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Object-oriented dynamic languages such as Ruby, Python, and JavaScript
provide rapid code development and a high degree of flexibility and agility to the
programmer. Some of the their main features include dynamic typing and metapro-
gramming. In dynamic typing, programmers do not declare or cast types, and types
are not known until run time. In addition, an object’s suitability is determined by
its methods, as opposed to its class. Metaprogramming dynamically generates code
as the program executes, which means that methods and classes can be added and
modified at run-time. These features are powerful but lead to a major drawback of
dynamic languages: the lack of static types means that type errors can remain latent
long into the software development process or even into deployment, especially in
the presence of metaprogramming. To bring the benefits of static types to dynamic
languages, I present three pieces of work.

First, I present the Ruby Type Checker (rtc), a tool that adds type check-

ing to Ruby. Rtc addresses the issue of latent type errors by checking all types



during run time at method entrance and exit. Thus it checks types later than a
purely static system, but earlier than a traditional dynamic type system. Rtc is
implemented as a Ruby library and supports type annotations on classes, methods,
and objects. Rtc provides a rich type language that includes union and intersec-
tion types, higher-order (block) types, and parametric polymorphism, among other
features. We applied rtc to several apps and found it effective at checking types.

Second, I present Hummingbird, a just-in-time static type checker for dy-
namic languages. Hummingbird also prevents latent type errors, and type checks
Ruby code even in the presence of metaprogramming, which is not handled by rtc.
In Hummingbird, method type signatures are gathered dynamically at run-time, as
those methods are created. When a method is called, Hummingbird statically type
checks the method body against current type signatures. Thus, Hummingbird pro-
vides thorough static checks on a per-method basis, while also allowing arbitrarily
complex metaprogramming. We applied Hummingbird to six apps, including three
that use Ruby on Rails, a powerful framework that relies heavily on metaprogram-
ming. We found that all apps type check successfully using Hummingbird, and that
Hummingbird’s performance overhead is reasonable.

Lastly, I present a practical type inference system for Ruby. Although both
rtc and Hummingbird are very effective tools for type checking, the programmer
must provide the type annotations on the application methods, which may be a
time-consuming and error-prone process. Type inference is a generalization of type
checking that automatically infers types while performing checking. However, stan-

dard type inference often infers types that are overly permissive compared to what



a programmer might write, or contain no useful information, such as the bottom
type. [ first present a standard type inference system for Ruby, where constraints
on a method is statically gathered as soon as the method is invoked at run-time,
and types are resolved after all constraints have been gathered on all methods. I
then build a practical type inference system on top of the standard type inference
system. The goal of my practical type inference system is to infer types that are
concise and include actual classes when appropriate. Finally, I evaluate my practical
type inference system on three Ruby apps and show it to be very effective compared
to the standard type inference system

In sum, I believe that rtc, Hummingbird, and the practical type inference
system all take strong steps forward in bringing the benefits of static typing to

dynamic languages.
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Chapter 1: Introduction

Object-oriented dynamic languages such as Ruby, Python, and JavaScript are
popular, with many compelling features. Two of the main features are dynamic
typing and metaprogramming. In dynamic typing, programmers do not need to
declare types on variables, and variables are not associated with types until run-time.
In addition, a variable’s type compatibility is determined by the methods defined
on it, as opposed to its actual class. Metaprogramming allows methods and classes
to be added or modified at run-time. These powerful features help support rapid
prototying and provide a high degree of flexibility and agility to the programmer.
In static typing, type errors are caught early at compile time, which helps reduce
the number of bugs and debugging time. In addition, the annotated types provide
documentation about a method, and that documentation is automatically checked
against the code for consistency. The lack of static types means that programs can
be hard to understand, and subtle errors can remain latent in code for a long time.
Morever, metaprogramming-created code complicates this issue. This dissertation
addresses these problems with three type systems that we have built: 1) rtc, a purely
dynamic Ruby type checker, 2) Hummingbird, a just-in-time static type checking

system for dynamic languages, and 3) a practical type inference system, a system



that infers concise types.
Thus, I provide the following thesis:

In dynamic languages, types can be effectively checked at an intermediate
point between purely static and purely dynamic checking. Further, programs that use
metaprogramming generated code can also be effectively type checked at this inter-
mediate point. Finally, practical type inference can be used to reduce the number of
manual annotations and infer types that are concise and resemble manual annota-
tions.

To substantiate this thesis, I present three type systems below.

1.1 Rtc: The Ruby Type Checker

Recall that a major disadvantage of dynamic languages is that type errors can
remain latent long into the software development process or even into deployment.
To address this concern, there have been many proposals for adding static types
to dynamic languages [3,4,8,10,13-15]. While these prior systems are promising,
they have two key limitations. First, because they are purely static, they do not
deal well with highly dynamic language features such as eval or reflective method
invocation. Second, since static type systems must be conservative, in practice they
can categorize too many programs as erroneous. Adding precision in the form of
flow-, path-, and context-sensitivity helps, but also tremendously complicates the
type system.

We introduce rte, the Ruby Type Checker [36], a tool I (along with my col-



leagues) built as an intermediate point between pure static and pure dynamic check-
ing. In rtc, types are checked at run-time—which is later than static typing—but
at method entrance and exit—which is earlier than dynamic typing. Because rtc
operates at run time, it can handle highly dynamic language features in a natural
way. Moreover, as rtc only observes feasible program executions, it automatically
includes the sensitivities mentioned above. Rtc is heavily inspired by and builds
on the codebase of An et al’s Rubydust system [1], which falls at the same design
point. However, rtc is a pure type checking system, whereas Rubydust performs
constraint-based type inference, which results in several technical and implementa-
tion differences.

Rtc supports annotations on classes, methods, and objects, and rtc’s type
system includes nominal types, union and intersection types, block (higher-order
method) types, parametric polymorphism, and type casts. A key design principle
of rtc is that programmers should only “pay for what they use.” That is, programs
without annotations should run as usual, and programs with annotations should
only perform checking where desired. To achieve this, rtc separates objects into
raw (untyped) values and annotated (typed) values. Type checking only occurs
when annotated values are used as receivers. Annotations are introduced either
explicitly by the programmer or implicitly when values are passed as arguments to
type-checked calls. We think this design strikes the right balance of providing fine
enough control over type checking without requiring too much explicit annotation.

Rtc is implemented in a similar fashion to Rubydust. Annotated objects are

wrapped by proxy objects that associate types with the underlying object. When a



proxy is invoked, it performs type checking before and after it delegates the method
call to the underlying object. The proxy also annotates the incoming arguments and
the returned value. Rtc uses some implementation tricks to maintain annotations
on self, which would otherwise be lost when the proxy delegates to the underlying
object; to handle block type checking; and to allow classes to be declared as auto-
annotating, so that all instances of the class are proxied by default.

We evaluated rtc by adding type annotations to several small programs and
running the test suites included with those programs. We found that all of the
features of rtc were useful in typing our subject programs, and we were able to
assign rtc types to most methods. We also found that while the overhead of rtc
is substantial in relative terms, in absolute terms the test suites for our subject
programs still execute quickly.

In summary, we think that rtc is a practical, useful, and effective tool for
increasing the type safety of Ruby programs, and that the ideas of rtc can be ported

to other languages.

1.2 Just-in-Time Static Type Checking for Dynamic Languages

Although rtc is an effective tool, it does not work well in the presence of
metaprogrammaing, in which code the program relies on is generated as the program
executes. The challenge is that purely static systems cannot analyze metaprogram-
ming code, which is often complicated and convoluted; and prior mixed static/dy-

namic systems are either cumbersome or make certain limiting assumptions.



We introduce Hummingbird [35], a type checking system I (along with my ad-
visor) built for Ruby that solves this problem using a new approach we call just-in-
time static type checking. In Hummingbird, user-provided type annotations actually
execute at run-time, adding types to an environment that is maintained during ex-
ecution. As metaprogramming code creates new methods, it, too, executes type an-
notations to assign types to dynamically created methods. Then whenever a method
m is called, Hummingbird statically type checks m’s body in the current dynamic
type environment. More precisely, Hummingbird checks that m calls methods at
their types as annotated, and that m itself matches its annotated type. Moreover,
Hummingbird caches the type check so that it need not recheck m at the next call
unless the dynamic type environment has changed in a way that affects m.

Just-in-time static type checking provides a highly effective tradeoff between
purely dynamic and purely static type checking. On the one hand, metaprogram-
ming code is very challenging to analyze statically, but in our experience it is easy
to create type annotations at run time for generated code. On the other hand,
by statically analyzing whole method bodies, we catch type errors earlier than a
purely dynamic system, and we can soundly reason about all possible execution
paths within type checked methods.

We evaluated Hummingbird by applying it to six Ruby apps. Three use Ruby
on Rails (just “Rails” below), a popular, sophisticated web app framework that uses
metaprogramming heavily both to make Rails code more compact and expressive
and to support “convention over configuration.” We should emphasize that Rails’s

use of metaprogramming makes static analysis of it very challenging [25]. Two apps



use other styles of metaprogramming, and the last app does not use metaprogram-
ming, as a baseline.

We found that all of our subject apps type check successfully using Hum-
mingbird, and that dynamically generated types are essential for the apps that
use metaprogramming. We also found that Hummingbird’s performance overhead
ranges from 19% to 469%, which is much better than prior approaches [1,36], and
that caching is essential to achieving this performance. For one Rails app, we ran
type checking on many prior versions, and we found a total of six type errors that
had been introduced and then later fixed. We also ran the app in Rails development
mode, which reloads files as they are edited, to demonstrate how Hummingbird type
check caching behaves in the presence of modified methods.

In summary, we believe Hummingbird is an important step forward in our abil-
ity to bring the benefits of static typing to dynamic languages while still supporting

flexible and powerful metaprogramming features.

1.3 Practical Type Inference

Rtc and Hummingbird are important steps forward in bringing the benefits
of static typing to dynamic languages. However, in both type systems, the pro-
grammer must provide annotations on the application methods, which may be a
time-consuming and error prone process.

To address this issue, we introduce a standard type inference system for Ruby

and then build a practical type inference system on top it. In both systems, we wrap



each method with subtype constraint generation code that executes as soon as the
method is invoked. After all constraints have been gathered, we perform constraint
resolution on the original constraints to introduce new constraints. Finally, we use
a solution extraction algorithm to read off the solutions based on the final set of
constraints.

Our standard type inference system has some improvements over existing stan-
dard type inference systems, mostly to resolve each intersection method type to a
single method type. An intersection type is a list of valid method types for a partic-
ular method, only one of which is valid for a particular call. We introduce two new
types in our system, possible and implication types. A possible type is specificies a
list of types in which only one of the type is valid. An implication type specifies a
list of implications in which only one conclusion is valid. We use these new types
along with variable delay operations and other features in an attempt to resolve
each intersection method type to a single method type.

We then introduce a practical type inference system that builds on our stan-
dard inference system to infer types that are practical, meaning that the types are
concise, easy to understand, and resemble what a prorgrammer would write. The
practical constraint resolution rules are mostly a super set of the standard constraint
resolution rules. We also modify the solution extraction algorithm to consider cer-
tain constraints that are not used in conventional solution extraction.

We applied the standard and practical type inference systems to three Ruby
apps, and found the practical type inference system much more successful than the

standard system.



Chapter 2:  The Dynamic Ruby Type Checker

This chapter introduces rtc, a purely dynamic Ruby type checker. Rtc is
implemented as a Ruby library in which a method’s arguments are type checked at
method entrance and return value is type checked at method exit. Rtc is designed
so programmers can control exactly where type checking occurs: type-annotated
objects serve as the “roots” of the type checking process, and unannotated objects

are not type checked.

Attribution and Acknowledgements

The work described in this chapter was previously published in the 2013
Object-Oriented Program Languages and Systems (OOPS) Track at ACM Sympo-
sium on Applied Computing, with co-authors John Toman, T. Stephen Strickland,
and Jeffrey Foster. The design, implementation, and evaluation was shared roughly

equally across the authors.

2.1 Using rtc

Figure 2.1 illustrates the basic use of rtc with excerpts from a payroll program

with three classes: Person, the base class for describing employees of the company;
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require ' rtc_lib '’

class Person
rtc_annotated
typesig " personnel_id: () — Fixnum”
def personnel_id ... end
typesig " self .from_id: (Fixnum) — Person”
def self .from_id(id) ... end
typesig "manager: () — Manager or %false”
def manager ... end
end

class Manager < Person
rtc_annotated
def employees
# ... find all managed employees in the database
end
typesig ("employees: () — Array<Person>")
end

class Payroll
rtc_annotated
typesig " self . give_raise :( Fixnum,Fixnum,Fixnum)—Fixnum”
typesig " self . give_raise :( Person,Manager,Fixnum)—Fixnum”
def self . give_ raise (emp, okayed_ by, incr)
# ensure okayed_by is in charge of emp
curr = fetch_salary_from_database (emp)
set_salary (emp, curr + incr)
end
end

ids_1 = [1141,1231,3142] # raw, untyped value

ids_1 .push "foo" # allowed for raw value
ids_2 = [1141,1231,3142]. rtc_annotate (" Array<Fixnum>")
ids_2 . push " foo” # type error

m = Person.from_id(1141) # Assuming employee number 1141 is a Manager
m.employees # type error
m_1 = m.rtc_annotate "Manager" # type error
m_2 = m.rtc_cast "Manager" # ok
m_2.employees # ok
sm = m.manager # sm: Manager or %false
unless sm
ssm_1 = sm.manager # type error
ssm_2 = sm.rtc_cast(” Manager").employees # ok
end

Figure 2.1: Basic usage of rtc




Manager, a subclass of Person that includes extra information for managers; and
Payroll, a class for modifying the company’s payroll.

The program begins by calling require to load the rtc_lib library, which contains
rtc’s implementation. Next are the class definitions for Person, Manager, and Payroll.
All three definitions start with a call to rtc_annotated, which makes annotation
methods, such as typesig, available locally. The programmer declares types for
methods by calling typesig with a string that contains the method name and its
type. Annotating a method with typesig tells rtc to intercept calls to the method
to perform typechecking (more on this in Section 2.2). For example, personnel_id
(line 5) is an instance method that takes no arguments and returns the employee’s
id number as a Fixnum.! Class method from_id (line 7) takes an id number and
returns the appropriate instance of Person. Finally, the manager instance method
returns either the Manager of the employee or false if the employee has no manager;
note the use of a union type on line 9 to denote these possibilities. Here, %false is
shorthand for the class FalseClass, of which the value false is the only inhabitant.
This and other type aliases like %true, %bool, and %any are used to make types both
clear and concise. Rtc allows programmers to define type aliases with typesig "type
%type_name= t", where t is some valid rtc type. After the above call %type_name
may be used within the defining class wherever a type is expected.

Class Manager includes a method employees that returns an array of employees
managed by the receiver. Notice that we provide the type annotation for employees

on line 18 after its definition. We use this ability to add types to the Ruby core

LFixnum is the Ruby type for fixed-size integers.

10



library without modifying its code—instead we simply reopen the core library classes
as allowed by Ruby and add appropriate typesig calls. Although we do not show
it here, rtc_annotated can also appear late in a class definition, but it must occur
before any other rtc forms like typesig are used.

Often in Ruby, methods are called in several different ways. One such example
is Payroll#tgive_raise? on line 25. The first two arguments to the method are the
employee receiving the raise and the manager that signs off on the raise. Either id
numbers or objects are allowed in both positions; however, callers may not mix the
two in a given call. Thus we use an intersection type: we write multiple annotations
for the same method (lines 23-24), and the resulting method type is the intersection
of all such annotations. When the method is called, the arguments are checked to
ensure they conform to one of the allowed patterns.

In rtc, type checking happens eagerly when a method is called, which may
detect errors earlier than standard dynamic typing. For example, suppose our pro-
gram passes a type-incorrect final argument to give_raise. In standard Ruby, we
would need to wait until the program reaches line 28 to see the error—but this may
take a relatively long time if the preceding database operation is slow. In contrast,
rtc detects and reports the type error on entry to give_raise. In our experience with
writing Ruby programs, we are often frustrated with exactly this problem: while
programs can be quick to write, they often contain small, frustrating mistakes that

manifest late.

2Following the convention in Ruby documentation, the notation C#m refers to class C’s instance
method m.
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One design goal of rtc is allowing programmers to use types where desired
and eschewing type checking elsewhere. Thus, rtc employs a finer grained strategy
than Rubydust [1], in which developers decide on a per-class basis whether to use
types. In rtc, newly created objects, dubbed raw objects, are untyped by default,
so invoking their instance methods does not involve type checking. For example,
even though rtc contains type annotations for the Array class, a newly created array
is initially untyped (lines 32-33). There are two ways to enable type checking for
a given value. First, the programmer can use rtc_annotate to create an annotated
version of a value that carries a type (line 34). When an annotated value is the
receiver of a call to a type-annotated method, rtc performs type checking (line 35).
Second, when any value, raw or annotated, is passed as an argument or returned
from a method for which rtc performs type checking, then rtc checks that the value
is consistent with the declared type. If the value is already typed, then rtc checks
that the current type is a subtype of the desired type, raising a type error if it is
not, and then rewraps the contained value with the desired type. If the value is
not typed, then rtc checks first-order properties of the value, such as its class, to
determine whether the value is consistent with the desired type. If it is not, then rtc
raises a type error. If it is consistent, then within the method body rtc annotates the
value with the declared type. For example, when our program calls Person.from_id?
on line 36, the value 1141 is annotated with the type Fixnum within the body of
Person.from_id.

Unlike instance methods, rtc checks every call to annotated class methods,

3Class method m of class C is referred to as C.m.

12



such as the call to Person.from_id on line 36. We choose to have rtc automatically
check class methods to reduce the annotation burden; forcing the programmer to
write C.rtc_annotate(...).m to get type-checked class methods would be a large change
to existing programs.

In addition, rtc assumes a subclass is a subtype of its superclass by default;
the programmer can annotate a class with no_subtype if this is not the case. Thus, it
is possible for objects to become annotated with proper supertypes of their actual,
run-time type. For example, on line 36 we use Person.from_id to get employee 1141 on
line 36. While we may know this employee is a manager, Person.from_id is annotated
to return a Person. Thus, our program cannot call the employees method directly
on the result (line 37).

One design choice would be to allow rtc_annotate to perform a downcast. How-
ever, since this operation is conceptually different than an upcast, we prefer to use
a distinct method call. Thus, we restrict rtc_annotate (line 38), and similarly the
re-annotation that occurs at method entry, to only safe upcasts; and rtc provides
rtc_cast for cases where the programmer desires a downcast during reannotation
(lines 39-40). The method rtc_cast is particularly useful when working with union
types. For example, on line 41 the variable sm may contain either a Manager or
false. Our program uses unless to test for falsity, so on lines 43-44 we know that sm
is a Manager. However, since rtc’s implementation cannot automatically reassign
types based on conditions (see Section 2.2), we must add an explicit use of rtc_cast

to reflect this knowledge in the program.

13



Next, we discuss some of the key features of rtc, particularly places where type

checking differs from inference significantly, or features that are lacking in Rubydust.

Blocks and procedures Ruby supports higher-order programming through the
use of code blocks, which are anonymous methods passed in using a special syntax.
Code blocks are not first-order objects (they can only be called using the special
yield expression), but blocks can be freely converted to Proc objects, which are first
class.

As an example, the String class defines method each_char, which calls its block
argument on each character of the receiver as a string of length 1. Rtc includes the

following type annotation for each_char: Here, since the return value of the block is

46 | class String

47 rtc_annotated

48 | typesig "each_char: () { (String) — %any } — String”
49 |end

not used by each_char, we use the type %any to signify that the block may return
any value.

Blocks types were not supported in Rubydust. Rtc implements block typing
by wrapping block arguments in a Proc object that does type checking on entry to

and exit from the block; more details are in Section 2.2.

Parametric Polymorphism Rtc supports parametric polymorphism for classes
and methods. For example, here are some of the annotations already included in
rtc on the built-in Array class: On line 51, we call rtc_annotated and include a two-
element list argument to indicate the Array class should be parameterized by its

14



50 | class Array

51 | rtc_annotated [:t, :each]
52
53 | typesig " '[]'* (Range) — Array<t>"

54 | typesig " '[]': (Fixnum, Fixnum) —Array<t>"
55 | typesig " '[]': (Fixnum) —t"

56
57 | typesig "map<u>: () {(t) = u } — Array<u>"
58 |end

contents type. The first element of the list, :t, names the type parameter. The
second element, :each, indicates how to find the contents type of :t for a raw Array.
More specifically, when checking whether a raw array can be annotated with a type
Array(u), rtc will call the each method to iterate over all the array elements and check
whether they are compatible with type u. Classes with multiple type parameters
can be specified by passing multiple two-element list arguments to rtc_annotated.

Note that iterating through raw arrays is potentially very expensive, and so rtc
includes a non-strict mode that omits it (see Section 2.2 for details). Additionally,
in some cases, classes may have type parameters that are cannot be inferred by
iterating over the contents. For these cases, the programmer can omit the iterator
method name when calling rtc_annotated; rtc signals a type error if a raw instance
of such a class is passed to a typed position.

Lines 53-55 give the type for one commonly used method, the array getter [|.
Note the type parameter t is in scope inside the class, so it can be used in these
annotations.

Line 57 illustrates method polymorphism with the type for map. For this

method, rtc attempts to infer the instantiation of u at a method call. For many
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polymorphic methods we can infer the right instantiation by examining the argu-
ments when the method is invoked. For map, however, it is slightly trickier, as rtc
cannot know the return type of the block until it is called. In this case, rtc assigns
u to the type of the value returned by the first call to the block, or to %none (the
bottom type) if the block is never called. Further returns from the block are checked
using this inferred type, and when map returns, rtc checks that the returned array
is type Array(u).

