
Work In Progress: an Empirical Study of Static Typing in Ruby

Mark T. Daly Vibha Sazawal Jeffrey S. Foster
University of Maryland, College Park
{mdaly,vibha,jfoster}@cs.umd.edu

Abstract
In this paper, we present an empirical pilot study of four
skilled programmers as they develop programs in Ruby, a
popular, dynamically typed, object-oriented scripting lan-
guage. Our study compares programmer behavior under the
standard Ruby interpreter versus using Diamondback Ruby
(DRuby), which adds static type inference to Ruby. The aim
of our study is to understand whether DRuby’s static typing
is beneficial to programmers. We found that DRuby’s warn-
ings rarely provided information about potential errors not
already evident from Ruby’s own error messages or from
presumed prior knowledge. We hypothesize that program-
mers have ways of reasoning about types that compensate
for the lack of static type information, possibly limiting
DRuby’s usefulness when used on small programs.

1. Introduction
In recent years, there has been considerable interest in
lightweight, general-purpose scripting languages. The exact
definition of a scripting language is debatable, but one com-
mon feature is dynamic typing, in which types are strongly
enforced but are not checked until the last possible moment
during execution. While dynamic typing is flexible and ad-
mits a range of interesting and useful coding patterns, it also
risks runtime type errors that could be found proactively by
a static type system.

In this paper, we describe an in-lab pilot study of pro-
grammer use of types in Ruby, an object-oriented, dynami-
cally typed scripting language. We collected data from four
skilled programmers as they completed two small program-
ming tasks in Ruby, one using the standard Ruby interpreter,
with dynamic typing, and one using Diamondback Ruby
(DRuby), which adds static type inference to Ruby [Furr
et al. 2009b,a]. DRuby includes type system features like in-
tersection and union types, parametric polymorphism, struc-

Copyright is held by the author/owner(s). This paper was published in the proceedings
of the Workshop on Evaluation and Usability of Programming Languages and Tools
(PLATEAU) at the ACM Onward! Conference. October, 2009. Orlando, Florida, USA.

tural object types, and optional and variable type lists for
method signatures. Prior experience shows that DRuby finds
errors in a range of existing Ruby programs, when used by
DRuby’s authors [Furr et al. 2009b,a]. In our study, we aim
to understand whether DRuby’s static type system actually
helps typical Ruby programmers find and fix errors—if not,
why not, and if so, how could we improve DRuby’s type
system to better serve programmers’ needs?

Based on qualitative analysis of participant experiences,
we made three tentative findings. First, using an open coding
technique [Strauss 1987] to classify DRuby error messages
produced during participant trials, we found that under 20%
of DRuby’s error messages were informative. Second, in in-
terviews, participants reported that they did use types as part
of their reasoning process during development. These two
findings seem to be at odds—DRuby’s type error messages
are not helpful, but types themselves are important. We be-
lieve the disparity can be explained by the small scale of the
programming task studied: In small, single-author programs,
developers can rely on their own memory and naming con-
ventions to track type information.

Finally, we found that all four participants used IRB, the
interactive Ruby shell, to explore ideas during development.
IRB even served as a documentation source for method
names and return types. This suggests that DRuby should
also offer an interactive interface, possibly by integrating
DRuby with IRB.

2. Background
The Ruby Programming Language Ruby is a strongly
typed, object oriented programming language whose concise
syntax and flexible, dynamic type system is intended to
provide programmers with the latitude to write programs
in whatever way they wish. The language’s creator asserts
that, “I want to make Ruby users free. I want to give them
the freedom to choose... if there is a better way among
many alternatives, I want to encourage that way by making
it comfortable” [Venners 2003]. The success of Ruby is
reflected both by the considerable community of users and
enthusiasts who contribute to its evolution, and by its use as a
host language for the popular Ruby on Rails web framework.

