSpidey overlays
lines on the source code to illustrate value flows. Path Projection’s
multi-query, path-derived code-folding, and check-list seem to be
unique among the tools we studied. Interestingly, the FindBugs
standalone GUI has features that are disjoint from its Eclipse plu-
gin, which show how these features can sometimes be constrained
by the IDE framework.

Triaging is a necessary first stage in identifying and fixing
a software defect. In some organizations, there are programmers
who are responsible solely for locating and documenting software
defects into bug databases [37]. Work on bug triaging has been
focused on detecting duplicate bug reports [36], assigning bug-
fixing responsibility [2, 11], or visualizing the progress of bug
reports [12]. Path Projection, and our study, differs from this work
in exploring how triage can be performed more accurately and
efficiently.

A number of proposals aim to improve the quality of error
reporting by generating more intelligent error messages [15, 32, 4,
24, 42], or by prioritizing those messages [29]. This can be helpful,
and our work complements these techniques by visualizing results
in the context of code as much as possible.

8. Conclusions
We introduced Path Projection, a new program visualization toolkit
that is specifically designed to help programmers navigate and un-
derstand program paths, a common output of many static analysis
tools. Path Projection visualizes multiple paths side-by-side, using
function call inlining and code folding to show those paths in a
compact format. Our interface also includes a multi-query search
facility to locate and reveal multiple terms simultaneously. To our
knowledge, Path Projection is the first tool-independent framework

for visualizing static analysis results in particular, and program
paths in general.

We measured the performance of Path Projection for triaging
error reports from Locksmith, a data race detection tool for C. For
this experiment, we added a task-specific checklist that enumerates
the sub-tasks needed to triage each error report. Our controlled user
study showed that, compared to a standard viewer, Path Projection
reduced completion times for triaging data races, with no adverse
effect on accuracy, and that users felt that Path Projection was
useful. We also found the checklist improved performance overall
compared to a pilot study. To our knowledge, ours is the first study
of the impact of the user interface on the efficiency and accuracy of
triaging static analysis error reports.

We believe that Path Projection has many potential applications
beyond bug triage. We intend to apply it to bug fixing and other
programming tasks, such as interactive debugging. We also intend
to study the use of checklists to complement static analysis tools.
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