This approach to type inference may not choose the correct types for instanti-
ation, however. Consider the following use of Array#map, where the block returns

numbers for even inputs and strings for odd inputs:

59 |a = [1,2,3]. rtc_annotate (" Array<Fixnum>")
60 |a.map() { |n| if (n % 2 == 0) then n else n.to_s end }

In the above example the call will fail because our type checker infers u to
be the type String from the first use of the block, but the block returns a Fixnum
from its second use. To address this issue, rtc includes a method rtc_instantiate
to explicitly instantiate type parameters. In this case, the instantiation returns a

method object of the correct type:

61 |m = a. rtc_instantiate (:map,:u=-"Fixnum or String")
62 \m.call() { [n| if (n % 2 == 0) then n else n.to_s end }

Ambiguity in union and intersection types While union and intersection
types are heavily used in type annotations, rtc must forbid some uses that are
problematic from a type checking perspective. For example, recall the Person and
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Manager classes from figure 2.1 and consider the following intersection type:

63 | typesig "seat: (Person) — Cubicle"
64 | typesig "seat: (Manager) — Office”

If we pass in a Manager, both arms of the intersection are valid since Manager
is a subtype of Person. We could choose various disambiguation rules, but to keep
rtc simple and predictable we opt to report an error when such an ambiguously
typed method is called.

Type variables can also introduce ambiguity. For example:

65 | typesig "ml<t,u>: (t or u) — Array<t> or Hash<String, u>"
66 | typesig "m2<t>: (t) —Array<t>"
67 | typesig "m2<u>: (u) —Hash<String, u>"

The uses of t and u above are ambiguous because they appear in the same
place in a union or intersection type. Thus, rtc forbids such type annotations by
reporting an error when an ambiguously typed method is called.

Similarly, having a concrete type and a type variable at the same level causes

ambiguity:

68 | typesig "m3<t>: (t or Fixnum) —Array<t>"

If a value of type Fixnum is provided, then we cannot determine whether type
variable t should be assigned Fixnum or whether we are using the other branch of
the union and t should be some other type. (Here we see that or is regular union,
rather than disjoint union.)

Note that not all uses of type variables create ambiguity:
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69 | typesig "méd<t,u>: (Array<t> or Hash<String, u>) —t or u”
70
71 | typesig "mb5<t>: (Array<t>) —t”

72 | typesig "mb<u>: (Hash<String, u>) —u”"

In these annotations, we can determine the bindings of the type variables
depending on whether the argument is a Array or Hash. In the case of m4, the type

variable in the unused part of the union gets assigned the empty type %none.

Tuple types Ruby programmers often use Arrays both homogeneously for un-
bounded lists, and heterogeneously for fixed-size tuples. Like DRuby, rtc includes
a special type Tuple(tl, ..., tn) representing an array whose ith element has type
ti [8]. Values of type Tuple can be manipulated using a subset of the Array methods
that do not change the size of the array or the order of array elements. For exam-
ple, Array#[] (element access) is allowed, but Array#push is not. Note that this is
different than DRuby, which performs inference and thus begins by assuming every
array literal is a Tuple and then promotes it to an Array if non-Tuple methods are

used on it.

Instantiating proxy objects automatically Sometimes a programmer may
want all instances of a given class to be annotated without having to explicitly
call rtc_annotate. To achieve this, the programmer adds a call to rtc_autowrap in an
annotated class definition. Classes that are subtypes of an auto-wrapping class are
also auto-wrapping. Currently, auto-wrapping works only with non-parameterized

classes.
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73 |a = [1,2,3]

74 | b = a.rtc_annotate (" Array<Object>")

75 | # equiv. to b = Proxy.new(a, "Array<Object>")

76 |n = 4.rtc_annotate (" Fixnum")

77 | b.push(n)

78 | # the array now contains 1, 2, 3, and Proxy(4, "Object”)
79 |m = b[1]

80 | # m is bound to the value Proxy(2, "Object”)

N AT

wArray (Object) i1 2 3 Object

********

——————————————

Figure 2.2: lustration of proxy implementation.

2.2 Implementation

We have implemented rtc as a Ruby library. Rtc adds rtc_annotate, rtc_cast,
and other key methods to the base Object and Class classes as appropriate, so they
are available everywhere. When the programmer uses rtc_annotate to add a type to
an existing object, rtc wraps the original object in a prory that also contains the
type. The proxy defines a method_missing method, which in Ruby receives a call
when calling an undefined method on the object.* Calls to the proxy first ensure
the arguments are of the appropriate type, then delegate to the original object, and
finally check the return value’s type before returning to the callee. The general
idea of proxy wrapping is borrowed from Rubydust, though rtc does not perform

constraint generation [1].

4Since calling methods via method_missing is slower than direct dispatch, we explicitly delegate
some Object operations such as ==, class, or nil? due to their prevalence.

19



b type checker a
push(n)

v

method_missing(:push, n)

typecheck(n, Object)

}

. return Proxy(4, Object)

-

' push(Proxy(4, Object))

Figure 2.3: Hlustration of proxy implementation - Sequence diagram for line 77

In more depth, consider the code at the top of Figure 2.2; the bottom part
of the figure shows the objects resulting from this code. On line 74, we annotate
the array from line 73 with the type Array(Object). This annotation returns a new
instance of the internal rtc class Proxy that holds both the underlying object and
its type. Similarly, line 76 assigns a new Proxy to n.

Next consider the call on line 77; the sequence of events triggered by this call is
shown in Figure 2.3. When push is invoked on the proxy object b, Proxy#method_missing
is called with two arguments: :push, the name of the method, and n. Then method_missing
checks the type of the argument by retrieving the type of the push method and com-
paring the type of the argument against the expected type. Rtc then rewraps the
underlying object in a new Proxy with the formal argument type and returns the new
proxy to method_missing. This ensures that the method must use the value according

to the method’s type signature (here, Object) instead of its possibly more specific
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b type checker a
[1]

|

method_missing(:[], 1)

S

typecheck(1, Fixnum)

}

return Proxy(1, Fixnum)

[Proxy(1, Fixnum)]

i

return 2

typecheck(é, Object)

i

return Proxy(2, Object)

e

return Proxy(2, Object)

Figure 2.4: Mlustration of proxy implementation - Sequence diagram for line 79
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type (here, Fixnum). Finally, the rewrapped argument is passed to the underlying
array’s push method, which adds it to the end of the array a.

Next consider line 79, which sets m to b[1]; Figure 2.4 illustrates this call. As
before, b’s method_missing receives the call to [|. This time, the argument 1 is a raw
value, so rtc retrieves the value’s class to derive its type. Since there is only one
argument of class Fixnum, rtc infers that this call uses [| with the type (Fixnum) —
Object. The type checking algorithm then wraps 1 in a Proxy with the type Fixnum
before it is passed to the underlying object’s [| method. Similarly, the unannotated
value 2 in the array is wrapped in a Proxy with type Object (the inferred return type
of []) before it is returned from the call.

As we have just seen, adding annotations to objects means that annotations
get added to method arguments and results, even if those values were originally
unannotated. Operations on those newly annotated values can add further anno-
tations. Thus, the user need not annotate all objects explicitly to get wide type
checking coverage, but rather can annotate just a few key objects to get the ball

rolling.

Type checking blocks and procedures Thanks to Ruby’s support for higher-
order procedures, type checking blocks and procedures is straightforward. If the
value to type check is a block, rtc first converts it to a procedure, and otherwise we
use the procedure value directly. Next, rtc creates a new procedure that first checks
the arguments, then calls the original procedure, and finally checks the return value

from that call. This conversion is similar to the conversion performed by Findler and
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Felleisen [6] to protect higher-order functions with contracts. If the original value is
a procedure, then rtc uses the new procedure as the new value, and otherwise, rtc

then converts the resulting procedure back into a block before use.

Type checking in method wrappers As we will explain shortly, we need to
add another layer of interposition to track proxies on self and to support calls to
native methods. Thus, rtc alters annotated classes to add a method wrapper layer
within annotated classes themselves. To implement this alteration, rtc uses some
low-level features of Ruby to rename methods in the original object to a mangled
name. It then inserts a new method with the original name that delegates to the
original method. Rtc adds a method instead of inserting a generic method_missing
for improved performance. It is in these method wrappers that rtc performs type
checking if a Proxy received the previous call.

In developing this implementation, we discovered one interesting quirk of Ruby.
There are two ways to define new methods: using define_method, which takes a Proc
object as an argument, or using eval. We found that methods created by the former
mechanism are much slower to call than methods created by the latter. Thus, we
use eval to create new methods although it is less elegant.

Due to this design, calling an annotated method in rtc entails two method
interceptions: one in the Proxy and one in the method wrapper layer. To improve
performance in the method wrapper layer, we directly call the (name-mangled)
original methods of underlying objects that rtc uses internally in its type checking

process.
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Tracking proxies on self When a Proxy finally delegates to the underlying ob-
ject’s method, self will be bound to the underlying object rather than the Proxy.
Thus, if that method in turn invokes other methods on self, without further work
we will fail to type check those calls, since the receiver will not be a Proxy.

We solve this problem using the method wrapper layer. Internally, rtc main-
tains a stack of Proxys associated with each object. The method_missing of a Proxy
pushes self (that is, the proxy) onto the stack associated with the wrapped object
before delegating and pops the stack after normal or exceptional exit of the dele-
gated method. When an annotated method is intercepted by the method wrapper
layer, it also checks whether there is a Proxy on the stack. If so, it performs type
checking using the type information contained in the topmost Proxy. This ensures

type checking continues to occur for calls targeting self in annotated objects.

Handling methods that expect native values Certain methods of built-in
types—particularly those implemented in native code—expect their arguments to
be objects of an appropriate class, and passing in Proxys instead causes those oper-
ations to fail. Thus, typesig optionally takes an :unwrap argument that is an array
of argument positions from which the proxy must be removed before calling the
method. For example, we can annotate the + operation on Fixnum to unwrap its

argument:

81 | typesig " '+":(Fixnum)—Fixnum", :unwrap=-[0]

In the method wrapper layer, we remove proxies as specified by :unwrap before
calling the original method.
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Handling false and nil A related problem is that boolean comparisons and con-
ditional expressions, which cannot be intercepted in Ruby, treat false and nil as false
and all other values as true. Thus, wrapping false or nil in a proxy would cause them
to be treated as true, yielding incorrect results. As a result, we do not wrap either

these values in proxies during type checking.

Non-strict mode As discussed in Section 2.1, rtc checks that raw objects have
the correct type whenever they are annotated; for container classes like Array, this
check involves iterating over the contents, which can be quite expensive.

Thus, rtc includes a non-strict mode in which this iteration is omitted. That
is, in non-strict mode, when raw values are annotated only the type constructor is

checked for compatibility, but not the type parameters. For example:

82 | #£ non—strict mode
83 | [1,2,3]. rtc_annotate (" Fixnum") # error
84 | [1,2,3]. rtc_annotate (** Array<String>"") # ok

While non-strict mode does not catch errors as soon as possible, errors are
caught on uses of the contained values. For example, consider the following code:

In non-strict mode, the argument to sum is accepted although the contents do
not match the expected type. However, rtc deduces from its annotation that the
block argument to each accepts type Fixnum. When the first element of the array, of
type String, is passed to the block, the block wrapper checks it against type Fixnum
and reports an error.

In Section 2.3, we compare the performance of strict and non-strict modes.
As the latter is significantly faster that than former, non-strict mode is enabled by
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85 | #£ non—strict mode

86 | class Statistics

87 rtc_annotated

88 typesig "sum: (Array<Fixnum>) —Fixnum"”
89 | def sum(input)

90 total =0

91 input.each { |elem|
92 total += elem
93 }

94 total

95 end

96 |end

97 | Statistics .new.rtc_annotate(” Statistics " ).sum(["1", "2", "3"])

default. However, the programmer may opt-in to stricter type checking by setting

the global variable $RTC_STRICT to true.

2.3 Evaluation

We performed an initial evaluation of rtc on a set of Ruby programs and
libraries that we retrofitted with rtc types. Figure 2.5 summarizes the results. The

subject programs are as follows:

Sudoku: an implementation of Norvig’s algorithm for solving Sudoku puzzles.

e Ascii85: a program for encoding/decoding Adobe’s binary-to-text encodings
of the same name.

e ministat: a library that computes statistical info such as mode, median, mean,
variance, etc.

e finitefield: an implementation of finite field arithmetic.

e hebruby: a Hebrew data conversion program.

e set: Ruby’s set library and its associated test cases.
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time (s) annot. unann  annot Features

program unann  n-strict  strict | meths  meths vals | Tuple {} (r) U N v
Sudoku-1.4 0.04 5.34 7.58 8 1 10 0 0 2 5 0 0
Ascii85-1.0.2 0.02 0.05 0.05 2 1 0 0 0 0 0 0 0
ministat-1.0.0 <0.01 0.30 0.56 13 1 0 0 0 0 O 0 0
finitefield-0.1.0 <0.01 0.02 0.02 10 1 0 0 0 0 0 0 0
hebruby-2.0.2 <0.01 0.12 0.12 19 1 0 1 0 0 1 0 0
RDS-1.0.0 <0.01 0.01 0.01 7 2 3 0 0 0o 3 0 7
library

Array - - - 71 4 - 0 28 7 35 18
Hash - - - 38 2 - 4 12 - 5 9 8
Set - - - 21 13 - 0 7 - 0 2 7

Tuple = Tuple types, {-} = block types, (1) = rtc_cast
U = union types, N = intersection types, V = polymorphic types

Figure 2.5: Summary of evaluation results

e Ruby Data Structures (abbreviated RDS): a library of common data struc-

tures. We annotated two classes, SinglyLinkedList and SinglyLinkedListElement.

The first five of these programs come from the Rubydust benchmark suite [1]. We
also tried to annotate the other three Rubydust benchmarks, but those programs
fail to run under the latest version of Ruby, which rtc requires.

In addition to annotating the subject programs, we also annotated the built-in
Array, Hash, and Set libraries. These particular libraries were chosen because they
are the basis for most user-defined data structures and they saw the heaviest use in
the programs we used for our evaluation.

Next we report on the overhead of rtc, which rtc features were used for the

subject programs, and the ease of the conversion process.

Efficiency The first three columns of the Figure 2.5 report the running times for
the program’s test suite on the original program; on the annotated program under
non-strict mode; and on the annotated program under strict mode. While the

performance overhead of rtc is relatively large, the test suites run quite rapidly in
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most cases, suggesting that rtc is practical in many testing scenarios. As mentioned
in section 2.2, rtc creates a wrapper layer that all calls must go through whether
there is an active proxy or not. This extra level of indirection is the main source of
the overhead in rtc due to the inefficiency of method calls in Ruby.

The program with the most substantial overhead is Sudoku. This program
makes extensive use of large arrays and hashes, and so the overhead of rtc’s method
interception has a large cost. To partially address this issue, rtc can be disabled in
production by setting by the RTC_DISABLE environment variable to a non-empty
value. When rtc is disabled, no wrappers are created by calls to typesig. In addition,
annotations on objects via rtc_annotate and rtc_cast become no-ops. That is, instead
of returning a new proxy object, they simply return self. This enables the program-
mer to use rtc in a test environment where some overhead may be acceptable and

then disable rtc in the field.

Rtc features The middle three columns of Figure 2.5 count the number of unan-
notated methods, annotated methods, and explicit annotations of values we added.
In the subject programs, the only unannotated method was initialize, the construc-
tor. Since the receiver of initialize is always a newly created, and hence raw, object,
rtc will never type check an initialize call. In the future, we plan to investigate other
policies for constructors.

The only subject program for which we needed explicit rtc_annotate calls was
Sudoku. These annotations were for several large arrays built during initialization,

and they improved the performance of rtc in strict mode since otherwise rtc would
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repeatedly iterate over those arrays to infer their types at each use.

In the library classes, we were able to annotate almost all of the methods for
Array and Hash. There were several methods, however, that have no reasonable
type annotation in rtc. For example, Array#flatten returns a new array in which
arbitrary depth nestings of array have been removed from the receiver. Even worse,
Array#flatten! does the same, but mutates the receiver object. We leave these as
unannotated, so they may be used but are not type checked. Unannotated methods
in the Set class include Set#flatten and methods that use the Enumerable class,
which is a mixin for collection classes; rtc currently does not support mixins.

The rightmost columns of Figure 2.5 list how often various typing features of
rtc were used. To count uses of polymorphic types, we counted how many classes
or methods have annotations that bind type variables. The most commonly used
features in the subject programs are union and polymorphic types, and the most
commonly used features in the Ruby standard libraries are intersection and block

types. There were very few uses overall of tuple types and rtc_cast.

The annotation process We found the process of annotating the subject pro-
grams to be relatively straightforward: we examined their code, looked for program
invariants assumed by the original authors, and turned those invariants into type
annotations. Although this was somewhat time consuming for us, we expect the
original authors of the methods would be faster at this process.

We often had to iterate the annotation process as we found mistakes in our

typesigs. The most common errors we made fall into a few groups. For some pro-
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grams, we missed edge cases in methods, such as sometimes returning false, and so
would initially annotate a method with a subset of its possible return values. Sim-
ilarly, we sometimes missed an arm of an intersection type. Finally, we sometimes
forgot to cast a value typed with a union type to a more specific type after the value
was tested. In all cases, we found our errors immediately upon running the test
suites under rtc.

Not all type errors were due to our mistakes, however. The Sudoku solver

contains the following (correct) annotations:

98 | typesig "search: (...) — %false or Hash<String,String>)")
99 | typesig " string_solution : (Hash<String,String>) — String")

The search method returns false if the given puzzle is impossible to solve, while
string_solution assumes that it is given a valid puzzle solution. In the test suite, the
return of search is fed directly into string_solution without checking for false. While
an error due to this mismatch never happens in the test suite because all its puzzles

are solvable, rtc appropriately raises a type error.

2.4 Related Work

As discussed in the introduction, rtc builds on the Rubydust system of An et
al. [1]; we even reuse some of the same code base, specifically the type language
parser and some of the proxy-related code. The key difference is that rtc is a type
checking system, whereas Rubydust performs type inference. The addition of check-

ing introduces several new concerns: adding explicit annotations (rtc_annotate) and
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type casts (rtc_cast); inferring types of raw values passed to annotated positions; and
making control of type checking finer grained, that is, driven by annotated objects,
rather than by annotations on classes as in Rubydust. Rtc also supports some fea-
tures that Rubydust does not, including lock types and tracking type annotations on
self. Rubydust does not do the latter because its coarse-grained distinction between
typed and untyped code means it does not matter whether self is proxied. Finally,
perhaps the most important difference from a usability perspective is that rtc type
errors are reported as soon as they occur, whereas Rubydust generates constraints
and only solves them at the end of execution. Thus, it may be harder in Rubydust
to understand reported errors.

Several researchers have proposed adding static types and static type inference
to various dynamically typed languages, including Ruby [7,8], Python [4,10,15], and
JavaScript [3,13] among others. Similarly, gradual type systems [11] like those for
Scheme [14] and Thorn [5] pair a dynamically typed language with a sister, statically
typed language. The typed and untyped parts of a program are allowed to interact
without breaking the invariants of the typed language. All of these systems perform
static analysis, whereas rtc is a library that operates purely at run time. One
advantage of rtc’s approach is that it does not require maintaining a Ruby frontend,
which the Rubydust authors have pointed out as problematic [2]. Another advantage
of rtc is that because it operates at run time, rtc only observes realizable execution
paths through the target program and can easily operate in the presence of dynamic
features such as eval, reflective method invocation, and method_missing.

Rtc’s dynamic implementation is inspired by research into contract systems.
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Existing contract systems for Ruby are limited to “design by contract” [9] systems,
which annotate classes with preconditions, postconditions, and invariants that are
simple assertions checked only on method entry and method exit. Rtc’s dynamic
checks are closer to those provided by higher-order contracts [6,12]. Like higher-
order contract systems, rtc wraps method arguments and results with proxies that
stay with those objects as they flow through the program. This enables rtc not just
to enforce preconditions and postconditions, but also to check that the type of a
parameter is adhered to within the body of a method and that the type of a return

value is respected long after the method has returned.

2.5 Conclusion

We present rtc, a Ruby library that adds type checking at method call bound-
aries. Rtc uses proxy objects to wrap regular objects with annotated types and only
type checks annotated methods on classes and proxied objects. Our experimental
results suggest that rtc is a practical, useful system. In the future, we plan to apply
rtc to Ruby on Rails programs, and explore extending its type checking capability

to reason about some of the complex invariants of the Rails framework.
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Chapter 3: Just-in-Time Static Type Checking for Dynamic Lan-

guages

The last chapter introduced rtc, a purely static type checking tool for Ruby
that brings the benefits of static typing to a dynamic language. Although rtc is
an effective tool for increasing type safety, it has trouble dealing with metapro-
gramming. In this chapter, we introduce Hummingbird [35], a run-time static type

checking tool for Ruby that addresses the metaprogramming issue.

Attribution and Acknowledgements

The work described in this chapter was previously published in the 2016 Pro-
ceedings of the 37th ACM SIGPLAN Conference on Programming Language Design
and Implementation, with co-author Jeffrey S. Foster. I implemented and evaluated
Hummingbird, and the design and proof of correctness was shared across the au-

thors.