In our experience, Ruby’s plasticity is a double-edged
sword: because the language’s interpreter performs few



static checks, extensive testing may be required to find pro-
gramming errors. As a result, practices such as “test-driven
development” [Beck 1999], wherein tests are written even
before code is written, are popular in the Ruby community.
However, as is well-known, testing is necessarily incom-
plete, which raises the question, could static analysis benefit
Ruby programmers?

Diamondback Ruby: Static Type Inference for Ruby Di-
amondback Ruby (DRuby) is a static type inference system
for the Ruby programming language. DRuby has been used
to identify type errors in a number of small, existing Ruby
programs, with most programs requiring little modification
to be compatible with DRuby’s analysis [Furr et al. 2009b].
Subsequent work showed how to scale up DRuby to highly
dynamic language constructs and larger programs [Furr et al.
2009a]. While these results are promising, it is difficult to
predict how and to what end such a type inference system
would be used by programmers. We would like to know,
does static type inference present information to program-
mers that helps them correct errors?

3. Method
Our pilot study of programmer behavior consists of an in-
ductive, two-treatment, repeated measures experiment in
which participants solve short Ruby programming exercises.
The experimental conditions differ in either applying DRuby
or not to the participant’s source code each time the partici-
pant executes the Ruby interpreter.

Tasks We gave the participants two programming exer-
cises: writing a simplified sudoku solver and writing a maze
solver. The former problem is a simplification of problem
found on the Ruby Quiz website [Gray 2008], and the latter
was inspired by the “Gang of Four” design patterns book
[Gamma et al. 1995]. The exercises are of approximately
equal difficulty and have little overlap, to discourage direct
code reuse. We also aimed for exercises that are complex
enough to warrant using DRuby while remaining solvable
within the experimental protocol’s time limits.

Protocol Each exercise consists of three components: a
textual problem description, starter code, and set of test cases
that target the top-level API participants are expected to im-
plement. The problem description defines the programming
task, describes any data input and output formats, and pro-
vides pseudo-code for algorithms that the participant can
use to solve the problem. The starter code consists of any
boilerplate we expected not to vary among solutions. For
the sudoku solver, we supplied a method to iterate over the
cells of a serialized sudoku puzzle and a method to calcu-
late the grid region of a given cell. For the maze solver, we
supplied methods to parse textual maze definitions. Finally,
the test cases give participants a way to run their solution,
and we deem solutions that pass all test cases to be correct.
The programming task packages as presented to participants

are available online at http://www.cs.umd.edu/~mdaly/
druby_pilot_problems.tar.gz.

Experimental Setup We recruited four participants from
a local Ruby users group. We targeted participants in this
way because the behavior of novices may not reflect that of
more practiced participants [Mayer 1981], and we expected
users group members to be comfortable with Ruby. All par-
ticipants indicated that they are quite familiar with the Ruby
programming language. Participants may or may not have
used DRuby prior to this study—previous experience (or
lack thereof) was not a prerequisite for participation.

The pilot was conducted in a laboratory setting. Partici-
pants selected their first exercise, and were allowed as much
time as they wished to digest the textual problem descrip-
tion. After participants indicated they were done reading the
problem description, we allowed them one hour of program-
ming time. (Participants were not shown the time, but some
chose to monitor it themselves.)

Participants used a single development platform, with a
standard keyboard, mouse, and monitor. We configured the
platform with Emacs, Vi, and TextMate, which are popular
with Ruby on Rails programmers [Bray 2007]. We also
gave participants access to the Ruby core documentation
and, except for the first participant, the Internet. (The first
participant was not given Internet access to prevent the use
of existing code in this study, but we quickly realized this
was a mistake. Participants who followed were simply asked
not to copy existing solutions.)

The use of DRuby was randomly selected for one of each
participant’s problems. DRuby was enabled automatically
for executions of the selected problem, requiring no addi-
tional action by participants. DRuby is a drop-in replace-
ment for the Ruby interpreter that first performs static type
inference and then runs the standard interpreter.

We recorded screenshots and audio as participants worked.
Whenever a participant ran the Ruby interpreter or DRuby,
we made a snapshot of the source code and the output of the
interpreter or DRuby. (The first participant’s output had to
be recreated after the study due to issues with our software.)