3.1 Overview

We begin our presentation by showing some uses of metaprogramming in Ruby

and the corresponding Hummingbird type checking process. The examples below
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1 | class Talk < ActiveRecord::Base

2 belongs_to :owner, :class.name = "User"

4 | type :owner?, "(User) — %bool”

5 | def owner?(user)

6 return owner == user

7 |end end

8

9 | module ActiveRecord::Associations :: ClassMethods
10 | pre(:belongs_to) do |xargs|

11 hmi = args[0]

12 options = args|[1]

13 hm = hmi.to_s

14 cn = options|:class_name] if options

15 hmu = cn 7 cn : hm.singularize . camelize

16 type hm.singularize, " () — #{hmu}"

17 type "#{hm.ingularize}=", " (#{hmu}) —#{hmu}"
18 true

19 |end end

Figure 3.1: Ruby on Rails Metaprogramming,.

are from the experiments in Section 3.4.

Rails Associations. The top of Figure 3.1 shows an excerpt from the Talks Rails
app. This code defines a class Talk that is a model in Rails, meaning an instance of
Talk represents a row in the talks database table. The change in case and pluraliza-
tion here is not an accident—Rails favors “convention over configuration,” meaning
many relationships that would otherwise be specified via configuration are instead
implicitly expressed by using similar or the same name for things.

In this app, every talk is owned by a user, which in implementation terms
means a Talk instance has a foreign key owner_id indicating the owner, which is an
instance of class User (not shown). The existence of that relationship is defined on

line 2. Here it may look like belongs_to is a keyword, but in fact it is simply a method
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call. The call passes the symbol (an interned string) :owner as the first argument,
and the second argument is a hash that maps symbol :class_name to string " User".

Now consider the owner? method, defined on line 5. Just before the method,
we introduce a type annotation indicating the method takes a User and returns a
boolean. Given such an annotation, Hummingbird’s goal is to check whether the
method body has the indicated type.! This should be quite simple in this case, as
the body of owner? just calls no-argument method owner and checks whether the
result is equal to user.

However, if we examine the remaining code of Talk (not shown), we discover
that owner is not defined anywhere in the class! Instead, this method is created at
run-time by belongs_to. More specifically, when belongs_to is called, it defines several
convenience methods that perform appropriate SQL queries for the relationship [30],
in this case to get the User instance associated with the Talk’s owner. Thus, as we
can see, it is critical for Hummingbird to handle such dynamically created methods
even to type check simple Rails code.

Our solution is to instrument belongs_to so that, just as it creates a method dy-
namically, it also creates method type signatures dynamically. The code on lines 9-
19 of Figure 3.1 accomplishes this. Hummingbird is built on RDL, a Ruby contract
system for specifying pre- and postconditions [33,41]. The precondition is specified
via a code block—an anonymous function (i.e., a lambda) delimited by do...end—

passed to pre. Here the code block trivially returns true so the precondition is

'In practice type takes another argument to tell Hummingbird to type check the body, in
contrast to library and framework methods whose types are trusted. We elide this detail for
simplicity.
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always satisfied (last line) and, as a side effect, creates method type annotations for
belongs_to.

In more detail, hmi is set to the first argument to belongs_to, and options is
either nil or the hash argument, if present. (Here hm is shorthand for “has many,”
i.e., since the Talk belongs to a User, the User has many Talks.) Then hmu is set
to either the class_name argument, if present, or hmi after singularizing and camel-
casing it. Then type is called twice, once to give a type to a getter method created
by belongs_to, and once for a setter method (whose name ends with =). Notation
#{e} inside a string evaluates the expression e and inserts the result in the string.

In this particular case, these two calls to type evaluate to

type "owner”, "() — User"
type "owner=", " (User) — User”

Now consider executing this code. When Talk is loaded, belongs_to will be
invoked, adding those type signatures to the class. Then when owner? is called,
Hummingbird will perform type checking using currently available type information,
and so it will be able to successfully type check the body. Moreover, notice this
approach is very flexible. Rails does not require that belongs_to be used at the
beginning of a class or even during this particular class definition. (In Ruby, it
is possible to “re-open” a class later on and add more methods to it.) But no
matter where the call occurs, it must be before owner? is called so that owner is
defined. Thus in this case, Hummingbird’s typing strategy matches well with Ruby’s

semantics.
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module Rolify::Dynamic
def define_dynamic_method(role_name, resource)
class_eval do
define_method(" is_#{role_name}?" .to_sym) do
has_role ?(" #{role_name}")
end if !method_defined?(" is_#{role_-name}?" .to_sym)
end end
pre :define_dynamic_method do |role_name, resource
type " is_#{role_-name}?", " () — %bool”
true
end end
class User; include Rolify :: Dynamic end
user = User. first
user .define_dynamic_method(" professor”, ...)
user .define_dynamic_method(" student”, ...)
user . is_professor ?7
user. is_student ?

Figure 3.2: Methods Dynamically Created by User Code.

Type Checking Dynamically Created Methods. In the previous example,

we trusted Rails to dynamically generate code matching the given type signature.

Figure 3.2 shows an example, extracted from Rolify, in which user code dynamically

generates a method. The first part of the figure defines a module (aka mixin) with a

two-argument method define_dynamic_method. The method body calls define_method

to create a method named using the first argument, as long as that method does not

exist (note the postfix if on line 6). Similarly to earlier, line 10 adds a precondition

to define_dynamic_method that provides an appropriate method type. (We do not

check for a previous type definition since adding the same type again is harmless.)

The code starting at line 15 uses the module. This particular code is not from

our experiment but is merely for expository purposes. Here we (re)open class User
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and mix in the module. Then we create a user; call define_dynamic_method twice;

and then call the generated methods is_professor? and is_student?.

code, Hummingbird type checks their bodies when they are called, just like any other
user-defined method with a type. For example, consider the call to is_professor?,
which is given type () — %bool. At the call, Hummingbird type checks the code

block at line 4 and determines that it has no arguments and that its body returns

Transaction = Struct.new(:type, :account_name, :amount)
class ApplicationRunner
def process_transactions
Otransactions .each do |t]
name = t.account_name

end ... end
field_type :@transactions, "Array<Transaction>"
end

class Struct
def self .add _types(xtypes)
members.zip(types).each {|name, t|
self . class_eval do
type name, "() — #{t}"
type " #{name}=", " (t) —#{t}’
end
}
end
end
Transaction .add _types("” String”, " String”, " String")

Figure 3.3: Type Signatures for Struct.

In this case, since the generated methods have type annotations and are in user

a boolean, i.e., it type checks.

User-provided Type Signatures.

namically created methods could be determined automatically. However, consider
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Figure 3.3, which shows an excerpt from C'CT that uses Struct from the Ruby core
library. Line 1 creates a new class, instances of which are defined to have getters
type, account_name, and amount, and setters type=, account_name=, and amount=.
The process_transactions method iterates through instance field @transactions (whose
type is provided on line 8), and calls the account_name method of each one.

From line 1 we know the account_name method exists, but we do not know its
type. Indeed, a “struct field” can hold any type by default. Thus, to fully type check
the body of process_transactions, we need more information from the programmer to
specify the type of account_name.

The bottom part of Figure 3.3 defines a new method, add_types, that the
programmer can call to indicate desired struct field types. The types are given in
the same order as the constructor arguments, and the body of add_types uses zip to
pair up the constructor arguments (retrieved via members) and the types, and then
iterates through the pairs, creating the appropriate type signatures for the getters
and setters. The last line of the figure uses add_types to create type signatures for
this example, allowing us to type check process_transactions when it is called.

In this particular case, we could have individually specified type signatures
for the methods of Transaction. However, because Hummingbird lets programmers
write arbitrary Ruby programs to generate types, we were able to develop this much

more elegant solution.
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values v == nil|[4]

expressions e v|x|self |z =¢e|ee| Anew
if e then e else e | e.m(e)

def Aom =0 | type Am : 7y,

premths b Az.e
val typs T u= A|nil
mth typs Tm = T —T

xz €varids m € mthids A € clsids

dyn env E . wvarids — vals
dynclstab DT : clsids — mth ids — premths
contexts C O|lz=C|Cm(e)|v.m(C)

Cie | if C then e else e

stack S | (E,C) = S

type env A @ wvarids — val typs

type tab TT : clsids — mth ids — mth typs
cache X = clsids — mth ids — Dy x D<
typ chk deriv Dyy == TTF (T,e) = (I, 7)

subtyp deriv. D< 1= 711 <7

Figure 3.4: Source Language and Auxiliary Definitions.

3.2 Formalism

We formalize Hummingbird using the core, Ruby-like language shown at the
top of Figure 3.4. Values v include nil, which can be treated as if it has any type, and
[A], which is an instance of class A. Note that we omit both fields and inheritance
from our formalism for simplicity, but they are handled by our implementation.

Ezxpressions e include values, variables x, the special variable self, assign-
ments © = e, and sequencing e;e. Objects are created with A.new. Conditional
if e; then ey else e3 evaluates to ey unless e evaluates to nil, in which case it evalu-
ates to e3. Method invocation e;.m(ey) is standard, invoking the m method based

on the run-time type of e;.
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’TT H(T,e) = <F/,T>‘

(TNil) (TObject) (TSelf)
TTF (T,nil) = (C,nil)  TTF (T, [A]) = (I, A)  TT F (T, self) = (T, [(self))

(TSeq)
TT+ (T, e1) = (U1, 71)
(TVar) TT + (I'y, elz> = <F12,le>

TT + <F,x> = <F,F(.%')> TT + <F,€1;€2> = <F2,TQ>

(TAssn)
TT + (T,e) = (I, 7) (TNew)
TT+ T,z =¢)= [z 7],7) TTH+ (T, Anew) = (', A)

(TDef) (TType)

TTF(I',def Aom = Ax.e) = (I',nil) TTF (I',type Am : 7,,) = (T, nil)

(TApp)

TT - (T, e0) = (Tg, A) (TIf)

TTF (To,e1) = (I'1,7) TT + (T, ep) = (I',7) TT (T e1) = (T'1,71)
TT(A.m) =T — T2 T<T TT + <F/,€2> = <F2,7'2>

TT + <F,€Q.m(€1)> = <P1,TQ> TT + <F, if eg then e; else 62) = <F1 LTy, m L T2>
Figure 3.5: Type Checking System.

Expression def A.m = Ax.e, defines method m of class A as taking argument
x and returning e. (We refer to Az.e as a premethod.) This form allows methods
to be defined anywhere during execution, thus it combines the features of Ruby’s
def and define_method. As in Ruby, if A.m is already defined, def overwrites the
previous definition. The def expression itself evaluates to nil.

Finally, expression type A.m : 7 — 7’ asserts that method m of class A has
domain type 7 and range type 7. Types may be either classes A or nil, the type
of expression nil. The type expression overwrites the previous type of A.m, if any.
Like Hummingbird, there is no ordering dependency between def and type—the only

requirement is that a method’s type must be declared by the time the method is

41



called. The type expression itself evaluates to nil.

Type Checking. Figure 3.5 gives the static type checking rules. As in Hum-
mingbird, static type checking is performed at run time at method entry—thus
these rules will be invoked as a subroutine by the dynamic semantics (below). The
bottom part of Figure 3.4 defines the sets and maps used in this figure and in the
dynamic semantics.

In these rules, T'T is a type table mapping class and method ids A.m to their
corresponding types, as declared by type, and I' is a type environment mapping local
variables to their types. These rules prove judgments of the form 77 + (I'je) =
(I, 7), meaning with type table T'T, in type environment I', expression e has type
7, and after evaluating e, the new type environment is IV. Using an “output” type
environment I allows us to build a flow-sensitive type system, in which variables’
types can change at assignments. Note there is no output 7T because the type
table does not change during static type checking—it only changes as the program
is executed by the dynamic semantics.

The type rules are largely standard. (TNil) and (TObject) give nil and in-
stances the obvious types. (TSelf) and (TVar) give self and local variables their
types according to the type environment. Since none of these four expressions up-
dates the state, the output type environment is the same as the input environment.

(TSeq) types sequencing, threading the type environment from the output of
eq to the input of e5. (TAssn) types an assignment, updating the output type envi-

ronment to bind the assigned variable x to the type of the right-hand side. (TNew)
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types object creation in the obvious way. (TDef) trivially type checks method def-
initions. Notice we do not type check the method body; that will happen at run
time when the method is actually called. (TType) type checks a type expression,
which has no effect during type checking. Such expressions are only evaluated at
run-time, when they update the type table (see below).

One consequence of (TType) is that our type system forbids typing a method
and then immediately calling it in the same method body. For example, the following

method body would fail to type check:

1 |def A.m = Ax.

2| def Bm= ..; # define B.m

3| type Bm: .., # give B.m a type

4 B.new.m # type error! B.m not in type table

Here we type check A.m’s body at the first call to it, so the type expression
has not been run—and hence has not bound a type to B.m—yet. Thus it is a type
error to invoke B.m in the method body.

While we could potentially solve this problem with a more complex type sys-
tem, in our experience (Section 3.4) we have not needed such a feature.

Next, (TApp) types method invocation eg.m(e; ), where we look up the method’s
type in T'T based on the compile-time type of eq. (Note that since there is no in-
heritance, we need not search the inheritance hierarchy to find the type of A.m.)
Here subtyping is defined as nil < A and A < A for all A. Thus, as is standard
in languages with nil, the type system may accept a program that invokes a non-
existent method of nil even though this is a run-time error. However, notice that if
ep evaluates to a non-nil value, then (TApp) guarantees ey has method m.
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(X,TT,DT,E,e,S) — (X', TT',DT',E',¢', S')]

(ESelf)
(X,TT,DT, E,self, S) — (X,TT,DT,E, E(self), S)
(EVar)
(X, TT,DT,E,z,S) —~ (X, TT,DT,E, E(z),5)
(EAssn)
(X, TT,DT,E,x =v,5) — (X, TT,DT,E[x — v],v,5)
(ENew)
(X, TT,DT, E, Anew, S) ~ (X, TT,DT,E,[A]S)
(ESeq)
(X, TT, DT, E, (v;es), S) — (X,TT,DT,E, e, S)
(EIfTrue)
(X, TT,DT,E,if v then e else e5,5) — (X, TT,DT,FE, e1,S) if v # nil
(EIfFalse)
(X, TT,DT, E,if nil then e else e5,5) — (X, TT,DT,E,es,5)
(EDef)
(X, TT,DT,E,def Am = Az.e, S) — (X\Am, TT,DT[A.m — Ax.e], E,nil, S)
(EType)
(X,TT,DT, E,type Am : T, S) — {((X\Am)[TT'], TT',DT, E,nil, S)
TT' = TT[A.m ~ 7] and A.m ¢ TApp(S)
(EAppMiss)
(X,TT,DT, E,Clv;.m(v2)], S) — (X', TT,DT,[self = vi,z — va],e,(E,C) :: S)
it Am & dom(X) and vy = [4] and DT(A.m) = Az.e
and TT(A.m) =7 — 72 and type_of(vy) < 71 and
Dy = (TT F ([x — 11,5elf = A],e) = (I, 7)) holds and D< = (7 < 72) holds and
X' = X[Am — (DM7D§)]
(EAppHit)
(X,TT,DT, E,Clviy.m(v2)], S) — (X, TT,DT,self — vy, z — vo],e,(E,C) :: S)
it Aom € dom(X) and v; = [4] and DT(A.m) = Az.e
and TT(A.m) =71 — 72 and type_of (v2) <7y
(ERet)
(X, TT,DT,E',v,(E,C) = ) —~ (X, TT,DT,E,C[v],5)

(EContext)
(X,TT,DT, E,e,S) — (X', TT',DT', E', ¢, §")
By, ve,€ e = (vi.m(v2)) Ve=v Ve=C[e]
(X, TT, DT, E,C[,S) — (X', TT, DT, E',C[¢], )

Figure 3.6: Dynamic Semantics
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Finally, (TIf) types conditionals. Like Ruby, the guard ey may have any type.
The type of the conditional is the least upper bound of the types of the two branches,
defined as AU A = A and nil U7 = 7 Unil = 7. The output environment of the
conditional is the least upper bound of the output environments of the branches,
defined as (I UT'9)(z) = [y (z)UDy(2) if x € dom(T'y) Az € dom(I'y) and (I'; LUTy)(x)

is undefined otherwise.

Dynamic Semantics. Figure 3.6 gives a small-step dynamic semantics for our
language. The semantics operates on dynamic configurations of the form
(X, TT,DT,E, e, S). The first two components are the key novelties to support
run-time static type checking. X is a cache mapping A.m to the type checking
proofs for its method body (more details below). T7T is the type table, which is
updated at run time by calls to type. The last four components are standard. DT is
a dynamic class table mapping A.m to its premethod. E is the dynamic environment
mapping local variables to values. e is the expression being reduced. Lastly, S is a
stack of pairs (E,C), where E is the dynamic environment and C'is the evaluation
contert (defined in the usual way) at a call site. The semantics pushes onto the
stack at calls and pops off the stack at returns.

The first seven rules in the semantics are standard. (ESelf) and (EVar) eval-
uate self and variables by looking them up in the environment. (EAssn) binds a
variable to a value in the environment. Notice that, like Ruby, variables can be
written without first declaring them, but it is an error to try to read a variable that

has not been written. (ENew) creates a new instance. Note that since objects do
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not have fields, we do not need a separate heap. (ESeq) discards the left-hand side
of a sequence if it has been fully evaluated. (EIfTrue) reduces to the true branch if
the guard is non-nil, and (EIfFalse) reduces to the false branch otherwise.

The next four rules are the heart of just-in-time static type checking. Our goal
is to statically type check methods once at the first call, and then avoid rechecking
them unless something has changed. To formalize this notion, we define the cache
X as a map from A.m to a pair of typing derivations (D, D<). Here Dy, is a type
checking derivation from Figure 3.5 for the body of A.m, and D< is a subtyping
judgment showing that the type of e is a subtype of the declared return type. We
need D< because our type system is syntax-directed and hence does not include a
standalone subsumption rule. (EDef) reduces to nil, updating the dynamic class
table to bind A.m to the given premethod along the way. Recall that we allow
a method to be redefined with def. Hence we need to invalidate anything in the
cache relating to A.m so that A.m will be checked the next time it is called. More

precisely:

Definition 1 (Cache invalidation). We write X\ A.m to indicate a new cache that

is the same as X, except A.m has been invalidated, meaning:
1. Any entries with A.m as the key are removed.
2. Any entries with a Dy that apply (TApp) with A.m are removed.
Thus, in (EDef), the output cache is the same as the input cache but with

A.m invalidated.

46



(EType) also reduces to nil, updating the type table to be TT’, which is the
same as TT but with new type information for A.m. As with (EDef), we invalidate
A.m in the cache. However, there is a another subtlety. Recall that cached typing
derivations D), include the type table TT'. This is potentially problematic, because
we are changing the type table to T7'. However, cache invalidation removes any
derivations that refer to A.m. Hence, cached type derivations that use T'T can

safely use TT'. Formally, we define:

Definition 2 (Cache upgrading). We write X[TT'] to indicate a new cache that is

the same as X, except the type table in every derivation is replaced by TT'.

Thus, in (EType), the output cache is upgraded to the new type table after
invalidation.

The next two rules use the type cache. Both rules evaluate a method call in
a context, written C[v;.m(vy)]; we will discuss the other rule for contexts shortly.
In both rules, the receiver v; is a run-time object [A]. (EAppMiss) applies when
A.m is not in the cache. In this case, we look up the type of A.m in TT, yielding
some type 71 — 7. We type check the method body e in an environment in which
formal variable x is bound to 7; and self is bound to A, yielding a derivation D,,.
We check that the resulting type 7 of e is a subtype of the declared type ez, with
subtyping derivation D<. Finally, we check that the run-time type of v,—defined as
type_of (nil) = nil and type_of ([A4]) = A—is a subtype of 1. If all this holds, then it is
type-safe to call the method. Hence we update the cache with the method’s typing

derivations and start evaluating the method body, pushing the context C' and the
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environment £ on the stack.

(EAppHit) is similar but far simpler. This rule applies when A.m is in the
cache. In this case we know its method body has been successfully type checked, so
we need only check that the run-time type of vy is a subtype of the declared domain
type of vy. If so, we allow the method call to proceed.

However a method is called, the return, handled by (ERet), is the same. This
rule applies when an expression has been fully evaluated and is at the top level. In
this case, we pop the stack, replacing E’ with F from the stack and plugging the
value v into the context C' from the stack.

Finally, (EContext) takes a step in an subexpression inside a context C'. This
rule only applies if the subexpression is not a method call (since that case is handled
by (EApp*), which must push the context on the stack) and not a fully evaluated
value (which is handled by (ERet), which must pop the context from the stack).
We also do not allow the subexpression to itself be a context, since that could cause

(EApp*) and (ERet) to misbehave.

Soundness. Our type system forbids invoking non-existent methods of objects.
However, there are three kinds of errors the type system does not prevent: invoking
a method on nil; calling a method whose body does not type check at run time; and
calling a method that has a type signature but is itself undefined. (We could prevent
the latter error by adding a side condition to (TApp) that requires the method to
be defined, but we opt not to to keep the formalism slightly simpler.) To state a

soundness theorem, we need to account for these cases, which we do by extending
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the dynamic semantics with rules that reduce to blame in these three cases. After

doing so, we can state soundness:

Theorem 1 (Soundness). If )+ (D,e) = (I, ) then either e reduces to a value, e

reduces to blame, or e diverges.

We show soundness using a standard progress and preservation approach. The
key technical challenge is preservation, in which we need to show that not only are
expression types preserved, but also the validity of the cache and types of contexts

pushed on the stack. The proof [34] can be found in Appendix A.

3.3 Implementation

Hummingbird is implemented using a combination of Ruby and OCaml. On
the OCaml side, we use the Ruby Intermediate Language (RIL) [22] to parse input
Ruby files and translate them to control-flow graphs (CFG) on which we perform
type checking. On the Ruby side, we extend RDL [33], a contract system for Ruby, to
perform static type checking. We next discuss the major challenges of implementing

Hummingbird.

RIL. RIL is essentially the front-end of Diamondback Ruby (DRuby) [8,19]. Given
an input Ruby program, RIL produces a CFG that simplifies away many of the
tedious features of Ruby, e.g., multiple forms of conditionals. We modified DRuby so
it emits the RIL CFG as a JSON file and then exits. When loading each application

file at run-time, we read the corresponding JSON file and store a mapping from
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class and method names and positions (file and line number) to the JSON CFG. At

run-time we look up CFGs in this map to perform static type checking.

RDL and Type Checking. Like standard RDL, Hummingbird’s type annotation
stores type information in a map and wraps the associated method to intercept calls
to it. We should emphasize that RDL does not perform any static checking on its
own—rather, it solely enforces contracts dynamically. In Hummingbird, when a
wrapped method is called, Hummingbird first checks to see if it has already been
type checked. If not, Hummingbird retrieves the method’s CFG and type and then
statically checks that the CFG matches the given type.

Hummingbird uses RDL’s type language, which includes nominal types, inter-
section types, union types, optional and variable length arguments, block (higher-
order method) types, singleton types, structural types, a self type, generics, and
types for heterogenous arrays and hashes. Hummingbird supports all of these kinds
of types except structural types, self types, heterogeneous collections, and some vari-
able length arguments. In addition, Hummingbird adds support for both instance
field types (as seen in Figure 3.3) and class field types.

There is one slight subtlety in handling union types: If in a method call the
receiver has a union type, Hummingbird performs type checking once for each arm
of the union and the unions the possible return types. For example if in call e.m/(. . .)
the receiver has type AU B, then Hummingbird checks the call assuming e has type
of A.m, yielding a return type 74; checks the call assuming B.m, yielding return

type 75; and then sets the call’s return type to 74 U 75.
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Eliminating Dynamic Checks. Recall the (EApp*) rules dynamically check
that a method’s actual arguments have the expected types before calling a stati-
cally typed method. This check ensures that an untrusted caller cannot violate the
assumptions of a method. However, observe that if the immediate caller is itself stat-
ically checked, then we know the arguments are type-safe. Thus, as a performance
optimization, Hummingbird only dynamically checks arguments of statically typed
methods if the caller is itself not statically checked. As a further optimization, Hum-
mingbird also does not dynamically check calls from Ruby standard library methods
or the Rails framework, which are assumed to be type-safe. The one exception is
that Hummingbird does dynamically check types for the Rails params hash, since

those values come from the user’s browser and hence are untrusted.

Numeric Hierarchy. Ruby has a Numeric tower that provides several related
types for numbers. For example, Fixnum < Integer < Numeric and Bignum < Integer
< Numeric. Adding two Fixnums normally results in another Fixnum, but adding
two large Fixnums could result in a Bignum in the case of numeric overflow. To keep
the type checking system simple, Hummingbird omits the special overflow case and
does not take Bignum into consideration. (This could be addressed by enriching the

type system [40].) Numeric overflow does not occur in our experiments.

Code Blocks. As mentioned earlier, Ruby code blocks are anonymous functions
delimited by do...end. Hummingbird allows methods that take code block argu-

ments to be annotated with the block’s type. For example:

o1



type :m,"() { (T) = U} — nil"”

indicates that m takes no regular arguments; one code block argument where
the block takes type T and returns type U; and m itself returns type nil.

There are two cases involving code blocks that we need to consider. First,
suppose Hummingbird is statically type checking a call m() do |x| body end, and m
has the type given just above. Then at the call, Hummingbird statically checks that
the code block argument matches the expected type, i.e., assuming x has type T,
then body must produce a value of type U. Second, when statically type checking m
itself, Hummingbird should check that calls to the block are type correct. Currently
this second case is unimplemented as it does not arise in our experiments.

Recall from above that Hummingbird sometimes needs to dynamically check
the arguments to a statically typed method. While this test is easy to do for objects,
it is hard to do for code blocks, which would require higher-order contracts [6].
Currently Hummingbird does not implement this higher order check, and simply
assumes code block arguments are type safe. Also, Hummingbird currently assumes
the self inside a code block is the same as in the enclosing method body. This
assumption holds in our experiments, but it can be violated using instance_eval and
instance_exec [41]. In the future, we plan to address this limitation by allowing the

programmer to annotate the self type of code blocks.

Type Casts. While Hummingbird’s type system is quite powerful, it cannot type

check every Ruby program, and thus in some cases we need to insert type casts.
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Hummingbird includes a method o.rdl_cast(t) that casts o’s type to t. After such
a call, Hummingbird assumes that o has type t. At run-time, the call dynamically
checks that o has the given type.

In our experience, type casts have two main uses. First, sometimes program
logic dictates that we can safely downcast an object. For example, consider the

following method from one of our experiments:

def self .load_cache

f = datafile_path (['* cache'', *' countries''])

t = Marshal.load( File . binread(f))

©@Qcache ||= t. rdl_cast (‘' Hash<String, %any>"")
end

Marshal.load returns the result of converting its serialized data argument into
a Ruby object of arbitray type. However, in our example, the argument passed to
Marshal.load is always an application data file that will be converted to the annotated
Hash.

Second, by default Hummingbird gives instances of generic classes their “raw”
type with no type parameters. To add parameters, we use type casts, as in the

following code:

a =] # a has type Array

a. rdl_cast (" Array<Fixnum>") # cast to Array<Fixnum>
a.push(0) # ok

a.push("str") # type error due to cast

Here without the type annotation the last line would succeed; with the anno-
tation it triggers a type error. Note that when casting an array or hash to a generic

type, rdl_cast iterates through the elements to ensure they have the given type.

93



Modules. Ruby supports mixins via modules, which are collections of methods
that can be added to a class. Recall that Hummingbird caches which methods have
been statically type checked. Because a module can be mixed in to multiple different
classes—and can actually have different types in those different classes—we need to
be careful that module method type checks are cached via where they are mixed in
rather than via the module name.

For example, consider the following code, where the method foo defined in

module M calls bar, which may vary depending on where M is mixed in:

1 |module M def foo(x) bar(x) end end
class C; include M; def bar(x) x + 1 end end
3 | class D; include M; def bar(x) x.tos end end

Here method foo returns Fixnum when mixed into C and String when mixed
into D. Thus, rather that track the type checking status of M#foo, Hummingbird

separately tracks the statuses of C#foo and D#foo.

Cache Invalidation. Recall from Section 3.2 that Hummingbird needs to invalidate
portions of the cache when certain typing assumptions change. While Humming-
bird currently does not support cache invalidation in general, it does support one
important case. In Rails development mode, Rails automatically reloads modified
files without restarting, thus redefining the methods in those files but leaving other
methods intact [31]. In Rails development mode, Hummingbird intercepts the Rails
reloading process and performs appropriate cache invalidation. More specifically,
when a method is called, if there is a difference between its new and old method
body (which we check using the RIL CFGs), we invalidate the method and any
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methods that depend on it. We also maintain a list of methods defined in each
class, and when a class is reloaded we invalidate dependencies of any method that
has been removed. In the next section, we report on an experiment running a Rails
app under Hummingbird as it is updated.

We plan to add more general support for cache invalidation in future work.
There are two main cases to consider. The first is when a method is redefined or
is removed (which never happens in our experiments except in Rails development
mode). Ruby provides two methods, method_added and method_removed, that can
be used to register callbacks when the corresponding actions occur, which could be
used for cache invalidation.

The second case of cache invalidation is method’s type changes. However, in
RDL and Hummingbird, multiple calls to type for the same method are used to
create intersection types. For example, the core library Array#[] method is given its

type with the following code:

type Array, :[], '(Fixnum or Float) — t’
type Array, :[], '(Fixnum, Fixnum) —Array<t>'
3| type Array, :[], '(Range<Fixnum>) —Array<t>'

meaning if given a Fixnum or Float, method Array#[] returns the array contents
type; and, if given a pair of Fixnums or a Range<Fixnum>, it returns an array.

In this setting, we cannot easily distinguish adding a new arm of an intersection
type from replacing a method type. Moreover, adding a new arm to an intersection
type should not invalidate the cache, since the other arms are still in effect. Thus, full

support of cache invalidation will likely require an explicit mechanism for replacing
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Static types Dynamic types Running time (s)
App LoC || Chk’d | App | All | Gen’d | Used | Casts | Phs || Orig | No$ | Hum | Or. Ratio
Talks-1/4/2013 | 1,055 111 | 201 | 363 990 45 31 1 162 | 1,590 256 1.6x
Boxroom-1.7.1 854 127 | 221 | 306 534 93 17 1 263 705 327 1.2x
Pubs-1/12/2015 620 47 86 | 171 445 33 13 1| 72.0 | 4,470 217 3.0x
Rolify-4.0.0 84 14 24| 71 26 2 15 12 || 563 | 7.79 | 6.71 1.2x
CCT-3/23/2014 172 23 27 | 75 6 3 6 11 306 | 782 | 174 5.7x
Countries-1.1.0 227 33 40 | 111 0 0 22 1 1.02| 18.1 | 4.62 4.5%

earlier type definitions.

3.4 Experiments

Figure 3.7: Type checking results.

We evaluated Hummingbird by applying it to six Ruby apps:

e Tulks? is a Rails app, written by the second author, for publicizing talk an-

nouncements. Talks has been in use in the UMD CS department since Febru-

ary 2012.

o Boxroom

3

is a Rails implementation of a simple file sharing interface.

e Pubs is a Rails app, developed several years ago by the second author, for

managing lists of publications.

e Rolify* is a role management library for Rails. For this evaluation, we inte-

grated Rolify with Talks on the User resource.

e Credit Card Transactions (CCT)? is a library that performs simple credit card

processing tasks.

’https://github.com/jeffrey-s-foster/talks
3http://boxroomapp.com
“https://github.com/RolifyCommunity/rolify
Shttps://github.com/daino3/credit_card_transactions
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e Countries® is an app that provides useful data about each country.

We selected these apps for variety rather than for being representative. We chose
these apps because their source code is publicly available (except Pubs); they work
with the latest versions of Ruby and RDL; and they do not rely heavily on other
packages. Moreover, the first three apps use Rails, which is an industrial strength
web app framework that is widely deployed; the next two use various metaprogram-
ming styles in different ways than Rails; and the last one does not use metaprogram-
ming, as a baseline. Table 3.7 summarizes the results of applying Hummingbird to
these apps. On the left we list the app name, version number or date (if no version
number is available), and lines of code as measured with sloccount [46]. For the
Rails apps, we ran sloccount on all ruby files in the model, controller, helper, and
mailer directories. We do not include lines of code for views, as we do not type check
views. For Countries and CCT, we ran sloccount on all files in the lib directory. For
Rolify, we only statically checked several methods, comprising 84 lines of code, that

use define_method in an interesting way.

Type Annotations. For all apps, we used common type annotations from RDL
for the Ruby core and standard libraries. For several apps, we also added type
annotations for third-party libraries and for the Rails framework. We trusted the
annotations for all these libraries, i.e., we did not statically type check the library
methods’ bodies.

We also added code to dynamically generate types for metaprogramming code.

Shttps://github.com/hexorx/countries
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For Rails, we added code to dynamically generate types for model getters and set-
ters based on the database schema; for finder methods such as find_by_name and
find_all_by_password (the method name indicates which field is being searched); and
for Rails associations such as belongs_to.

In Figure 3.2, we showed code we added to Rolify to generate types for a
method created by calling define_dynamic_method. Calling define_dynamic_method
also dynamically creates another method, is_#{role_name} _of(arg)?, which we also
provide types for in the pre block.

In CCT, we used the code in Figure 3.3 to generate types for Struct getters
and setters.

Finally, we wrote type annotations for the app’s own methods that were in-
cluded in the lines of code count in Table 3.7. We marked those methods to indicate
Hummingbird should statically type check their bodies. Developing these annota-
tions was fairly straightforward, especially since we could quickly detect incorrect

annotations by running Hummingbird.

Type Checking Results. For each program, we performed type checking while
running unit tests that exercised all the type-annotated app methods. For Talks
and Pubs, we wrote unit tests with the goal of covering all application methods.
For Bozroom, we used its unit tests on models but wrote our own unit tests on
controllers, since it did not have controller tests. For Rolify, we wrote a small set of
unit tests for the dynamic method definition feature. For CCT and Countries, we

used the unit tests that came with those apps.
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In all cases, the app methods type check correctly in Hummingbird; there
were no type errors. The middle group of columns summarizes more detailed type
checking data.

The “Static types” columns report data on static type annotations. The count
under “Chk’d” is the number of type annotations for the app’s methods whose bodies
we statically type checked. The count under “App” is that number plus the number
of types for app-specific methods with (trusted) static type annotations, e.g., some
Rails helper functions have types that we do not currently dynamically generate.
The count under “All” reports the total number of static type annotations we used
in type checking each app. This includes the “App” count plus standard, core, and
third-party library type annotations for methods referred to in the app.

The “Dynamic types” columns report the number of types that were dynam-
ically generated (“Gen’d”) and the number of those that were actually used during
type checking (“Used”). These numbers differ because we tried to make the dynamic
type information general rather than app-specific, e.g., we generate both the getter
and setter for belongs_to even if only one is used by the app.

These results show that having types for methods generated by metaprogram-
ming is critical for successfully typing these programs—every app except Countries
requires at least a few, and sometimes many, such types.

The “Casts” column reports the number of type casts we needed to make
these programs type check; essentially this measures how often Hummingbird’s type
system is overly conservative. The results show we needed a non-trivial but relatively

small number of casts. All casts were for the reasons discussed in Section 3.3:
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downcasting and generics.

The “Phs” column in Table 3.7 shows the number of type checking phases
under Hummingbird. Here a phase is defined as a sequence of type annotation
calls with no intervening static type checks, followed by a sequence of static type
checks with no intervening annotations. We can see that almost all apps have only a
single phase, where the type annotations are executed before any static type checks.
Investigating further, we found this is due to the way we added annotations. For
example, we set up our Rails apps so the first loaded application file in turn loads
all type annotation files. In practice the type annotations would likely be spread
throughout the app’s files, thus increasing the number of phases.

Rolify is the only application with multiple phases. Most of the phases come
from calling define_dynamic_method, which dynamically defines other methods and
adds their type annotations. The other phases come from the order in which the
type annotation files are required—unlike the Rails apps, the Rolify type annotation

files are loaded piecemeal as the application loads.

Performance. The last four columns of Table 3.7 report the overhead of using
Hummingbird. The “Orig” column shows the running time without Hummingbird.
The next two columns report the running time with Hummingbird, with caching
disabled (“No$”) and enabled (“Hum”). The last column lists the ratio of the
“Hum” and “Orig” column.

For Talks, Boxroom, and Pubs, we measured the running time of a client

script that uses curl to connect to the web server and exercise a wide range of
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functionality. For CCT, we measured the time for running its unit tests 100 times.
For Countries and Rolify, we measured the time for running the unit tests once (since
these take take much more time than CCT’s tests). For all apps, we performed each
measurement three times and took the arithmetic mean.

These results show that for the Rails apps, where 10 is significant, Humming-
bird slows down performance from 24% to 201% (with caching enabled). We think
these are reasonable results for an early prototype that we have not spent much
effort optimizing. Moreover, across all apps, the ratios are significantly better than
prior systems that mix static and dynamic typing for Ruby [1,36], which report
orders of magnitude slowdowns.

Investigating further, we found that the main Hummingbird overhead arises
from intercepting method calls to statically type checked methods. (Note the inter-
ception happens regardless of the cache state.) The higher slowdowns for CCT and
Countries occur because those applications spend much of their time in code with
intercepted calls, while the other applications spend most of their time in framework
code, whose methods are not intercepted. We expect performance can be improved
with further engineering effort.

We can also see from the results that caching is an important performance op-
timization: without caching, performance slows down 1.4x to 62x. We investigated
pubs, the app with the highest no-caching slowdown, and found that while running
the application with large array inputs, certain application methods are called more
than 13,000 times while iterating through the large arrays. This means that each of
these application methods are statically type checked more than 13,000 times when
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caching is disabled.

Type Errors in Talks. We downloaded many earlier versions of Talks from its
github repository and ran Hummingbird on them using mostly the same type an-
notations as for the latest version, changed as necessary due to program changes.
Cumulatively, we found six type errors that were introduced and later removed as
Talks evolved. Below the number after the date indicates which checkin it was, with

1 for the first checkin of the day, 2 for the second, etc.

e 1/8/12-4: This version misspells compute_edit_fields as copute_edit_fields. Hum-
mingbird reported this error because the latter was an unbound local variable

and was also not a valid method.

e 1/7/12-5: Instead of calling @list.talks.upcoming.sort{| a, b | ...}, this version
calls @list.talks.upcoming{| a, b | ...} (leaving off the sort). Hummingbird de-
tects this error because upcoming’s type indicates it does not take a block.
Interestingly, this error would not be detected at run-time by Ruby, which

simply ignores unused block arguments.

e 1/26/12-3: This version calls user.subscribed_talks(true), but subscribed_ talks’s

argument is a Symbol.

e 1/28/12: This version calls @job.handler.object, but ©@job.handler returns a

String, which does not have an object method.

e 2/6/12-2: This version uses undefined variable old_talk. Thus, Hummingbird
assumes old_talk is a no-argument method and attempts to look up its type,
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which does not exist.

e 2/6/12-3: This version uses undefined variable new_talk

We should emphasize that although we expected there would be type errors
in Talks, we did not know exactly what they were or what versions they were in.
While the second author did write Talks, the errors were made a long time ago, and

the second author rediscovered them independently by running Hummingbird.

Updates to Talks Finally, we performed an experiment in which we launched
one version of Talks in Rails development mode and then updated the code to the
next six consecutive versions of the app. (We skipped versions in which none of the
Ruby application files changed) Notice that cache invalidation is particular useful
here, since in typical usage only a small number of methods are changed by each
update.

In more detail, after launching the initial version of the app, we repeated the
following sequence six times: Reset the database (so that we run all versions with
the same initial data); run a sequence of curl commands that access the same Talks
functionalities as the ones used to measure the running time of Talks in Table 3.7 ;
update the code to the next version; and repeat.

Table 3.1 shows the results of our experiment. The “A Meth” column lists the
number of methods whose bodies or types were changed compared to the previous
version. Note there are no removed methods in any of these versions. The “Added”
column lists the number of methods added; such methods will be checked when
they are called for the first time but do not cause any cache invalidations. The
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“Deps” column counts the number of dependent methods that call one or more of
the changed methods. These methods plus the changed methods are those whose
previous static type check are invalidated by the update. The last column, “Chk’d,”
reports how many methods are newly or re-type checked after the update. Currently,
Hummingbird always rechecks Rails helper methods, due to a quirk in the Rails
implementation—the helper methods’ classes get a new name each time the helper
file is reloaded, causing Hummingbird to treat their methods as new. Thus (except
for the first line, since this issue does not arise on the first run), we list two numbers
in the column: the first with all rechecks, including the helper methods, and the
second excluding the helper methods.

These results show that in almost all cases, the second number in “Chk’d” is
equal to the sum of the three previous columns. There is one exception: in 8/24/12/-
1, there 14 rechecked methods but 18 changed/added/dependent methods. We
investigated and found that the 14 rechecks are composed of six changed methods
that are rechecked once; two changed methods that are rechecked twice because they
have dependencies whose updates are interleaved with calls to those methods; one
added method that is checked; and three dependent methods that are rechecked.
The remaining added method is not called by the curl scripts, and the remaining
dependent methods are also changed methods (this is the only version where there
is overlap between the changed and dependent columns).

Finally, as there are no type errors in this sequence of updates, we confirmed

that this streak of updates type checks under Hummingbird.
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Version | A Meth | Added | Deps | Chk’d
5/14/12 N/A| N/A| N/A 7
7/24/12 1 ; 4] 15/5
8/24/12-1 8 2 8124 /14
8,/24/12-2 - 1 |11/t
8/24/12-3 1 1 | 12/2
9/14/12 1 -1 1571
1/4/13 4 - -] 13/4

Table 3.1: Talks Update Results

3.5 Related Work

There are several threads of related work.

Type Systems for Ruby. We have developed several prior type systems for Ruby.
Diamondback Ruby (DRuby) [8] is the first comprehensive type system for Ruby
that we are aware of. Because Hummingbird checks types at run-time, we opted to
implement our own type checker rather than reuse DRuby for type checking, which
would have required some awkward shuffling of the type table between Ruby and
OCaml. Another reason to reimplement type checking was to keep the type system a
little easier to understand—DRuby performs type inference, which is quite complex
for this type language, in contrast to Hummingbird, which implements much simpler
type checking.

DRuby was effective but did not handle highly dynamic language constructs
well. PRuby [7] solves this problem using profile-based type inference. To use
PRuby, the developer runs the program once to record dynamic behavior, e.g.,

what methods are invoked via send, what strings are passed to eval, etc. PRuby then
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applies DRuby to the original program text plus the profiled strings, e.g., any string
that was passed to eval is parsed and analyzed like any other code. While PRuby
can be effective, we think that Hummingbird’s approach is ultimately more practical
because Hummingbird does not require a separate, potentially cumbersome, profiling
phase. We note that Hummingbird does not currently handle eval, because it was
not used in our subject apps’ code, but it could be supported in a straightforward
way.