At the end of the first problem, participants could take a
break at their discretion before beginning the other problem.
After the two programming periods had finished, we asked
participants to complete a short questionnaire, and we also
interviewed the participants informally to assess their reac-
tion to DRuby and to the study as a whole.

4. Participant Experiences
Next we discuss the experiences of our four participants,
ordered chronologically.

Participant A Participant A indicated that he is equally
comfortable with Java and Ruby, and is somewhat familiar
with the C programming language.

Participant A only finished about a quarter of each exer-
cise. The reason is that he was given no starter source code,



which is what our protocol originally stipulated. As a result,
participant A barely got to write the portions of his solution
that might have lead to type errors, rendering use of DRuby
mostly moot. We added starter code for subsequent partic-
ipants to address this issue, and the other participants were
able to nearly complete all their exercises.

Although participant A made very little use of DRuby, he
did take preemptive action to avoid a type error in which data
read from a file must be explicitly coerced into an integer.
He identified this particular error without the assistance of
the Ruby interpreter, DRuby, or any other automated means.
Screen recordings show him adding an integer constant to
certain variables that store data from a file, and then writing
explicit coercions for these variables at an earlier point in the
program. While the arithmetic operation may have lead him
to find this potential error, we do not know for sure.

In our interview, participant A discussed the role of types
in Ruby programming. He indicated that he maintains im-
precise mental knowledge of types: “I know that types are
there. When I read in a file, I know that I’ve got a string;
[when] I split on newline, then I know I’ve got an array, so
in my head... I have usually an idea that I’ve got an enumer-
able. I’m not sure if it’s an array or something else...”

Participant B Participant B said that he is quite familiar
with Ruby, but is most familiar with Java. He indicated that
he is as familiar with C# and Groovy (a Java-like dynamic
language) as he is with Ruby, and somewhat so with Python.

Participant B encountered some bugs in our data collec-
tion tools during the course of writing his solutions. This
interfered with some executions of his program and caused
him to make some unnecessary edits to his code. Using his
feedback, most of these issues were corrected.

In his first programming problem, participant B encoun-
tered a significant type error: where participant A caught the
necessary string-to-integer coercion step early on, partici-
pant B did not discover this until the Ruby interpreter raised
a “TypeError” exception. After encountering this error, par-
ticipant B spent several minutes making extensive edits to
his program to solve the problem. This occurred during the
trial that did not use DRuby.

During his interview, participant B described how he con-
tinuously keeps type information in mind to supplement the
lack of type annotations in Ruby source code. Discussing
his experience with Ruby, he stated, “...with a dynamic lan-
guage, I’m just kind of subconsciously always thinking about
types.” In contrast, he explained that, “...when I’m coding
Java, I’m not even thinking about [types], because it’s al-
ready done for me. So if I make a mistake, the compiler is
doing that for me. So, I’m almost consciously just not car-
ing, and so I don’t really worry about keeping that stuff in
mind...”

Participant C Participant C stated that he is equally famil-
iar with Java and Ruby. Additionally, he indicated some fa-
miliarity with C++ and Scheme.

Participant C encountered a type error in which he used
a single-element array where a value was expected as the
contents of an array cell. This error resulted in a failure of
the supplied test case, which rather confusingly reported that
“4 != 4.” The strange error message occurred because of the
default printing method for Ruby arrays: a single-element
array is printed as just the element itself, without brackets
(unlike multi-element arrays). This error happened during
the trial that did not use DRuby, and required several minutes
of the participant’s time to diagnose and correct.

In his interview, participant C said that he might not ben-
efit from the sort of error messages he saw reported by
DRuby. He explained, “I do find myself...regularly check-
ing the types of objects to make decisions, usually when
I’m making rendering decisions, ‘how do I want to render
this,’ where knowing ‘does this object respond to a certain
method’ [i.e., what DRuby could report] isn’t really what
I need to know.” This position is understandable given that
many of the DRuby error messages he saw concerned calls
to methods that had not been implemented. Moreover, when
asked to consider shortcomings of Ruby’s standard dynamic
type system, he stated that he has not been disappointed:
“...my expectations were lowered and then adjusted, so it
was more, ‘don’t rely on types.’”