We also developed DRails [25], which type checks Rails apps by applying
DRuby to translated Rails code. For example, if DRails sees a call to belongs_to,
it outputs Ruby code that explicitly contains the methods generated from the call,
which DRuby can then analyze. While DRails was applied to a range of programs,
its analysis is quite brittle. Supporting each additional Rails feature in DRails
requires implementing, in OCaml, a source-to-source transformation that mimics
that feature. This is a huge effort and is hard to sustain as Rails evolves. In
contrast, Hummingbird types are generated in Ruby, which is far easier. DRails
is also complex to use: The program is combined into one file, then run to gather
profile information, then transformed and type checked. Using Hummingbird is far
simpler. Finally, DRails is Rails-specific, whereas Hummingbird applies readily to
other Ruby frameworks. Due to all these issues, we feel Hummingbird is much more
lightweight, agile, scalable, and maintainable than DRails. Finally, RubyDust [1]
implements type inference for Ruby at run time. RubyDust works by wrapping
objects to annotate them with type variables. More precisely, consider a method

def m(x) ... end, and let « be the type variable for x. RubyDust’s wrapping is
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approximately equal to adding x = Wrap.new(x, «) to the beginning of m. Uses of
the wrapped x generate type constraints on o and then delegate to the underlying
object. The Ruby Type Checker [36] (rtc) is similar but implements type checking
rather than type inference.

Hummingbird has several important advantages over RubyDust and rtc. First,
RubyDust and rtc can only report errors on program paths they observe. In contrast,
Hummingbird type checks all paths through methods it analyzes. Second, wrapping
every object with a type annotation is extremely expensive. By doing static analysis,
Hummingbird avoids this overhead. Finally, RubyDust and rtc have no special
support for metaprogramming. In RubyDust, dynamically created methods could
have their types inferred in a standard way, though RubyDust would likely not infer
useful types for Rails-created methods. In rtc, dynamically created methods would
lack types, so their use would not be checked. (Note that it would certainly be
possible to add Hummingbird-style support for metaprogramming-generated type
annotations to either RubyDust or rtc.) In sum, we think that Hummingbird strikes
the right compromise between the purely static DRuby approach and the purely

dynamic RubyDust/rtc approach.

Type Systems for Other Dynamic Languages. Many researchers have pro-
posed type systems for dynamic languages, including Python [4], JavaScript [?, 13,
28], Racket [14,40,44], and Lua [29], or developed new dynamic languages or dialects
with special type systems, such as Thorn [5], TypeScript [16,32], and Dart [18]. To

our knowledge, these type systems are focused on checking the core language and
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can have difficulty in the face of metaprogramming.

One exception is RPython [15], which introduces a notion of load time, during
which highly dynamic features may be used, and run time, when they may not be.
In contrast, Hummingbird does not need such a separation.

Lerner et al [27] propose a system for type checking programs that use JQuery,
a very sophisticated Javascript framework. The proposed type system has special
support for JQuery’s abstractions, making it quite effective in that domain. On the
other hand, it does not easily apply to other frameworks.

Feldthaus et al’'s TSCHECK [21] is a tool to check the correctness of Type-
Script interfaces for JavaScript libraries. TSCHECK discovers a library’s API by
taking a snapshot after executing the library’s top-level code. It then performs
checking using a separate static analysis. This is similar to Hummingbird’s tracking
of type information at run-time and then performing static checking based on it.
However, Hummingbird allows type information to be generated at any time and

not just in top-level code.

Related Uses of Caching. Several researchers have proposed systems that use
caching in a way related to Hummingbird. Koukoutos et al [26] reduce the overhead
of checking data structure contracts (e.g., “this is a binary search tree”) at run time
by modifying nodes to hold key verification properties. This essentially caches those
properties. However, because the properties are complex, the process of caching
them is not automated.

Stulova et al [42] propose memoizing run-time assertion checking to improve
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performance. This is similar to Hummingbird’s type check caching, but much more
sophisticated because the cached assertions arise from a rich logic.

Hermenegildo et al [24] proposed a method to incrementally update analysis
results at run-time as code is added, deleted, or changed. Their analysis algorithms
are designed for constraint logic programming languages, and are much more com-

plicated than Hummingbird’s type checking.

Staged Analysis. MetaOCaml [43] is a multi-stage extension of OCaml in which
code is compiled in one stage and executed in a later stage. The MetaOCaml
compiler performs static type checking on any such delayed code, which is similar to
Hummingbird’s just-in-time type checking. A key difference between MetaOCaml
and Hummingbird is that Ruby programs do not have clearly delineated stages.
Chugh et al’s staged program analysis [17] performs static analysis on as much
code as is possible at compile time, and then computes a set of remaining checks to be
performed at run time. Hummingbird uses a related idea in which no static analysis
is performed at compile time, but type checking is always done when methods are
called. Hummingbird is simpler because it need not compute which checks are

necessary, as it always does the same kind of checking.

Other. Several researchers have explored other ways to bring the benefits of static
typing to dynamic languages. Contracts [?] check assertions at function or method
entry and exit. In contrast, Hummingbird performs static analysis of method bodies,

which can find bugs on paths before they are run. At the same time, contracts can
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encode richer properties than types.

Gradual typing [11] lets developers add types gradually as programs evolve;
Vitousek et al recently implemented gradual typing for Python [45]. Like types [47]
bring some of the flexibility of dynamic typing to statically typed languages. The
goal of these systems is to allow mixing of typed and untyped code. This is orthog-
onal to Hummingbird, which focuses on checking code with type annotations.

Richards et al [37,38] have explored how highly dynamic language features are
used in JavaScript. They find such features, including eval, are used extensively in
a wide variety of ways, including supporting metaprogramming.

The GHC Haskell compiler lets developers defer type errors until run-time
to suppress type errors on code that is never actually executed [23]. Humming-
bird provides related behavior in that a method that is never called will never be
type checked by Hummingbird. Template Haskell [39] can be used for compile-time
metaprogramming. Since Haskell programs contain types, template Haskell is often
used to generate type annotations, analogously to the type annotations generated
using Hummingbird. Similarly, F# type providers [20] allow users to create compile
time types, properties and methods. A key difference between these Haskell/F#

features and Hummingbird is that Ruby does not have a separate compile time.

3.6  Conclusion

We presented Hummingbird, a novel tool that type checks Ruby apps using an

approach we call just-in-time static type checking. Hummingbird works by tracking
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type information dynamically, but then checking method bodies statically at run
time as each method is called. As long as any metaprogramming code is extended
to generate types as it creates methods, Hummingbird will, in a very natural way,
be able to check code that uses the generated methods. Furthermore, Hummingbird
can cache type checking so it need not be unnecessarily repeated at later calls to
the same method.

We formalized Hummingbird using a core, Ruby-like language that allows
methods and their types to be defined at arbitrary (and arbitrarily separate) points
during execution, and we proved type soundness. We implemented Hummingbird
on top of RIL, for parsing Ruby source code, and RDL, for intercepting method calls
and storing type information. We applied Hummingbird to six Ruby apps, some of
which use Rails. We found that Hummingbird’s approach is effective, allowing it
to successfully type check all the apps even in the presence of metaprogramming.
We ran Hummingbird on earlier versions of one app and found several type errors.
Furthermore, we ran Hummingbird while applying a sequence of updates to a Rails
app in development mode to demonstrate cache invalidation under Hummingbird.
Finally, we measured Hummingbird’s run-time overhead and found it is reasonable.

In sum, we think that Hummingbird takes a strong step forward in bringing

static typing to dynamic languages.
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Chapter 4: Practical Type Inference

In the previous chapters, we introduced two type checking systems, rtc and
Hummingbird. Although both systems are useful, they may require a substantial
amount of manual annotations. Type inference automatically gathers subtyping
constraints from code with no type annotations and finds the solution that satisfies
all constraints. Thus, type inference reduces the programmer’s burden of writing
type annotations and improves the code’s readability code while still performing
type checking. Unfortunately, exisiting type inference approaches often generate
types that are impractical to use. Some of the main issues include 1) structural
types that have too many method requirements, and thus are too complicated to
understand, and 2) Types such as T that are not meaningful in certain situations.
In addition, prior Ruby type inference systems have limited support for intersection
types and parameterized types. In this chapter, we will first introduce a standard
type inference system for Ruby, and then describe a practical type inference sytem
that overcomes the above limitations. The standard inference system tries to find
the most general solution that satisfies all subtyping constraints. On the other hand,
our practical inference system includes more constraint resolution rules in addition

to unconventional solution extraction rules. Thus, the practical solution is a subtype
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class C
def add(x)
x +1
end
infer :add
end

s = Solver.new()
C.new.add(0)
s.solve ()

© % N G A W e

~
=

Figure 4.1: Basic Type Inference Usage

of the standard solution that may be more specific and constrained. For example,
suppose standard type inference infers the structural type solution x = [foo: ..., bar:
...]. Practical type inference may infer x = A where A is a class with foo and bar as
instance methods.

The work described in this chapter has not been previously published.

4.1 Introduction

Like Hummingbird, our type inference system also uses method wrapping and
interception to perform program analysis, and relies on a set of existing type anno-
tations. The programmer specifies the method for which to infer types by calling
infer with the method name. The type inference system then wraps these meth-
ods for run-time interception. We assume that type annotations already exist on
all methods that are not infer-wrapped. The programmer manually calls solve to
invoke type inference. We support the inference of method argument /return types,
field types, and Rails-specific session and params hashes, which we will discuss later.

Figure 4.1 illustrates the basic use of the type inference system. Line 8 creates
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the Solver object. Then, line 9 invokes add defined on line 2. Since infer is invoked
with add on line 5, the system statically analyzes the body of add for constraint
generation before invoking add. Finally, the solve call on line 10 infers the type of
add.

We now briefly describe the three steps of type inference. We will detail the

process in later sections.

1) Constraint generation. When wrapped methods are intercepted at run-time,
the type inference system statically walks through the method bodies to gen-
erate subtyping constraints of the form 7 < 75. At the same time, the system
performs type checking whenever possible. If 71 and 7 are not type variables
and 71 £ 7o, then the system reports a type error. In this paper, we refer to
71 as the precedessor of 7, and 7 as the successor of 71. This first step is the

same for both standard and practical inference.

2) Constraint resolution. Apply a set of constraint resolution rules on the orig-
inal constraints to possibly introduce new constraints. The simplest example
is conventional transitive closure, where if 7 < v,v < 79, then 71 < 7. In
later sections, we will describe many other cases of constraint manipulation.
Most of the standard constraint resolution rules are a subset of the practical

resolution rules.

3) Solution extraction. Merge all relevant constraints on each type variable. The
relevant constraints are chosen differently between standard and practical in-
ference. In standard type inference, we merge types based on the position of
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each type variable. Method arguments are in negative position, and method
returns are in positive position. For a negative variable, the final merged type
is the intersection of all of its successors. For a positive variable, the merged
type is the union of all of its predecessors. As a standard type inference ex-
ample, suppose that the final constraints involving « are:

A<a B<a a<[foo: m - m] a<|bar: 73 — 74 |, where the types
in the last two constraints are structural types specifying methods that must
be defined on «. If « is a positive variable, or return type, then we union its
predecessors, so we infer « = A U B. If « is a negative variable, then we take
the intersection of its successors, which is [foo: 71 — 7o, bar: 73 — 74 |. This
new structural type indicates that o must have both foo and bar defined on
it. The system will check AU B < [foo: 71 — 7o, bar: 73 — 74 |. We relax

these rules in practical inference, which we will discuss later.

4.2 Motivating Examples

We begin with a simple example of standard type inference, followed by a few

examples of practical type inference to show where it generates better types.

4.2.1 Standard Type Inference Example

Figure 4.2 is a simplified version of a method from pubs, an app used in our
evaluation. This method first sets tmp to an empty string. Then, it calls various

instance methods of the argument, possibly modifies tmp, and finally returns tmp.
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1 type String, :<, '([tos: () — String]) — String’

2

3 def flags (paper)

4 tmp =" #£ String <tmp

5 if paper. invited then # paper <[invited : (vl) — v2]
6 tmp = 'Invited’ # String <tmp

7 end

8 if paper.draft then # paper <[draft: (v3) — v4]
9 tmp <'Draft’ # String <tmp

10 end

11 if paper.hidden then # paper <[hidden: (v5) — v6]
12 tmp <'Hidden’ # String <tmp

18 end

14 return tmp # tmp <ret

15 end

Figure 4.2: Simple Ruby Method

The constraint generated by each line is shown in the corresponding comment.
This first constraint is trivial. Then, line 5 generates a structural constraint paper
< [invited: (v1) — v2], which indicates that paper is a subtype of an object that has
an invited method with argument vl and return v2. Then, the structural constraint
on line 5 indicates that paper has invited defined as an instance method. Note that
since we do not know the actual type of paper, we cannot look up the annotated
type of invited. Thus, we simply assume invited takes one variable argument v1, and
returns variable v2. The count of one argument comes from the actual call. Next,
the conditional paper.invited generates a trivial duplicate constraint on tmp from
the assignment. On line 8, we know that paper has draft as an instance method.
In the paper.draft true branch, we again generate the same subtyping relationship
between String and tmp. Note that in the true branch of paper.invited, tmp is used
in an assignment, so we do not perform any type annotation lookups. However,

in the true branch of paper.draft, tmp is the method’s caller, and tmp is stored
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as String in the current type environment. So we look at the annotated type of
String# <<, and type check the argument type. In the third conditional, we generate
similar constraints. Finally, we know that tmp must be a subtype of the method’s
return. In this particular example, constraint resolution yields no new constraints,
because there are no new constraints that we could introduce based on the original
constraints to help with inference.

During solution extraction, we infer paper, a negative variable (or argument
type), as [invited: (v1) — v2, draft: (v3) — v4, hidden: (v5) — v6]. which is the
intersection of all of its successors. On the other hand, tmp is a positive variable,
so we take the union of all of its predecessors, which is simply String. Note the vi’s
do not have any constraints on them. So their types are simply their initial types,
where v1, v3, vb are T, and v2, v4, v6 are 1. We would like to point out that the
vi’s are simply intermediate local variables, and we do not consider their inferred
types in our evalution in Section 4.5.

We now use this example to describe the reason for taking the intersection of
successors for each negative variable. Suppose that we instead take the union of the
successors, then the type of paper becomes [invited: (v1) — v2] U [draft: (v3) — v4]
U [hidden: (v5) — v6]. Since the actual argument only needs to be subtype of this
structural type, [invited: (v1) — v2] is a valid actual argument. Next, in transitive
closure, we generate constraints:

[invited: (v1) — v2] < [invited: (v1) — v2],
[invited: (v1) — v2] < [draft: (v3) — v4],
[invited: (v1) — v2] < [hidden: (v5) — v6].
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But notice the last two constraints are invalid.

In comparison, a negative variable must account for all types that flow into
it. Suppose that we modified flags so that its last statement becomes if ... return
tmp else return 0. If we instead take the intersection of the predecessors, then the
return type would be Fixnum N String, which is an invalid type. Thus, the only valid
precise type is the union of the predecessors, or Fixnum U String.

However, we will demonstrate later in this chapter that sometimes it helps to

consider variables from the reversed direction.

4.2.2 Practical Type Inference Examples

Since standard type inference computes the most general solution, the resulting
types may be too long or too complicated to understand. On the other hand,
practical type inference aims at inferring types that are concise and resemble how a

programmer would write types.

4.2.2.1 Structural Type to Actual Class Conversion

We now revisit Figure 4.2 to demonstrate structural type to actual class con-
version, a key feature of practical type inference. Recall that standard type inference
produces [invited: (v1) — v2, draft: (v3) — v4, hidden: (v5) — v6] as the type of
paper. Although this type is correct, we could use practical type inference to reduce
this type to a concise type, or an actual class. In particuar, if we search through

all run-time classes, we find that Paper is the only class that has all methods in the
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1 |type :Transaction, :account_name, 'String’
2

s | class Card

4 def process_transactions

5

6 name = t.account_name # String < name
7 card = find_card(name) # name <n
8 ..

9| end

10

11 | def find_card (n)

12 card = ..

13 if card.account_-name ==n

14 ..

15 end

16 ..

17| end

Figure 4.3: Reversed Solution Extraction

structural type as instance methods. Thus, we add a new constraint paper = Paper.
This also allows us to eventually infer Paper as the final type of paper In this case,
Paper is a much more concise solution than [invited: (vl1) — v2, draft: (v3) — v4,
hidden: (v5) — v6]. In the future, we plan to conduct a user study on the types
generated from practical inference.

In the evaluation section, we will show this conversion feature very helpful in

practice, as it reduces many much longer structural types to single classes.

4.2.2.2 Reversed Solution Extraction

Consider Figure 4.3, a simplified code snippet from the CCT app. We use
the example to demonstrate how practical solution infers a much better type for
find_card’s argument n through reversed solution extraction.

In process_transactions, we know from line 1 that t.account_name returns String.

79



Also, in find_card, suppose n only appears on line 13. During constraint resolution,
we take the trivial constraints shown in comments, and generate one transitive
constraint String < n.

Now consider the standard type inference of n. Since it is a negative variable,
we infer its type by merging its successors. First, assume that on line 13, we do not
know the actual class of card to look up the type annotation of account_name, so
we generate no constraint from this call. Thus, the result of n is T, an impractical
type. Next, consider the case where we know the type of card. We are then able
to look up the return type of its instance method account_name as String. In all
conventional classes including String, the annotated type of == is theoretically
(T) — Bool. Although we get a new constraint n < T from this annotation, it
doesn’t change the inferred type of n. However, in practice, the argument type of
comparison methods like == is usually the same as the caller’s type. We will discuss
how this phenomenon helps us to infer more better types with practical inference in
Section 4.2.2.3.

Ideally, we want to infer String as the type of n. Notice that when we reach
the solution extraction phase, the only constraint involving n is the transitive con-
straint String < n. In standard solution extraction, we essentially ignore this helpful
constraint because standard inference comptues the most general solution. On the
other hand, in practical solution extraction, we read solutions from the reversed side
if the conventional direction does not offer useful type information. We find this
approach helpful as the reverse side often also provides the right type information.

This feature allows us to easily infer String as the type of n.
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def empty(a)
return a =="" # a <[ ==: (String) — Bool]
end

def format_author(s)
return " [no authors]” if empty s #s<a
authors = s. split (" and ') # s <[ split: (String) — ..]

© % N G A W e

end

Figure 4.4: Method name-based inference

4.2.2.3 Method Name-based Inference

Another way to infer practical types is to generate constraints based on method
names. As we mentioned earlier, in a comparison method such as ==, the type of
the argument is theoretically T. However, the type of a variable with instance
methods such as == or != is very likely the same as the method argument’s type
in practice.

Consider Figure 4.4, a simplified code snippet taken from the pubs app. The
original constraints are again shown in the comments. During constraint resolution,
we add a transitive constraint s < [ ==: (String) — Bool]. We can easily see that
standard approach infers a = [ ==: (String) — Bool], and s = [ ==: (String) —
Bool, split: (String) — ...].

Again, although these types are correct, practical inference generates much
better types. Using the above technique on inferring the caller of == based on the
type of argument, we infer both String as the type of both a and s. Furthermore, we
would like to point out that the technique in Section 4.2.2.1 to convert structural

types to actual classes is not feasible in this == case. During run-time, we find too
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Figure 4.5: Source Language

>I

many actual clases that match this structural type. In fact, there are 1620 classes

that have == as instance methods, and 23 classes that have both == and split as

instance methods.

4.3 Formalism

We formalize the source language using the core, Ruby-like langugage show

in Figure 4.5. Values v include nil and [A], like Hummingbird. In addition, val-

ues includes 7, for generic types. Next, names n include method names and field

names. Expressions e include every expression from Hummingbird, except we re-

define method defintions d separately and add case statements. The formalism in
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Hummingbird allows a method to be defined inside an expression, which then allows
a method to be defined anywhere during execution. In this chapter, we focus on
type inference only and do not consider dynamic method creations. Next, A case
statement on a type variable has a sequence of condtionals guarded by classes, fol-
lowed by an optional else branch. We also add the infer expression, which simply
tells the type inferencer to infer the type of the associated method or field.

We write method definitions d as a method with argument and returns that
are both type variables that we will attempt to solve, and the body is an expression.
Throughout this chapter, we will use ~ to indicate that the associated variable is
an argument, and * to indicate the variable is a return. In addition, we introduce
classes ¢ in this language, where each class is a sequence of 0 or more method
definitions, and we allow each class to have an ancestor. Then, each program p is
simply a sequence is class definitions.

Next, we define simple value types 7y; to include class instances A, nil, union
types, and generic types. The definition of value types 7 becomes much more com-
plex than in Hummingbird. In addition to including 7, 7 includes a for type
variables, 7, for structural types, 7; for intersection types, and two new types 7, and
7, for possible and implication types

We define generic types 7, as either an Array with one parameter, or a Hash
with two parameters. For simplity, we only include these two generic types. The
next three types are very straightforward. Method types 7, have the exact same
definition as in Hummingbird. An intersection type 7; is a list of method types. A
structural type 7, is a list of method names along with their types.
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1 |type :Tag, 'self .find', '(String or Fixnum) — Tag’

2 [type :Tag, 'self .find’, '(Array<String or Fixnum>) —Array<Tag>’
3

4 | def tagged

5] a= ..

6 | Otag = Tag.find(a)

7| @tag.papers # Otag <[ papers: ... |

8 ..

9 |end

Figure 4.6: Possible and Implication Type Example

We now introduce the two novel types in our system, possible types 7, and
implication types 7,. Both are created using information from intersection type
annotations to help us choose the right arm of the intersection type.

An implication type is simply a list of implications of the form < (o < 741) —
Taios (0 < Tyiz) — Tei, ... >1, where a < 71,0 < Ty, ... are hypotheses, and
Tsi2, Tsid, --- are conclusions. Each hypothesis is a subtyping relationship between an
argument variable o~ and a simple value type. The conclusion of each implication
is also a simple value type. During constraint resolution, we apply a set of rules to
each implication type in an attempt to resolve it to a single valid implication. The
conclusion of the single valid implication is the resolved implication type. A possible
type is a much simpler type that is used in conjunction with an intersection type.
It is defined as simply a list of simple types, only one of which is valid.