Participant D Unlike the previous participants, participant
D said he is equally familiar with Perl, C, and Ruby. He also
said that he is quite familiar with C++ and moderately so
with Haskell.

Interestingly, participant D made few, if any, type errors
during his development. With the exception of some (Ruby
interpreter) errors due to uninitialized hash table cells, none
of the error messages produced by participant D’s test exe-
cutions indicated a type mismatch.

In his interview, participant D said that the relatively
small scope of the solutions he was asked to write made
DRuby’s error messages rather ineffectual. He said, “it
would usually be faster to run the test suite without running
the static checks, because [the programming challenges]
were such small programs,” and that, “[DRuby] usually told
me things that I already knew, like...I hadn’t implemented a
particular method yet—I knew I hadn’t implemented a par-
ticular method yet, but wanted to see the initialization go
through.”

5. Results
Because of the limited number of participants in our study,
it is difficult to come to definitive conclusions. Nevertheless,
we were able to inductively formulate several tentative hy-
potheses using the data we gathered; we expect to investigate
these more fully in future studies.

DRuby’s Error Messages: Correct but Not Informative
To analyze the DRuby error messages that our participants
received, we assigned each error message to one or more cat-



egories using open coding. Open coding is a method of in-
ducing hypotheses from qualitative data by comparing frag-
ments of data with each other, assigning attributes (called
codes) to each fragment, and grouping fragments together
into categories based on those codes [Strauss 1987].

To categorize the DRuby error messages, we considered
each message with respect to other simultaneously reported
messages, any warnings produced by the Ruby interpreter in
the same execution of the participant’s program, any code
changes made by the participant since the last execution of
the program, and all DRuby messages that preceded it.

We ended up with seven primary codes for DRuby er-
ror messages: a) Duplicate: multiple messages represent-
ing the same error for different sites in a single execution;
b) Intentional: the result of an intentional edit with obvious
consequences; c) Expected: seen in an earlier execution or
expected from starting conditions; d) Identical: same as a
warning message reported by Ruby; e) Additional: not re-
ported by Ruby for that execution; f) New: previously unre-
ported error; g) Recurrence: previously seen message from a
reintroduced bug. In the example output:

[ERROR] instance Sudoku does not support \
methods print_puzzle
in method call s.print_puzzle
at ./sudoku.rb:33
in typing ::Sudoku.new
at ./sudoku.rb:32

[ERROR] wrong arity to function, got exactly \
1 arguments, expected no arguments
in solving method: initialize
in typing ::Sudoku.new
at ./sudoku.rb:32

[ERROR] wrong arity to function, got exactly \
1 arguments, expected no arguments
in solving method: initialize
in typing ::Sudoku.new
at ./sudoku.rb:34

sudoku.rb:32:in ‘initialize’: wrong number of \
arguments (1 for 0) (ArgumentError)

from sudoku.rb:32:in ‘new’
from sudoku.rb:32

the first DRuby message (prefixed with [ERROR]) is coded
as Additional. The second and third would be coded as Iden-
tical since the same warning is reported by Ruby (the final
message), and the third as Duplicate because it is the same as
the second. If these errors occurred in a previous execution
or if this was one of the first executions of the program (when
the programmer has not had a chance to write any methods
yet), these would also be marked Expected; otherwise the
first error would be coded as Recurrence or New depend-
ing on whether or not it had occurred and been fixed before.

The Duplicate, Expected, and Identical codes were applied
to messages very frequently. The Additional and New codes
were applied less frequently, and the Intentional and Recur-
rence codes were applied to very few messages.

These codes were grouped into categories representing
whether a message did or did not provide information to
the programmer in excess of what they could be expected
to already know or could have obtained through using Ruby
alone. Messages were assigned to one primary category,
either Informative or Not Informative, based on the codes
they had received: a message was assigned to Informative
if it had been given at least one of Additional, New, or
Recurrence exclusively; otherwise, it was assigned to Not
Informative.

The primary theme that emerged from our analysis is that
DRuby did not reliably contribute much useful information.
While a limited number of error messages were classified as
Informative by our open coding scheme, the majority were
not: excluding data from participants A and B, who experi-
enced problems with the protocol and data capture software
that were already discussed, 13.4% of error messages were
classified as Informative, and only 20% executions where
DRuby reported at least one error contained any Informative
error messages. These percentages are lower if participants
A and B’s data is included.

That said, none of the messages produced by DRuby were
incorrect, and it may be that DRuby is useful for larger
projects but not for the small programs in our study. One
of DRuby’s key advantages over standard testing is that it
analyzes all code paths, including obscure ones—of which
there may be few in small programs with straightforward
control flow. Further investigation will be required, however,
before we can make this claim with confidence.

Programmer Conventions as Type Annotations The cod-
ing technique applied to DRuby’s error messages shows that
DRuby did not report much useful information. However,
our interviews indicated that types are part of participants’
reasoning processes. This disparity is troubling, as we would
expect programmers to find type errors more easily with the
aid of DRuby. There may be, however, other mechanisms at
work that prevent type errors in the first place.

While it is always wise to give methods and arguments
names that indicate what they mean or do, they can also
be used to encode type information. In this example (from
participant code, as are all those that follow), the parameter
names indicate their types directly:

def validate_digits(array, str)

This is not the only way that participants encoded type
data into their method definitions. The type signature of the
method:

def set_value_at(x,y,value)

is also partly obvious in the context of a program that uses
a two-dimensional grid. It is a reasonable guess that x and y



are integer coordinates; value could have any type, but the
programmer would probably be able to easily remember its
specific type. Other method definitions in the same program
include:

def get_value_at(x,y)
def row_values(x)
def col_values(y)
def grid_values(cx,cy)

Again, arguments that include x and y in their names are
probably integers. Each method’s name contains value or
values, and so will probably return the same type of objects
that set value at takes as an argument. These are not
precise type signatures, but programmers do not necessarily
need precision when dealing with small programs.

Another convention also appeared in participants’ code:

def open?(sym)

The use of a question mark at the end of methods does not
change a method’s behavior, but is a general Ruby conven-
tion: “Methods that act as queries are often named with a
trailing ?, such as instance of?” [Thomas et al. 2004]. In
this case, we are asking if an object is open or not for some
symbol, and so expect open? to return a boolean.

All of our participants wrote method definitions that ap-
pear to specify some amount of argument or return type data.
Ad-hoc conventions may have helped to limit type errors, but
further study would be required to know for certain.

Sources of Type Information: Ruby as its Own Reference
Several participants indicated that they rely on their own
memory to compensate for the lack of explicit type infor-
mation in Ruby. Moreover, in reviewing interview tapes and
screen recordings, we found that participants used several re-
sources when their memory was insufficient: They gathered
information from the Ruby Core documentation, the Internet
at large, the ri utility (a command-line tool for accessing
Ruby documentation), and IRB, the interactive Ruby shell.
Based on our recordings, IRB is by far the preferred method
for exploring features of Ruby; participant A even said in his
interview that he uses reflection in Ruby to look up method
names. (The “methods” method can be invoked on a class
to get a list of its methods.) IRB was the only information
resource employed by all four participants; one participant
used IRB for everything from experimenting with certain
Ruby constructs, to manually loading and executing portions
of his program, to looking up a particular method’s return
type.

If programmers prefer IRB over other forms of Ruby ref-
erence material, then tools like DRuby may be more effec-
tive if they provide interactive documentation as well. In its
current form, DRuby provides type documentation through
rich type annotations written in comments. A more effec-
tive form of documentation may integrate annotations into
the output produced by IRB (as is done, for example, by
OCaml’s interactive shell).