We now give a simple example to demonstrate how implication and possible
types can prevent a false positive type error during type inference. Consider the
method in Figure 4.6, taken from the pubs app, and assume that we do not have any

type information on a. First, suppose our type system does not support implication
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and possible types. This means that on line 6, find_ret < @tag, where find_ret is the
return type of Tag.find(a). We show find’s annotated type as an intersection type
on lines 1 and 2, which means that find_ret < Tag U Array(Tag), or the union of
the intersection’s two return types. We combine this constraint and the constraint
shown on line 7 to create a transitive constraint Tag U Array(Tag) < [papers: ...|.
Since the predecessor is a union type, every type in the union must be a subtype
of the successor, which that both Tag < [papers: ...] and Array(Tag) < [papers: ...
must hold. But notice the only the first constraint holds, and the later is a type
error because Array does not have papers as an instance method.

We rectify this issue with implication and possible types. In this case, we get
two constraints from line 6: a < ( Fixnum U String, Array(Fixnum U String))? and
( a < Fixnum U String — Tag, a < Array(Fixnum U String) — Array(Tag) )! < @tag.
Next, we combine this constraint with the structural constraint shown on line 7, and
conclude that the only valid implication is a < Fixnum U String — Tag because Tag
is the only conclusion with papers as an instance method. Thus, instead of getting
a type error, we infer @tag = Tag.

Finally, each constraint C' in the source language is simply a list of subtyping
relationships. During constraint resolution, we may encounter a point where we
do not have enough information on a method argument variable to choose a valid
arm from an intersection type. Thus, it may help to delay the consideration of this
constraint, as we may later gather more information on this variable through various
constraint resolution rules. We indicate this delay of constraints as CP, and we will

show details about this delay operation in the constraint resolution section.
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(TNil) (TObject) (T'Self) (TVar)
[+ nil : nil F'F[A]l: A [ b self : T'(self) I'kFx:D(x)

(TSeq) (TAssn)

I'te:m F'tey:m The:r 7<T(2) (TNew)
I'kej;en:m I'Fex=e:r I'Anew: A
(TApp)
T'Feg:m I'kFei:m 70 < [m:7m — [ 3 fresh

'k eg.m(er) : B

(TIf)
I'kFey:T I'kFei:m I'eg:m

I' - if eg then eq else eq : 71 U T

(TCase)
I'ra:AUB I'kei:m I'kFey:m

I' - case & when A do e; when B do ey : 71 U Ty

(TCaseElse)
F|—61:T1 F"@QITQ P|—63:T3

I' - case o when A do e; when B doeselsedoes:miUmUTs

(TClass)
class A< Bdx€p

pHA<B

Figure 4.7: Constraint Generation

4.3.1 Constraint Generation

Our constraint generation process is mostly straightforward. During constraint
generation, we statically through the AST and assign a type for each expression
based on the the formalism in Figure 4.7. This formalism is a simplification of the
implementation.

In the this figure, I' is the type environment that maps expressions to their

corresponding types. (TNil) and (TObject) simply give nil and instances the obvious
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types. (TSelf) and (TVar) give self and local variables their types according to the
current environment. (TSeq) states that a sequence of two expressions has the
type of the second expression. (TAssn) is the flow-insensitive assignment rule that
requires the successor to be a subtype of the predecessor. (TNew) types object
creation in the obvious way. (TApp) is method invocation rule. We look up the
annotated type of eg.m, and 1) ensure the actual method argument type is a subtype
of the annotated argument type, and 2) the return has the annotated return type.
(TIf) says that the return type of a conditional is the union of the branch types.
(TCase) is a special rule about case statements without the else branch. The rule
is similar to TIf where the result is the union of the branch types. In addition, we
assume that the type variable « has the types of the guards. (TCaseElse) is similar
to (TIf), where we simply union the type of each branch. Since we cannot easily
infer a’s type in the else branch, we do not make any assumptions about a’s type in
the whole statement. Finally, (TClass) defines sub-class relationships in the obvious

way.

4.3.2 Standard Constraint Resolution

(top)

{a<T}HUC = C
(bot)

{L<a}ul = C
(trans)

{n<n7<ntuC = {n<1n7<7m,n<ntulC
if re{a,7,7,}

(n-nil)

{a<A,a<B}UC = {a<nihnil<a}lul
ifA£BAB%A

Table 4.1 Standard Constraint Resolution Rules (continued on next page)
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(continued from previous page)

(g-2)
{A<T1> S A<T2>} U C

(trans-struct-0-err)

{Im:(ra) =7 ] < [n: (7)) = 7]}UC

(trans-struct-1-err)

{Im:(ra) = 7] < [m: (7)) =7 ]}UC

(trans-struct-1)

{Im:(re) =27 ] < [m: (7)) =7 ]}UC

(trans-struct-2-err)
{rs <A}UC

(trans-struct-2)
{[m:(ra) > 7] < A}UC

(trans-struct-err-3)
{A< 7} uC

(trans-struct-3)
{A<[m:(1,) = 7 ]}UC

(trans-struct-3-delay)
{A<[m: (1) > 7 ]JUC

(union-t)

{Tl U 1 STS}UC
(possible)

{r <{m,...,m)F}YuC

(implication-ret-delay)

{rn.<7m,.7. <7m}uUC

(implication-ret)
{r,<7,.7. <1} UC

(implication-arg-delay)
{r. (Vv >)r}uC

(implication-arg)
{r(£v>)rtucC

{n <m,n<n}Uul
Err

Err
if (cmp(7},7,) = Err V emp(7y, 7) = Err

{emp(7, 70),cmp(7, 72)} U C

Err
if ImmeAAmér,

{Im:(re) > 7] < [m: (7)) =T ]}UC
if TT[Am;] = [(7)) — 7/]

Err

if Immer,Am¢A

{Im: (7)) =7 <[m:(1p) = 7]} UC
if TT'[Am, (1.) = 7] = (1) — 7.

{A<[m: (1) = ]}PUC
it TT'[A-m, (o) = 7] = (7),) = TL. N ...

{n<mn<ntucC

{7 = match(r, (r1, ~-~7T7L>P} uc
if ¢

{r.<7m,..m. < }PUC
if [imatch(r,, [71, ..., Tn]).conclusions| > 1
AVE € [Ln].mi & s A By > n(r; ¢ as AT, < 75)

{r.=m,a<7, . a<1u,1 <1,.7, <1} UC
if imatch(7,, [11, ..., T0]) =

[ <71 = Tryoory @ < Ty = 74

AVE € [L.n].mi & a; A Brj > n.(1j ¢ o N1, < T5)

{r.(<v>)r}PucC
if 7, =(a<7Te1 = To1y ooy & < Tany = Trm)
Asol(a) = L

I

{rn=mnj,n(£V2)r}uC
if 7, = (@ < Ta1 = Tty oo, @ < T — o),
Asol(a) =T AT < 1y

Table 4.1: Standard Constraint Resolution Rules

Table 4.1 shows the standard constraint resolution rules. During constraint
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resolution, we apply these rules exhaustivey in order until there are no new con-

straints.

top {a <T}uC=C

Eliminate all constraints with T on the right side.

bot {L <a}lUC=C

Eliminate all constraints with L on the left side.

trans {1 < 7,7 <R}UC =>{n <717,7<7n,n <nlUCIifTe{nT,7,}
If 7 is a type variable, implication type, or possible type, then transitively
connect 7’s predecessors with successors, and keep the original constraint.
The reason we add the new constraint if 7 € {«a,7,,7,} is that a, 7,, and 7,
are all unknown types, even though 7,, and 7, carry some type information

themselves.

n-nil {¢ <A a<B}UC = {a<nilnl<alUCIfALBAB¥%A
If o has successors that are different classes, then o = nil is the only constraint
that satisfies . Hence, we add v = nil, and delete constraints connecting a to
these successors. However, we have not encountered a case in our apps where

it is necessary to apply this rule.

g-g {A(n) <A()}UC = {n<mn,n<niul
If there is a subtyping relationship between two generic types with the same

base, then assume their parameters are equal.

trans-struct-err-0 {(m: (7,) = 7] < [n: (7)) = 7]} UC = Err
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If two structural types have a subtyping relationship, but do not share the
same method name, then we get a type error. Note that in our inference
system, each structural type has only one method prior to solution extraction.
This reason for this is that there are two ways to get structural types during
constraint generation. 1) method calls where we do not know the type of the
caller. Consider the method call be x.foo(y). Suppose we do not know the
type of x. Then we generate x < [foo: (v1) — v2) ]. It is obvious here that it
is only possible to have one method in the structural type. 2) structural type
annotations. This is where the structural type comes from a prior anntotation.
There is only one method in every structural type annotation that we used in

our experiments.

trans-struct-err-1 {{m: (7)) = 7] < [m: (7)) = 7]} UC = Err
if (cmp(7.,7,) = Err vV ecmp(7,, 7,v) = Err
Error if both sides of the constraint are structural types that share the same
method name, but their argument or return types are not compatible. We

define cmp to check for compatibility between two types.

(

T1§T2 ifTQGCYi\/TleOdZ'
Cmp(Tl,T2> = T S T2, lf 5] S To (41)

Err, otherwise

\

In other words, if 7y < 75 and one of the types is a variable, then assume this is
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a valid constraint. Otherwise, perform normal type checking on this subtyping

relationship and either return the same relationship if valid, or return error.

trans-struct-1 {{m: (7,) => 7] < [m: (7)) => 7]} UC =
{emp(7), 70),cmp(7, /) } U C
If both sides are structural types with the same method name, then add con-
travariant constraints between the argument types and covariant constraints

between the return types. Also delete the original constraint.

trans-struct-err-2 {7, < A}UC = Errif mim e AAm ¢ 7,
Error if a structural type is a subtype of a class that has more methods defined.

Note that we use m ¢ 7, to indicate that m is not included the methods of .

trans-struct-2 {[m: (7,) = 7] < A}UC = {[m: (ra) = 7] < [m: () = 7]}UC
if TT[Am;] = [(7)) — 7/]
First, recall from Chapter 3 that T'T is a type table mapping class and method
ids A.m to their corresponding types. If a structural type with method m is a
subtype of a class, then replace the class with its annotated type on m. We

assume the annotated type is not an intersection type.

trans-struct-err-3 {A < 7,}UC = Errif Immer,Am¢ A
Error if a class is a subtype of a structural type with method m, but m is
undefined on the class. Note that we use m ¢ A to indicate that m is not an

instance method of A.

trans-struct-3 {A < [m: (1) = |]}UC ={[m: (7)) = 7] <[m: (7,) = 7, |]}UC
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if TT'[Am, (1,) = 7] = (7)) = 7.

If A is a subtype of a structural type [m : 7, — 7,.], then look up the annotated
type of A.m with relevance to this structural type in the special type table
TT'. In comparison to T'T, a type lookup in TT” requires an extra structural
type parameter. The reason is that a type lookup in T7T may return an
intersection type, and this structural type parameter may help us to reduce
the intersection type to a single method type. If this lookup in 77" returns a
a single method type, then replace A with this type. We define type lookup in
TT' formally below. The first and last cases do not involve intersection types,
thus the lookup results resemble that of in T7T. In the second case where the

lookup in T'T returns an intersection type, we apply the selection operator sel’

in an attempt to reduce the intersection to a single method type.

(

TT[A.m] if TT[A.m] =1,

CETT[AM Ta = ] = { sel (TT[Am], 7, = 7.), it TT[AM] = Ty N Tz N ..

Err otherwise
\
(4.2)
We now define the select operator sel’
sel(7;, 7, — ) if 7, ¢ oy
sel' (15,7 — T0) = (4.3)

sel(7;,sol(7,) — 7.) otherwise
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In this definition, sel represents the conventional intersection type selection
based on the method argument. If 7, is not a type variable, then apply the
conventional sel on the types. Otherwise, we solve for 7, by invoking the
solution extraction step on this variable, and then apply sel with this solution.
Note that at this stage, 7,’s solution may not be its final solution. Nonetheless,

we may be able apply sel with this solution to get a single method type.

trans-struct-3-delay {A<[m: (7)) > 7]} UC = {A<[m: (1) = =|]}PUC

if TT'[Am, (1,) = 7] = (7},) = 7/, N ...

In the above rule, a type lookup in 77" may still be an intersection type. This
happens when we are unble to select a valid arm of the intersection because
the current constraints do not provide enough information on 7,. In this case,
we delay the constraint in hopes of getting new constraints on 7, later. It is
important to note that in some cases such as incomplete programs, there may
never be enough constraints on 7, to choose the right arm from the intersection
type. After the number of delays on a variable exceeds the threshold of 100,
we assume that there will be no more new constraints on the variable, and
generalize intersection type by converting it to a regular method type. We use
100 as the threshold because it is sufficient in our test apps. To generalize an
intersection type into a regular method type, we simply union all arguments
and all returns in the original type, e.g., [(a1) — a2, (a3) — a4] becomes

(Oél U Oég) — o U ay.
union-t {1 Un <}UC = {n <m,n<7mul
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If a union type is a subtype of another type 73, then add edges between each

type of the union type and 3.

possible {7 < (r,...,7,)7}UC = {7 = match(r, (11, ..., 7,) }UC if T ¢ q;

If a non-variable type 7 is a subtype of a possible type 7,, then apply the

match operation to find a matching type for 7 in 7,. Replace this constraint

with an equality between 7 and this match.

We formally define match(7, 7,) below to support the cases where 7 is an Array,

a nominal, or an implication type.

match(Array(r), 7,) =

(

\

Array(r'), if Array(r’) € T, AT ~ 7'
ABArray(r") € 7,7 # 7" (4.4)

Err, otherwise

In the above equation, we use the compatibility operator ~ (71, 72) to simply

indicate false if cmp(71, 79) = Err, and true otherwise.

If 7 is an Array, then the matching type in the possible type is Array ('), where

7' is compatible with 7’s parameter. Note that this compatibility means that

the Array parameters do not have to match if one of them is a variable. In

addition, we assume that there are no other Arrays in the possible type.
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(

A ifAerT,
match(A4, 7,) = B, fA<BABerT, (4.5)

Err, otherwise
\

If 7 is a class, then the matching class is either 7 or its superclass.

;

match(T',Tp), if T, = [(OZ < Tsil) — Tsi2, (Oé < Tsi3) — Tsid, ]/\

match(r,, 7,) = 37" € {Tsiz; Tuia, .- p-match(7’, 7,) # Err

Err, otherwise

(4.6)

If 7 is an implication type, then we recursively apply the match operator on
each conclusion in the implication and 7, to find a match that succeeds. This

match is then the matching type for the entire implication type.

implication-ret-delay / implication-ret
{r.<m,.n.<1}uC={r<m,.17<m}PuC
if |imatch(7,, [71, ..., 7,,]).conclusions| > 1

AVE € [Ln]mpy € a; Afry > n(rj ¢ as AT, < 7))

{rn.<m,. .7 <7 }UC=>{rn=m,0<7u, ., &« < Tgp, 7, < 71,..7, < T, JUC

if imatch(7,, [71, ..., ™)) = [a < To1 = Ty ooy @ < T — T

95



AVEk € [1n]7’k ¢ a; N ﬂTj > n.(Tj ¢ a; \NT, < Tj)

If we encounter an implication type 7,, then apply imatch on 7, and all of
its non-variable successors to choose valid implications of 7, based on these
successors. Recall that in an implication type of the form < (a < 741) —
Teioy (0 < Taiz) = Teia, ... >1, the hypotheses are o < 741, @ < Ty, ..., and the
conclusions are Tgs9, Tsig, ... Since our goal is to resolve the implication type
to a single simple type, we ensure that the valid implications share the same
conclusion. At the end, we generate a constraint that the implication type is
equivalent to the conclusion of the chosen valid implications. In addition, the

hypothesis of each valid implication becomes an actual constraint.

We now describe the process of imatch. First, we divide the successors into two
groups, structure successors and non-structure successors. Then we combine

valid implications from each group and check for inconsistencies.

We define imatch struct(7,, struct_lst) to select a list of implications from 7,
whose returns match the list of structural types. This means that the conclu-
sions of the implications have the structural type methods as instance methods.

Formally, we write

imatch_struct({impy, impa, ..\  [my : yma s ymy, 1)) =
{imp | imp € {impy,imps, ...} A{my,mso,...,m,} € 7.}
where

imp=(a<T7,) =7 A
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impr = (@ < Tgi1) = Teiz, impa = (a0 < Tgi3) = Tsia, -

One important point to note is that there are some Ruby methods that are
defined on all conventional classes, such as dup. Such methods are unhelpful
in the above implication selection because all classes would match. Thus,
we elimate structural types with these methods before applying imatch_struct.
Next, we define imatch_other to select a list of implications from 7, that match

a list of non-structural types. Formally, we write

imatch_other((impy, impo, ...), [11, T2, ..., Tn]) =
{imp | imp € {impy,imps, ...} A7 € [11, T2, ..., Tn|} Where
imp=(a<T1,) =7 A

impr = (@ < Tgi1) = Teiz, impa = (@ < Tgi3) = Tsia, -

In other words, we select implications whose returns are elements of the non-
structural type list. (In the above equation, we use 7, € [1,T2,...,T,] to
indicate that 7, is either equivalent to an element in the non-structural type

list, or 7, is a subtype of a union type in the list.)

Finally, we define imatch to get the combined result of imatch struct and
imatch_other. We use ms to represent the result of match_struct(7,, slst), where
slst is the list of structural types from 7,’s successors, and we use mo to repre-
sent the result of match_other(7,, olst), where olst is the list of non-structural

types from 7,’s successors.
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Err ms =mo =)
Err ms # O Amo# O AmsNmo=1[
imatch(7,, lst) = ¢ (4.7)

Delay if |(ms N mo).conclusions| > 1

msNmo if |(ms N mo).conclusions| =1

\
Furthermore, we define imp; N impy, where tmp; and imps are sets of impli-

cations.
.

imps imp; = 0
mpr Nimpy =

impy impy = ()

tmpy; A impy  otherwise

\
In the two cases of imatch, we report an error if both imatch_struct and
imatch_other are unable to find valid implications, or both find implications
but their intersection is empty. In the third case, we find implications with
multiple conclusions. If ms and mo are both non-empty, then the valid impli-
cations is the intersection of the two. Since our goal is to select implications
that share the same conclusion, we delay this this implication type as we may
later have constraints on the type. In the last case, we have exactly one con-
clusion in the chosen implications. This is the case where generate constraints

based on the valid implications.

Similar to the trans-struct-3 rule, there may never be any new constraint on the

delayed type. If the number of delays on the type exceeds the threshold, then
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we set the implication type to a union type whose elements are the conclusions

of the implication type.

implication-arg / implication-arg-delay
{r(«Vv>)rtul = {rn(<Vv>)rPucC

7, = (0 <Ta1 = Tty ooy @ < T = Ty oy & < Ty = Ton)! Asol(a@) = L

{n(&v>2)rtulC = {r,=7,7n(<V>)T}UC
f7, =(0 <7a = 71,0 < Toj = Ty, @ < Tan = Tyn)! Asol(a) =

/ !
T NT < Ty

This is also a rule where we select a list of valid implications from the implica-
tion type 7,. However, this selection is only based on the type of the argument
a in the implication type’s hypotheses. We invoke the solution extraction
phase on « to get its current solution. If we are unable to obtain a solution
because of the lack of constraints, then we delay resolving the implication
type. Otherwise, we simply select a valid solution from 7, where the subtyping

hypothesis holds, and set it equivalent to the implication type.

4.3.3 Standard Solution Extraction

During solution extraction, we read off the solution to each variable according
to the standard solution extraction algorithm in Figure 4.8. We first define the

predecessors of a variable to be all of its subtypes that are not type variables,
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preds(a) = V7.7 < a AT ¢ {a;, 7, Tp}
succs(o) = Vra <7 AT & {0y, 7,7y}

def read_sol («)

if ot
sol = pred_sol (&)
elsif o~
sol = succ_sol (@)
elsif o™~
if preds(a) =0
sol = succ_sol(«)
elsif succs(a) =0
sol = pred_sol(«)
else
sol = merge_to_intersection ( succ_sol («), pred_sol(«))
end
end
return sol
end

def pred_sol («)
sol = L1
preds(«).each {|p| merge_to_union(sol, p) }
return sol

end

def succ_sol («)
sol =T
succs(«).each {|s| merge_to_intersection (sol, s) }
return sol

end

Figure 4.8: Standard Solution Extraction
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1 def merge_to_union(a, b)
2 return a if a ==b

3 match(a, b) with

4 (L, ))=b

5 (T, )= a

6 (CKZ', ,) =b

7 (bn_.-)=0D

8 (., ) =auUb

9 end

10 end

Figure 4.9: Merge to Union

implication types and possible types. Then, successors are defined similarly, but for
supertypes. In read_sol, we obtain the final solution of each type variable. if « is
positive, or a return type, then we merge L with all of its precessors to a union. On
the other hand, if « is negative, or an argument type, then we merge T with all of
its successors to intersection.

However, if a « is both positive and negative, or a field variable, then the
process becomes a little more complicated. If o has no predecessors, we merge its
successors to intersection. If o has no successors, then we merge its predecessors
to union. Finally, if o has predecessors and successors, then we merge its successor
solution and predecessor solution into an intersection.

The details of merging two types into a union are shown in Figure 4.9, and
the rules are self-explanatory.

On the other hand, merging types to an intersection is more complicated. We
first show merge_to_intersection in Figure 4.10. Many of the rules are self-explanatory,
and we will just point out the key ideas. On line 9, merging two distinct classes into

intersection results in nil. Finally, line 11 shows a case where a class does not have
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1 def merge_to_intersection (a, b)

2 match(a, b) with

3 (L, )=a

4 (T,)=0b

5 (E oy, ,) = b

6 ([m1 P Tal — Trl], [mg T2 — 7’,«2]) = [m1 P Tal — Trl, M2 Tg2 — 7'7«2]
7 (bU-=,)=b

8 (c Ud, ) = merge_to_intersection(c, b) U merge_to_intersection(d, b)
9 (A, B) = nil

10 (A, [m:7p1 = 71]) = aifme 4

11 (A, [m:7p1 > 71]) = Errifm¢ A

12 (., -) =anb

13 end

Figure 4.10: Merge to Intersection

the structural type method defined on it. This is the only case where an error may
occur.

Note that the solution extraction algorithm does not perform variable substi-
tutions. Thus, a solution may contain variables, i.e. v = [id: () — «]. To make the
solutions easier to read, we apply an additional solution simplication step the results.
During solution simplification, we recursively take the resolved types that contain

no variables and substitute these variables with their solutions in the dependent

types.

4.3.4 Practical Constraint Resolution

We define the following constraint resolution rules to aim at inferring practi-
cal types that are concise and resemble manual annotations. Practical constraint
resolution includes all standard resolution rules, except n-nil is replaced with n-err.

We show the rest of practical constraint resolution rules in Figure 4.11
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(n-err)
{a <A a<B}UC

(g-g-v-)

{Cki < A<T1>,O£7 < A<7'2>} ucC
(g-g-v+)

{A(n) < at Aln) <at,mp =n}UC
(n-s-v-)

{a” <707 SAYUC
(param-read)

{params;; <[] : (k2) = v2}UC
(param-write)

{params;; <[[] =: (k2,v2) = v3} UC
(struct-to-nominal)

{a= <761y0a” <715} UC

(struct-cmp)
{a" <m:7, =7 ]} UC

(struct-include)

Err
ifAﬁBﬂBﬁA

{0[7 < A<7'1>,T1 < T2, T2 < 7'1} ucC

{A(r) <at 1 <M, <7 }UC

{a” <A A<a ,A<7}UC

{paramsklikQ - UQ} U C

{params;; o = v3,v3 < w3} UC

{a= = mc (mc([7s1, .-y Tsn), preds(a)) } U C

if |mc([7s1, ..o, Tsn )], preds(a)| =1V 2

N({a™ <7} eCom ¢ {Te1,..; Ten}).T € {a, 70, T}
{a” <71g,a” <[m:7, = 7]} UC
ifme{==4}A1. #nllAT, & a; A7 € ;

ABla= <[m' 7. = 1]} e C.
(m' e {==#} Alm’ : 7., > 7] £ [m: 7y = 7])

{Array(r) < [include? : a = 7]} UC = {a <7, Array(r) < [include? : « — 7]} UC

Figure 4.11: Practical Constraint Resolution Rules

n-err {a <A a<B}UC=Erif ALBNBLA

Error if a variable has two distinct classes as successors, unless A is a subtype

of B, or B is a subtype of A.

g-g-v- {a” < A(n),a” <A} UC = {a <A(n),n <m,n<ntUulC

If a negative variable is a subtype of two generic types that have the same

base, then assume the parameters are equal. Also keep one of the original

constraints.

g-g-v+ {Aln) <ot Alm) <atm <mm<niul =

{Aln) <at,m <mn<ntul

If two generic types with the same base are subtypes the same positive variable

and the parameters are equivalent, then remove the first constraint between
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the generic type and the type variable.

n-s-v- {a~ <715,a” <AYUC = {a <A A<a ,AL<7,}UC
If a negative variable has a structural successor and a class successor, then
assume 1) the negative variable is equivalent to the class, and 2) the class is a

subtype of the structural type.

param-read {params;; < [[] : (k2) = vo} UC = {params,; ;, = v2} UC
We rename each Rails params hash access of the form params[key]| to a special
type variable params_: key in order to avoid using finite hash types. In this
resolution rule, we generate constraints to support the inference of double

param hash types through hash reads.

Consider params[:kl], a generic type that is represented as type variable
params_:kl in our system. During the constraint generation phase, a hash read
on params[:k1][:k2] generates the constraint

params_kl < [ []: (k2) — v2], where v2 represents the return type of the read.
In this case, we convert params[:k1][:k2] to a new special variable params_k1_:k2
and set it equivalent to v2. This constraint simply indicates that the variable
representing the result of the hash read is equivalent to the actual result of

the hash read.

Finally, we remove the original constraint connecting the params variable to

the structura type.

param-write {params,; < [[| =: (k2,v2) — v3} U C = {params,y ;o = v3,v3 <
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’Ug} ucC
Similiar to above rule, this rule generates constraints to support the inference
of double params hash types. However, in this rule we generate constraints

based on hash writes.

Consider params[:k1][:k2] = v2, where we generate the constraint

params_kl <[ []=: (k2, v2) — v3) ], where v3 is the return of the method call.
In this case, we set the special type variable params_:k1l_:k2 to v3. Moreover,
we assume v2 is a subtype of v3. Again, we also remove the original constraint

connecting the param type variable to the structural type.

struct-to-nominal {a~ <7y,...,a <7} UC =
{a= = md(mc([7s1, -, Ten), Preds(a)) } U C
if |mc([7s1, .-, Ton)], preds(a)| = 1V 2
NH{a <71} eC 17 ¢{Ta,.... Tsn}). T € {a;, 7., 7}
If the successors of a negative variable include only structural types, type
variables, and possible types, then convert the structural types into actual

classes if applicable.

We obtain the list of actual matching classes with two steps. First, we obtain
the list of actual classes by applying mcy on all structural type successors to
gather all actual classes that have the structural type methods defined, or
formally

mco([my : ,my: ,...,my]) = cls_lst

where VA € cls_Ist.{mj, my,...,m,} € A.
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Furthermore, we ignore the actual method types because it is sufficient to

search for matching classes based on the method names alone in our apps.

In the second step, we apply mc on the above result with type variable a in

an attempt to reduce the number of matching classes.

(

[Model], if Model € cls_lst
[Array(7,)], Array € cls st A

structs(suces(a)) = [each:() {7, — 7.} — ]
mc’(cls_st, o) =
[params(k’,v'], V[m : | € structs(succs(a)).m € meths(Hash)

params(k, v) € preds(«)

cls_lst, otherwise

\

In the first three cases, we reduce the number of matching classes.

1. This case is Rails specific, where Model represents an actual Rails model
class. As long the original matching class list contains Model, we elimi-

nate all other classes.

2. If 1) the original matching classes include Array and 2) the only structural
successor is the specified structural type, then keep Array as the only
matching class. The reason behind this is that although there are a large
set of classes with each defined, normally each is associated with Array,

especially if there is only one block parameter. Furthermore, we set the
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block parameter 7, in the structural type as the Array paramter, based

on the annotated type of Array#each.

3. This is another Rails specific case. If all structural successor methods
of o are defined on Hash and params(k,v) is a predecessor of «, then

include params(k’,v") as the only matching class.
We find these rules very useful in practice, as they can often elminate a large
number of classes that are irrelevant to the ideal inferred types.

Finally, we define the conversion operation mc to convert the matching classes

to proper types, if applicable.

.

A, if cls_lst = {A}

me(clslst) =4 AUB,  if clslst = {A, B} (4.10)

undefined, if |cls_lst| > 2
\

In other words, we only convert a negative variable’s structural successors if
the final number of actual matching classes is 1 or 2. We find that usually
there are either 1 or 2 matching classes, or a very large number of matching
classes that are impractical to convert. One example of too many matching
classes is [ to_s: () — String ]. Almost every Ruby class meets this structural

type requirement, thus it is only practical to keep the type as is.

struct-cmp {o= <[m:7, - 7|} UC = {a” <71, <[m:7, > 7,|]}UC

ifme{==#4} A1, #nilAT, ¢ ,; AT, € ;;
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Apla= <[m': 7. — 7]} € C.

(m' e{==,4} Alm' : 7, > 7/] # [m: 7, = 7,])

This is a special rule based on the name of the method call. For conventional
classes, the argument of a comparison method could have any type. However,
if type variable o~ is a subtype of a structural type with a comparison method
(== or |=), then usually « has the same type as the method’s argument. We
add a constraint from o~ to the method argument if the following conditions
are met: 1) the argument is not a type variable or nil. 2) the return is a type

variable. 3) o~ has only one comparison method successor.

struct-include {Array(r) < [include? : o« — 7,|} UC =
{a < 7, Array(r) < [include? : o« — 7,]}UC
This is also a special rule based on the method name. Although the argument
to Array#include? could be any type, this argument usually has the same type
as the Array parameter. If the argument is a type variable, we add a constraint

from the argument to the Array parameter.

4.3.5 Practical Solution Extraction

Figure 4.12 shows the practical solution extraction algorithm. This algorithm
builds on the standard solution extraction algorithm and adds support for extract-
ing solutions from the opposite sides. The changes are highlighted in pred_sol and
succ_sol. In pred_sol, o is normally a positive variable and thus we extract its so-

lutions from the predecessors. However, in case it has no predecessors but has
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successors, then we extract its solution by merging its successors to intersection.
Then, succ_sol is updated in a similar way, except if negative variable o has no
successors, then we merge its predecessors to union. These modifications may help
us to find solutions that are more specific and constrained, but resemble manual
annotations.

In practical solution extraction, merge_to_union and merge_to_intersection are
defined the same as in standard solution extraction, with one exception. In stan-
dard solution extraction, intersection merges A and B to nil. In practical solution
extraction, this merge results in error.

Finally, recall that in standard type inference, we perform a solution simplifi-
cation step after solution extraction to substitute variables with their solutions. In
practical type inference, we also perform this solution substitution step after solu-
tion extraction. In addition, we simplify union types of the form A U [foo: ...] to

just A if foo is defined on A.

4.4 TImplementation

Our type inference system is implemented purely in Ruby and piggybacks on
a newer version Hummingbird that includes support for static type checking. This
newer version no longer relies on OCaml and the Ruby Intermediate Language (RIL).
Instead, we use Ruby’s Parser gem to parse Ruby programs into abstract syntax
trees. We next discuss the major challenges of implementing the type inference

system.
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preds(a) = V7.7 < a AT & {a;, 7, Ty}
succs(a) = Vra <7 AT ¢ {4, 70,7}

def read_sol («)

if ot
sol = pred_sol(«)
elsif a~
sol = succ_sol(«)
elsif o™~
if preds(a) =10
sol = succ_sol(«)
elsif succs(a) =0
sol = pred_sol ()
else
sol = merge_to_intersection ( succ_sol («), pred_sol(«))
end
end
return sol
end

def pred_sol («)
if preds(a) = () and succs(av) # 0
sol = succ_sol(a)
else
sol = L
preds(a).each {|p| sol = merge_to_union(sol, p) }
end
return sol
end

def succ_sol («)
if succs(a)= 0 and preds(a) # 0
sol = pred_sol(«)
else
sol =T
succs(a).each {|s| sol = merge_to_intersection (sol, s) }
end
return sol
end

Figure 4.12: Practical Solution Extraction
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Variable renaming. In the inference type system, we must be able to uniquely
identify variable names. Thus, we rename all argument and return variable names
to include their corresponding classes and method names. In addition, we uniquely
rename type parameters based on their source locations. Further, if the annotated
type of a method is an intersection type with shared type parameter variables, then

we rename the variables in each arm to uniquely identify them.

Special params hashes. Our system supports the inference of key-value pairs
of Rails specific params hashes. In Rails, there is one params hash associated with
each web request, and there is generally one params associated with each method.
Although our type checker implementation already provides the finite hash type, it
complicates the inference process. Thus, during constraint generation, we track hash
reads and writes through methods :[] and :[]= and use special variable renaming to
avoid using finite hashes. Since we infer one params type per controller method, we
create a special variable for each params key access, where this variable is identified
by its class, method, and key.

For example, in foo(params[:name]), we set the call params[:name] to special
variable ¢d_params_iname, where id identifies the class and method. Then, the only
constraint that we generate is that this variable is a subtype of foo’s argument. In
our test apps, params are accessed directly with keys that are symbols, so we are
able to immediatey use the key names in variable names. In Rails, a session hash is
used to save data across multiple requests. We also use a similar technique to infer

Rail’s session hashes, except we infer one session hash per Rails app.
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Struct-include rule. Recall that we introduced the struct-include practical con-
straint resolution rule in Section 4.3.4. This rule states that if Array(7) is a subtype
of [include?: (ov — ...) ], then «v is a subtype of 7. We listed this feature as a practical
type inference rule for demonstration purposes. However, this is a special rule where
the new constraint is instead added during constraint generation. The reason is that
during constraint generation, if an actual class is a subtype of a structural type, then
we can already look up the annotated type of the method in the structural type, so
we do not keep Array(r) < [include?: (v — ...) ] after the type annotation lookup.

However, we do add a < 7 immediately after the type lookup.

Dependent Rails controller methods. Recall that in a Rails controller class,
params and fields are generally not shared across methods. One exception to this
is that params and fields are shared between a method and its callees. Thus, we
combine params and fields between these methods in the implementation. We also

find that this feature helps us to infer much better types in some cases.

4.5 Evaluation

We evaluated standard type inference and practical type inference by applying
them to three of the Ruby apps used in Hummingbird’s evaluation: Talks, Pubs,
and Credit Card Transactions (CCT), where Talks and Pubs are Rails apps. In this
experiment, we inferred all method types that were statically type-checked with
Hummingbird. In addition, we inferred all fields types, and Rails-specific params

and session key-value pairs. We also assumed that type annotations existed on the
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rest of the methods. At the end, we compared the inferred types to the previously
manually annotated types.
Before discussing the results, we first point out the new type assumptions in

our type inference system.

1) Method-based Rails controller fields and params. In Hummingbird, we made
a simplifying assumption that like all normal classes, each field is shared by all
methods within a controller class. Thus, we assumed that every field is tied to
the class that defined it. Although almost all fields in different methods within
the same controller class have same type in our Rails apps, each controller call
gets a fresh set of fields. Similarly, in Hummingbird, we assumed that there
is a single params hash per Rails apps, and annotated a single params hash
with key-value pairs for the entire app. However, there are also generally no
relationships between params in different controller methods, even though the
vast majority of the params keys do have the same value types in our apps. In
the current experiment, we instead infer fields and params based on controller
methods, not classes, with the exception of the callees of a method. In our
Rails app, there is a small number of controller methods with dependent meth-
ods in the same class. We combine fields and params types in such methods

during type inference.

2) More precise types for params. In Hummingibrd, there was no direct sup-
port for finite hashes, and it was not possible to write down types that resem-

bled nested finited hashes. Thus, params key-value pairs were annotated as an
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100
101
102
108
104

intersection of the hash access method [], separated by keys, e.g.,

class Params
type :[], '(‘keyl) — v1’
type ], '(‘key2) — v2'
type ], '(:key3) — v3’

Thus, a few params key-value pairs were imprecisely annotated. For example,
in Talks, there is a nested params hash params|:talk][:start_time], and :start_time
is not a top-level key in params. Since there was no nested finite hash support,
we annotated :start_time as another top-level key of the intersection, which in-
correctly makes parmas|[:start_time] valid. To rectify this issue in the current ex-
periment, we infer finite hash types as well as nested hash types during type in-
ference. As we have discussed earlier in the chapter, each params key access is
represented with a special variable whose name includes the params key as well
the method id m. For example, the inferred type of params|:talk][:start_time]

is represented with params_m_:talk_:start_time.

3) Numeric hierarchy. Both our Hummingbird and type inference experiments

were conducted with older versions Ruby. These versions of Ruby come with
a Numeric hierarchy. For example, both Fixnum and Bignum are subclasses of
Numeric. There are some numeric hierarchy differences between some of our
inferred types and the annotated types. For example, there is one case where
we inferred Fixnum as Fixnum U Bignum. However, this numeric hierarchy
has been eliminated in newer versions of Ruby. Thus, we do not distinguish

between different number classes when recording statistics in our experiments.
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4) Tuples. Tuples are used in the current experiment, but were not in Humming-
bird. For example, one of the inferred types is Array([List, Symbol]), which
is the best type for the variable. But this variable was previously annotated
as Array(Array(List U Symbol)), which then required type casts for the type

checker to pass.

5) Initialize methods. We now infer argument types of object creation methods,
or initialize methods, which were not annotated in Hummingbird. Note that
we do not infer return types of intialize methods as they are not explicited

used.

To have a fair comparison between the previously annotated types and the
inferred types, we assume that the annotated types have been adjusted to meet the

above changes in type inference.

4.5.1 Overall Results

Overall, we find the practical type inference system very effective compared to
standard type inference. The number of inferred types that are at least as good as
the previously manually types are 98%, 94%, and 83%, respectively, even without
full access to the application code in the last two apps. On the other hand, the
corresponding numbers are only 67%, 70%, and 63% with standard type inference.

Table 4.2 summarizes the overall results of applying both standard and prac-
tical inference compared to the manually annotated types in Hummingbird.

The “Total” column lists the total number of types we have inferred, including
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App | Total | Match Struct | Partial | None Other
CCT | 58 57 / 39 -/ 14 |-/ -/5 1/-
Pubs | 124 117 /87 [4/30 [3/5 -/2 -/-
Talks | 349 200 /219 | 12 /45|12 /12 | 23 /67 12 /6

Total = # types inferred

Match = # types at least as good as annotated

Struct = # struct types

Partial = # types with incomplete info

None = # types with no useful info

Other = # types that do not fit in the previous categories

Table 4.2: Practical vs. standard inference results.
(practical on left, standard on right, separately by /)

argument types, return types, fields, and params and session types. For params and
session types, we count each key-value pair as one type. In our Rails apps, there is
a very small number of empty methods and Rails controller methods with no valid
routes; these methods are ignored.

For all columns except the “total” column, we show two counts separated by
/, for practical type inference and standard type inference, respectively.

Then, the “match” column lists the number of inferred types that either match
the annotated types exactly or are better than the annotated types. During type
comparisons between the inferred types and the annotated types, we found a small
number of incorrectly annotated types. In these cases, we consider the inferred
types better than their annotated types. These incorrect type annotations were not
caught by our type checker because the correct return types are subtypes of the
incorrectly annotated return types.

The “struct” column includes actual classes that are inferred as structural

types, including generic types with one or more structural type parameters.
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The “partial” column lists the number of types that provide imcomplete infor-
mation, including possible types, implication types, and generic types with incom-
plete parameter information, e.g., Array(User) inferred as Array(_L).

Next, the “none” column lists the number of types that we were unable to
infer, which includes T and L for types that should have been more precise.

Finally, the “other” columns lists the number of types that do not fit in the
previous categories. We will provide details on the “other” types found in our apps
when we discuss the the results on each application.

We now discuss the inference results on each of our apps in detail.

CCT. We begin by discussing the results of practical inference. In this app,
approximately 98% of the types from practical inference are at least as good as the
annotated types. In fact, the inferred types reveal five incorrect annotations caused
by two mistakes.

First, consider the type of ©file in CSV.foreach(@file, col_sep: SEPARATOR).
We annnotated @file as File, which appears correct. However, the type of @file should
match the annotated type of the first argument of CSV.foreach. This annotated type
is actually a broader type File U String, which matches the inferred type.

The next case is a slightly complicated. Consider the simplified version of
a method in the app. In this method, we know that the annotated type of @in-
structions is Array(Hash(:a U :t, String)). We also know that the return type of the
whole method is an Array whose elements have the type of the last statement in the

method’s block. During manual annotation, we mistakenly assumed that if the last
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def filter_transactions
Qinstructions .map do |x|
type = x|[:t]
x if type != ADD
end.compact
end

S v A W v =

statetment does not execute, then the type of the element is then the type of the
previous statement in the block, or the type of type = x[:t]. This means that the
type of each Array element is the union of the two statements in the block. Since
the type of x[:t] is String, we incorrectly annotated the return type of the method
as Array(Hash(:a U :t, String) U String ). On the other hand, we correctly infer this
type as Array(Hash(:a U :t, String)).

In this app, there are no “struct”, “partial” or “none” type matches. But there
is one type that does not fit in any of the previous categories. Consider another

simplified set of methods in our app in Figure 4.13.

1 |def parse

3 | CSV.foreach(©file, col_sep: SEPARATOR) do [r|
4 . = to_downcase(r)

5| end

6 ,

7 |end

8

9

def to_downcase(row)
row.map! { |x| x.to_s.downcase }
end

NN N
N ~ O

;;;rse 0

~
Lo

Figure 4.13: CCT Methods.

During type inference, we first infer Array(String) as the type of r, based on
the annotation of CSV.foreach. Then, to infer the type of to_downcase’s argument
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row, we normally consider its successors. In this case, the only successor is the
structural type with map!, but too many actual classes have map! as an instance
method. Recall that in practical type inference, one goal is to eliminate structural
types when approriate, and practical inference allows us to instead consider row’s
predecessors in this case, or r. Thus, we infer row as Array(String), which appears
correct. In fact, we examined all library files in the app and there are no other types
passed to row because all calls to to_down are invoked from parse. However, during
manual type annotations, we assumed that to_downcase can be called directly, and
we annotated the type of row as Array(Fixnum U String). This is because each
element of row can also be a Fixnum for to_downcase to run. In fact, there is a unit
test in the app that directly calls to_downcase with an array of numbers and the test
runs correctly. This suggests that occasionally inferring types from the opposite
direction is not ideal.

We now discuss the overall standard inference results. The number of “matches”
from standard type inference is only about 67% of that from practical inference. This
is mostly because there is a large number of method arguments that are inferred as
structural types. In standard inference, we have some “None” types, which includes
T for a few arguments and fields, and L for a few returns. These T’s are the results
of ignoring types on the opposite directions of the constraints when types on the
normal sides have no useful information. The return types are L because the last
statements in the methods are calls from structural type callers, and we were unable
to look up annotated types from non-actual classes.