6. Threats to Validity
One key threat to the validity of our study is the scale of
the programs written by the participants. In our experience,
many Ruby programs are created by writing larger, reusable
libraries and then writing small main programs; our study
captures only the latter. Additionally, one very common use
of Ruby is to write programs in Ruby on Rails, which is not
included in our study—Rails code is not statically analyz-
able by DRuby by itself [An et al. 2009].

Another uncontrolled variable is the effect of DRuby it-
self on participants’ workflow. During this study, DRuby
typically took about 80 times longer to analyze and run par-
ticipants’ code than when run just under Ruby. This delay
in execution was clearly noticeable, and may have motivated
participants to test their programs less frequently when using
DRuby—this change in debugging practices may have af-
fected their development processes, though we cannot know
for certain.

7. Related Work
While a great deal of research has been conducted regard-
ing human factors in software development, little work has
focused specifically on the effect of type systems on pro-
grammer behavior. Gannon [1977] studied the error rates
in solutions to programming problems written in untyped
vs. statically typed variants of a programming language.
However, in Gannon’s study, participants were graduate
and advanced undergraduate students, while our participants
were recruited from a users group for the language being
studied. Additionally, type systems in particular and pro-
gramming languages in general have evolved a great deal
since Gannon’s work.

Ng Cheong Vee et al. [2005] explored the effect of var-
ious kinds of compiler error messages on both novice and
“mature” students using Eiffel, categorizing errors based on
log data collected during the study. Yang et al. [2000] in-
vestigated manual type checking practices in Standard ML,
but used existing code containing errors rather than having
participants write their own programs. Recently, Hanenberg
[2009] completed preliminary research on the effect of typed
vs. untyped variants of a novel language, finding that pro-
grammers worked faster in the untyped version.

While DRuby was selected for this research, other static
type inference and checking systems for dynamically typed
languages exist. Morrison [2006] developed a type inference
approach that is used by the RadRails IDE for Ruby on Rails.
Because this inference system is built into a specific IDE,
however, it was not well suited to our study. Several type in-
ference systems for Python have been developed by Aycock
[2000], Cannon [2005], and Salib [2004]; additionally, An-
cona et al. [2007] have created a statically typed subset of
Python that can be compiled to CLI or JVM bytecode. Simi-
lar systems, such as CMUCL [MacLachlan 1992] and SBCL
[SBCL 2008], have been developed for Lisp.



8. Future Work
Our pilot study allowed us to gain insight into the practices
of Ruby programmers and to refine our experimental proto-
col. There are several interesting directions for future work.

An alternate approach to our study would be to conduct
surveys. Ayewah and Pugh [2008] surveyed users of Find-
Bugs, a static analysis tool for Java, to gain an understanding
of how it is used in practice. They also have investigated the
use of FindBugs in industrial settings [Ayewah et al. 2007].
However, similar studies with DRuby (or other static type
systems for dynamic languages) would first require a sizable
user-base, which we do not believe currently exists.

Another direction would be to scale up our study to larger
programs. We could ask participants to identify errors in
existing software projects of varying size and complexity,
and observe whether DRuby helps them find and fix bugs.

A study of programmers working as a team might also
be interesting. Code changes by multiple developers may
cause inconsistencies in their respective understandings of a
program’s types, creating opportunities for type errors. This
might also allow us to investigate the use of conventions as
annotations, as the type information encoded by one pro-
grammer may not be obvious to another.

Acknowledgments
We wish to thank Michael Hicks and the anonymous review-
ers for their helpful comments on earlier versions of this pa-
per, Mike Furr and Elnatan Reisner for assisting in the test-
ing of our protocol, and our study participants. This research
was supported in part by DARPA ODOD.HR00110810073
and NSF CCF-0915978.

References
J. D. An, A. Chaudhuri, and J. S. Foster. Static Typing for Ruby on

Rails. In Proceedings of the 24th IEEE/ACM International Con-
ference on Automated Software Engineering, Auckland, New
Zealand, Nov. 2009. To appear.

D. Ancona, M. Ancona, A. Cuni, and N. Matsakis. RPython:
Reconciling Dynamically and Statically Typed OO Languages.
In DLS, 2007.

J. Aycock. Aggressive Type Inference. In Proceedings of the 8th
International Python Conference, pages 11–20, 2000.

N. Ayewah and W. Pugh. A report on a survey and study of
static analysis users. In DEFECTS ’08: Proceedings of the 2008
workshop on Defects in large software systems, pages 1–5, New
York, NY, USA, 2008. ACM. ISBN 978-1-60558-051-7. doi:
http://doi.acm.org/10.1145/1390817.1390819.

N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and Y. Zhou.
Evaluating static analysis defect warnings on production soft-
ware. In PASTE ’07: Proceedings of the 7th ACM SIGPLAN-
SIGSOFT workshop on Program analysis for software tools
and engineering, pages 1–8, New York, NY, USA, 2007. ACM.
ISBN 978-1-59593-595-3. doi: http://doi.acm.org/10.1145/
1251535.1251536.

K. Beck. Extreme Programming Explained: Embrace Change.
Addison-Wesley, October 1999.

T. Bray. Ruby survey results, November 2007. http:

//www.tbray.org/ongoing/When/200x/2007/11/26/

Ruby-Tool-Survey.

B. Cannon. Localized Type Inference of Atomic Types in Python.
Master’s thesis, California Polytechnic State University, San
Luis Obispo, 2005.

M. Furr, J.-h. D. An, and J. S. Foster. Profile-guided static typ-
ing for dynamic scripting languages. In Proceedings of the
twenty fourth Annual Conference on Object-Oriented Program-
ming Systems, Languages, and Applications, Oct. 2009a.

M. Furr, J.-h. D. An, J. S. Foster, and M. Hicks. Static Type
Inference for Ruby. In OOPS Track, SAC, 2009b.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1995. ISBN
0-201-63361-2.

J. D. Gannon. An experimental evaluation of data type conventions.
Commun. ACM, 20(8):584–595, 1977. ISSN 0001-0782. doi:
http://doi.acm.org/10.1145/359763.359800.

J. E. Gray. Ruby quiz, February 2008. http://www.rubyquiz.

com/.

S. Hanenberg. What is the impact of type systems on programming
time? – first empirical results. Proceedings of the 2009 Work-
shop on Evaluation and Usability of Programming Languages
and Tools, October 2009.

R. A. MacLachlan. The python compiler for cmu common lisp.
In ACM conference on LISP and functional programming, pages
235–246, New York, NY, USA, 1992. ISBN 0-89791-481-3.
doi: http://doi.acm.org/10.1145/141471.141558.

R. E. Mayer. The psychology of how novices learn computer
programming. ACM Comput. Surv., 13(1):121–141, 1981. ISSN
0360-0300. doi: http://doi.acm.org/10.1145/356835.356841.

J. Morrison. Type Inference in Ruby. Google Summer of Code
Project, 2006.

M. Ng Cheong Vee, B. Meyer, and K. L. Mannock. Empirical study
of novice errors and error paths. Unpublished technical report,
2005.

M. Salib. Starkiller: A Static Type Inferencer and Compiler for
Python. Master’s thesis, MIT, 2004.

SBCL 2008. Steel Bank Common Lisp, 2008. http://www.

sbcl.org/.

A. L. Strauss. Qualitative Analysis for Social Scientists. Cambridge
University Press, Cambridge, United Kingdom, 1987.

D. Thomas, C. Fowler, and A. Hunt. Programming Ruby: The
Pragmatic Programmers’ Guide. Pragmatic Bookshelf, 2nd
edition, 2004.

B. Venners. The Philosophy of Ruby: A Conversation with Yuk-
ihiro Matsumoto, Part I, Sept. 2003. http://www.artima.

com/intv/rubyP.html.

J. Yang, G. Michaelson, and P. Trinder. How do people check
polymorphic types? Proceedings of the 12th Workshop on the
Psychology of Programming, April 2000.