Finally, recall that we found one “other” type in practical type inference where
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we inferred Array(Fixnum U String) as Array(String). In standard inference, this
number is 0 in because we inferred the same negative variable by considering its

successors, which is the type below

1 [ map!: () {([ toss: () — String ]) — String} — Array<String> ]

This is a type that has already been accounted for as an “struct” type. Al-

though this type is correct, it is harder to understand than one or two actual classes.

Pubs. Pubs is a Rails app, which means that the list of total types includes params
key-value pairs. In our Rails apps, params keys almost always appear as symbols,
and we rely on these symbols to generate special variables that specify key names
during constraint generation and inference. In this app, there are 13 params key-
values pairs where the keys directly appear as symbols. Then there is one controller

method where keys are not used as symbols.

def update
if params[:new_tag] ...
params.keys.each { |k|
next unless k =~ /“tag_(.x)/
t = Tag.find($1)

QLD G A L

end

In this method, params appears only in the first two lines of the method. The
first line tells us that :new_tag is a params key. On the second line, we iterate through
the params keys and compare each key with a regular expression. If the key is of the
form :tag ¢, where ¢ is an integer, then the method extracts the value of ¢ and feeds

it to Tag.find. This suggests that the method’s params has an unknown number

120



of keys, ex. :tag.l, :tag 2, :tag 3, .... In fact, RDL currently has no support for
representing a type with variable keys that meet certain conditions. Thus, we count
:new_tag as the only valid key in both inference and type annotations.

[44

Again, we begin by discussing the results of practical inference. The “match”
column shows that the vast majority of all types inferred are at least as good as the
annotated types. In this app, we also discovered types that had been incorrectly

annotated.

First, consider the method below.

1| def self. fix_periods (out)
2 while (out =" /\.\./)
3 out.sub!("..", ".")

4 end

5| end

In this example, we incorrectly annotated the method’s return as String. We
mistakenly assumed that the method’s last statement is the last statement inside
the while loop, which evaluates to String. However, the actual last statement is
the entire while statement, which always evaluates to nil in Ruby, and matches its
inferred type.

Now consider

def self .empty(s)
return s ==nil || s ==
3 |end

In this method, we inferred s as String. We also examined the app and found
no other types used as the method’s argument. However, we previously annotated
s as Object. Based on the method alone, it appears that Object is the right type.
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However, this is a Rails app where we do not expect the programmer to call this
model helper method directly. In fact, we only expect this method to be invoked
through methods that pass String to it.

Next, the “struct” types in this app include structural types and generic types
with structural parameters. For example, there are a few cases where the annotated
type of a params is:
params_:paper_:month = String,
params_:paper_month_other = String,
params_:paper_tag_list = Array(String),
and params_:paper_:tags = Array(Tag),
meaning that params has one top level key :paper, and its value is another params
hash with keys :month, :month_other, :tag_list, and :tags. In this case, we infer the
values of :month, :month_other, and :tag exactly as the annotated types. However,

we infer a structural type for :tag_list,

[ split: (String) — [ map: () {([ strip: () - L]) =L} —
2 | [ each: () {(String) — Array<Tag> or String} — L1 ]]]

because there are too many actual classes that match this structural type.
The “Partial” column shows that there are three types with incomplete infor-
mation.

First, consider the type of @tag_name.

def publications
@tag_name = :all

end

] WY~
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In this method, @tag_name appears only once and it is obvious that this type
is :all. However, we annotated it as Symbol.

Now consider

type :Paper, :self.find, '(Fixnum or String) — Paper’
type :Paper, :self.find, '(Array<Fixnum or String>) —Array<Paper>'

def bibtex

@paper = Paper.find(params][:id])

render :layout = false, :content_type = "text/plain”
end

SRS SRS N N VO SR

In this method, we infer “partial” types on both @paper and params[:id]. We
infer that the type of params[:id] is a possible type that is either Fixnum U String
or Array(Fixnum U String), based on the annotated intersection type of Paper.find.
We are unable to choose the valid type from the list of possible types because there
is not enough information on the variable. As a result, we infer that @paper is an
implication type
params[:id] < Fixnum U String — Paper
params[:id] < Array(Fixnum U String) — Array(Paper).

We now discuss the standard inference results. In this app, only about 70%
of types inferred using the standard approach are at least as good as the annotated
types, compared to approximately 94% with the practical approach. Like CCT,
there is also a large number types that are inferred as structural types, and the
majority of these types are argument types.

The “partial”types from standard inference includes two additional types not
included in the practical inference. One of these types is a possible type, and the

123



other is a params type where we were unable to infer key-value pairs because the
constraint resolution rule on inferring nested hashes is not available in standard
inference.

The “none” column includes two types in the method below.

def adjust(p)
if p[:paper]|[: month] == "other" then
p[: paper ][: month] = ...
end

p[: paper][: tags] = tags
end

QLD G A G

Unlike practical inference, we are unable to resolve the method argument p
to an actual special hash type params. In fact, in standard inference, we infer p as
[]: (:paper) — L, which also means that we were unable to look up the annotated
type of [] in the last statement, which resolves the return type to nil. Morever, with
practical inference, we were able to infer the type of p[:paper] as another params
with key-value pairs for :month and :tags. Again, since p is inferred as a structural

type with standard inference, we also infer the key-value pair of p[:paper] as L.

Talks. The “total” column shows that Talks is a much larger app than the previous
two apps. Like pubs, there are three controller methods where the params keys are
compared against regular expressions. Again, since it is not possible to precisely
represent these keys, we do not include such key-value pairs in our statistics. Despite
this, we still include 69 key-value params pairs in the total number of types.

Again, we start the discussion with the practical inference results.

The “match” column shows that approximately 83% of the inferred are at least
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good as the annotated types, which is a lower percentage than the previous two apps.
The main reason is that in this app, we do not have access to the full application
code. As a Rails application, Talks contains a set of embedded Ruby templating
(ERB) files in addition to the regular Ruby files. We do not currently support
extracting information from ERB files, as it can be very complicated to process

such files. For example, the embedded code indicates that @owners < Q@users. But it

<%= render :partial = "shared/ expanding_list ",
2 | :locals = { :name ="owner", : current_elts = Q@owners, : all_elts = Qusers,

is very difficult to extract this constraint as it involves reasoning behind :current_elts
and :all_elts, which are used with certain web form helper methods in complicated
code.

The inferred types in this app also revealed a few incorrect annotations. First,
there is a simple method with just one statement: return false. It is obvious that
this return type is False, but we annotated it as True U False. Note that in Ruby,
true and false belong to different classes.

Second, we incorrectly annotated a method’s return type, mostly likely due to
a simple typo. The last statement in the method is a method call that clearly returns
only String, which matches its inferred type. However, we incorrectly annotated this
type as String U Array(String).

We now describe an incorrect annotation on a more complicated method.

In this case, we incorrectly annotated the return of this method as Hash(Talk,
Symbol), but the Hash value can be more than just Symbol. Notice that there are
two places where we assign types to this value, s.kind and :kind_subscriber_through.
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1 |def subscribed talks (range, filter = [: kind_subscriber , :kind_watcher, ....)
2 | talks = {}

3 subscriptionns .where (...). map {|s|

4 t = Talk.find(s. subscribable_id )

5 talks [t] = s.kind if filter .member?(s.kind)
6| }

7

8 | 1.talks.each {|t|

9 talks [t] = : kind_subscriber_through

0| }

11 return talks

12 |end

It is obvious that we assign a Symbol to the value in the second case. Now, in the
first use, the type of s.kind is the type of Subscription#kind. We mistakenly assumed
that the type of s.kind is Symbol, because in the first code block, we test to see if it
is a member of the default argument filter, which includes only Symbols. However,
we failed to consider the type of Subscription#kind in the database schema, which
indicates that that it also be a String. During type inference, we correctly infer
Symbol U String for this type.

Next, the “struct” column shows 12 out of the 349 total types inferred are
structural types. Again, we were unable to convert these structural types to actual
classes because each one of the structural types has a large number of matching
classes. However, we have examined the ERB files and expect these files to provide
additional constraints on all 12 variables to help us reduce the number of structural
types.

In this app, we also have a list of “partial” and “none” types, where “partial”
includes generic types that includes | parameters, possible types, and implication

types, and “none” again includes just T and L. For both classes of types, we also
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expect the ERB files to provide additional constraints on these types to improve the
preciseness on the majority of these types, including both inferring actual classes,
generic types with actual class parameters, and structural types. For example,

consider

def send_admin_message(u, h)
©@message = h[:message]
mail :to = "#{u.name} <#{u.email}>",
:subject = h|[: subject],
:from = " Talks <talks@cs.umd.edu>"
end

+# ERB
<%= @message.sanitize %>

R R N T S

Consider the type of @message. There are no useful constraints on this variable
in the regular ruby files, thus its inferred type is T. We could use the ERB file to
infer that @message is a structrual type with sanitize defined on it. But we cannot
currently convert this structrual type to an actual class, as there are 19 classes whose
instance methods inlude santize.

The list of “none” types also includes one argument type used in string inter-
polation. Our parser does not currently detect string interpolations.

Finally, the “other” column shows a list of 12 types. Some of these types
are caused by an a structural to nominal conversion, where the structural type is
[ email: () — _, name: () — _]. There are two actual classes that match these
types: Registration and User. Recall that the structural to nominal rule is applied if
one or two classes match. Again, the reason behind this rule is that based on our

apps, each structural type either matches one class, two classes, or a much larger
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number of classes. The union type we inferred would not actually raise exceptions
at run-time. On the other hand, we expect only User used as this structural type,
which is also its previously annoated type.

Another “other” case is on the result the Ruby && operation. Consider

def watcher?(user)

s = subscription (user)

return s && (s.kind == :kind_watcher)
end

D VIR SRS

The annotated return type of this method is true U false. During type inference,
we know that s is Subscription, if not nil. In Ruby, Object && Bool evaluates to the
value of Bool. However, there is a limitation in the type checker that evaluates the
last method in the statement to the type of s.

The rest of the “other” types come from this method

1 | def fix_range (p)

2 p[:range] = :current unless p[:range]
3 p[:range] = p[:range].to_sym

4| end

In this method, we infer that the method’s argument is a params with just
one key :range and the return type is :current, which appear correct if we consider
this method application alone. However, we did not incorprate type constraints
passed to p from other controllers, which includes params with more key-value pairs.
Recall that we use constraints on an argument from the reversed direction only if
the argument’s successors are all structural types or if there are no sucessors, which
does not apply in this case.

Finally, our standard inference results show that like the previous two apps, the
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App | Total | Match | -SN | -Meth | -Rev
CCT | 58 57 57 o7 55
Pubs | 124 117 101 | 108 117
Talks | 349 290 246 | 271 281

-SN = matches w/o structural-to-class conversion
-Meth = matches w/o struct-cmp rule
-Rev = matches w/o reversed solution extraction

Table 4.3: Practical Inference Features

number of “Match” types is much smaller than that with practical inference, because
standard inference infers more “struct”, “partial”, and “none” types. The number
of “other” types is much smaller than the corresponding number from practical
inference. This is because although the structural to nominal conversion in practical
inference is generally very helpful, it may ocassionally introduce errors, as mentioned
in the Registration U User case. By keeping structrual types as is, we have reduced

the number of “other” types.

4.5.2 Importance of Key Practical Inference Features

In this subsection, we discuss the importance of the key practial inference
features.

Table 4.3 reports the practical inference results from removing three key fea-
tures. The “total” and “match” columns are copied from the overall results table.
Again, the “total” column shows the total number of types inferred, and the “match”
count is the number of inferred types that either match the annotated types or are
better than the annotated types. For the rest of the columns, we report the to-

tal number of matches after removing each of the three key features. The “-SN”
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column shows the number of matches after the structuralvtype-to-actual class con-
version rule has been removed from constraint resolution. The “-Meth” column
reports the number of matches after the method name based constraint resolution
rule of struct-cmp has been removed. The “-Rev” count reports the number of
matches after the reversed solution extraction feature has been eliminated.

We found these features generally very helpful with increasing the number of
matches in the Rails apps. However, these key features have minimal effect on CCT

as many of its matches rely on the generic type parameter assignment rules.

CCT. The “-SN” column shows that removing the structural type to actual class
conversion rule did not actually change the number of matches. Although this
conversion rule would have converted a few structural types to actual classes, we
achieved the same results on their dependent variables through the normal transi-
tivity rule (trans) and reversed solution extaction. In addition, the “-Meth” column
also shows no change in the number of matches. The “-Rev” count shows a decrease
of 2 matches after the reversed solution extraction has been eliminated. All 2 types

are arguments that result in T.

Pubs. The “-SN” column shows that removing this conversion rule eliminated 16
matches, all of which resulted in structural types instead of actual classes.

The “-Meth” column shows that the number of matches decreased by 9 after
we removed the struct-cmp rule. In addition, this test also reveals a case where

struct-cmp fails to infer the right type. Recall that the struct-cmp rule states that if
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a variable is a subtype of a structural type with methods such as ==, then the type
of the variable is the type of the argument to ==, which is the most likely case. We
now revisit Figure 4.4, where struct-cmp rule infers that the type of the argument
is String, which appeared to be the right type. After we removed the struct-cmp
rule, the argument became String U Fixnum through the normal transitivity rule.
We then verified that there are in fact calls to this method from Fixnums, and the
later inferred type is correct. In addition, we found that out of the 55 calls to empty,
51 have String arguments, and 4 have Fixnum arguments.

Finally, although there is no change in the number of matches in the “-Rev”
count, there are 3 types that are more precise compared to the original types with
reversed solution extraction. For example, before removing the reversed solution
feature, one of the inferred types is split: (String) — [ map: () ([ strip: () — L ])
— L — [each: () (String) — Array(Tag) U String — L ] ] ]. After the removal of
this feature, this type becomes [ split: (String) — L ]. Although the former type

is very complicated to understand, it does contain more information than the later

type.

Talks. The “-SN” count includes a few interesting cases. First, recall that in
the overall evaluation results section (Section 4.5.1), we showed a case where we
converted a structural type to Registration and User, even though the only expected
actual class is User. Interestingly, after removing the structural type to actual class
conversion rule, we were able to correctly infer User as opposed to Registration U

User as the type of variables. These correct types were generated from reversed
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1 # Array is parameterized by u

2 type :Array, :[], '(Fixnum) —u’

3 type :Array, :[], '(Range<Fixnum>) —Array<u>'
4

5 def organize_talks (talks)

6 h = Hash.new

7 h[:past] = []

8 h[: later_this_.week | = []

9 (0..6). each { |wday| h[: later_this_week ][wday] =[] }
10

11 talks .each {|t|

12 if t.start_time < the_past

13 h[: past] <t

14 elsif later_this_week .cover? t. start_time

15 h[: later_this.week ][t. start_time .wday] <t
16 else

17 .

18 end

19

20 h[:past].sort! { |a,b| a.start_time <=> b.start_time }
21 .

22 end

Figure 4.14: Talks method

solution extraction and the solution simplification rule that simplifies a type of the

form A U [foo: ...] to A if foo is an instance method of A.

Another interesting case is that deleting the structural type-to-actual class

conversion rule caused a type error with the method shown in Figure 4.14. First,

suppose that this conversion rule still exists in the inference system. In the block

of talks.each, the conversion rule sets t to Talk because Talk is the only class with

start_time as an instance method. Then on line 20, we know that each element of

h[:past] is t or Talk, and thus a and b both have type Talk. Now consider the case

where the conversion rule is removed. On line 15, the type of h[:later_this_week] is

Array from the initialization on line 8. We now explain how we fail to resolve the
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type of h[:later_this_week][t.start_time.wday]. To infer this type, we look up the type
annotation of Array#[], which is the intersection type shown on lines 2 and 3. But
we are unable to choose the appropriate type from this intersection type because we
do not know the actual class of t, and thus the type of t.start_time.wday is unknown.
In this case, our inference system delays solving for the argument t.start_time.wday
in hopes of getting future constraints on this variable. Unfortunately, this is a case
where it is not possible to gather future constraints to resolve the argument to an
actual class. Our type inference system then converts the annotated intersection
type to a single regular method type whose argument is the union of the arguments
in the intersection type, and the return type is the union of the returns in the
intersection, or Fixnum U Range(Fixnum) — u U Array(u). This means that each
element t of h[:later_this_week][t.start_time.wday] is u U Array(u). Let t be Array(u),
since we append t to h[:past] on line 13, each element of h[:past] can also be Array(u).
But this means that on line 20, both a and b can be Array(u). This is a type error
on a.start_time because Array does not have start_time defined on it.

Other than the above cases, removing the structural type to actual class con-
version rule causes a large decrease in the number of matches. In most of the
non-match cases, the new types are either structural types instead of actual classes
or | instead of actual classes.

The “-Meth” count shows a decrease of 19 matches after the struct-cmp rule
has been removed. The new results include more structural types as well as new
L’s.

Finally, the “-Rev” count shows a decrease of 9 matches after the removal of
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App | Orig | Std Type Inf | Prac Type Inf | Std Or Ratio | Prac Or Ratio
CCT | 0.62s | 2.19s 7.31s 3.53x 11.79x

Pubs | 2.96s | 8.08s 15.19s 2.73 % 5.13x

Talks | 57.47s | 82.30s 115.21s 1.43 % 2.00x

Table 4.4: Type Inference Running Time

the reversed solution extraction feature, where the new types are either structural

types or L as opposed to the original actual classes.

4.5.3 Efficiency

Table 4.4 reports the overhead of running standard and practical type inference
with the apps. The “Orig” column shows the running time without type inference.
The “Std Type Inf” and “Prac Type Inf” columns report the running time with
standard and practical type inference, respectively. The “Std Or Ratio” and “Prac
Or Ratio” columns list the ratio of standard type inference running time and the
“orig” column, and the ratio of practical type inference running time and the “orig”
column, respectively. We found the ratios range from 2x to 11.79x for practical type
inference, and 1.43x to 3.53x for standard type infereence.

For CCT, we measured the running time of the app’s test suite. For Pubs and
Talks, we measured the running time of the controller test suite. For all apps, we
performed each measurement five times and took the arithmetic mean. Investigating
further, we found that if the struct-to-nominal constraint resolution rule is removed
from practical inference, then the runninng time becomes very similar to that of

standard inference for all apps. This rule often iterates through a very large set of
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classes to select classes that match the structural types, and we expect performance
can be improved with further engineering effort. Overall, the practical type inference
overhead is much better than Rubydust [1], a run-time type inference system for

Ruby.

4.6 Related Work

Many researchers have investigated type inference for Ruby. The closest work
to ours is DRuby [8], a purely static type inference system for Ruby. Our type
inference system is based on the DRuby type system, which includes features such
as union, intersection, generic, and structural types. However, DRuby lacks ad-
vanced features such as implication types, possible types, delay operations, and the
practical constraint resolution and solution extraction rules. In addition, unlike our
flow-insensitive type inference system, DRuby includes a parser [22] that renames
local variables to model their flow sensitivity. Subsequent work on type inference
for Ruby include PRuby [7], DRails [25], and RubyDust [1]. PRuby is a profile-
guided extension to DRuby that analyzes Ruby’s highly dynamic constructs. To
use PRuby, the programmer first runs the program to record the dynamic behavior,
such as methods passed to send and strings passed to eval. These profiled strings
are then used with DRuby to analyze the program. DRails extends DRuby to bring
type inference to Rails. DRails statically analyzes the program and converts Rails
implicit calls to explicit Ruby code. The modified code is then type checked by

DRuby. RubyDust is a flow-sensitive type inference system based on dynamic ex-
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ecutions. In RubyDust, each run-time value is wrapped with a type variable, and
wrappers generate constraints when the wrapped values are used. RubyDust infers
sound types as long as all paths are observed at run-time. Furthermore, the Ruby-
Dust experiments show a signficantly higher performance overhead than our type
inference system. In RubyDust, the ratios between the solving time and the original
running time range from 17x to over 1000x. DRuby and RubyDust share similar
typing features and algorithms for constraint solving.

There have also been efforts in bringing static type systems to other dynamic
languages. Palsberg et al [50] present a type inference system for a SmallTalk-like
language. In this system, types are sets of classes, and subtyping is set inclusion. The
system constructs a set of conditional type constraints and computes the solution
by least fixed-point derivation. Although the type system is simple, it also performs
actual class lookups based on method calls, like our struct-to-nominal rule in the
practical inference system. However, the reason for this lookup in the set-based
system is the lack of structural types. In addition, our struct-to-nominal rule has
more advanced features such as reducing the number of matching classes. This
paper also points out that there is no actual implementation of this set-based type
inference system. Oxhoj et al [49] subsequently present an improvement of this set-
based type system, mainly to support collection classes such as List from expanding
inheritance. For example, a list of integers is defined as IntList, a subclass of List.
The method definitions in List are duplicated in IntList. In our system, this integer
list is represented as a generic type List(Int).

Agesen [51] proposes the cartesian product algorithm, a set-based type in-
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ference algorithm that analyzes each send with multiple sets of argument types
separately. For each send, the algorithm first computes the cartesian product of the
receiver and the arguments, and then analyzes each tuple in the product separately.

The method below is a simplified version of an example taken from Agesen’s paper.

def mod(self, arg)

x = div(self, arg)

Gr AN L N =

end

In this method, div is an integer division method that fails on floats. The paper
assumes self and arg are both {Int, Float}, and thus the cartesian product is {(Int,
Int), (Int, Float), (Float, Int), (Float, Float)}. The algorithm infers that self and arg
can only be (Int, Int) because all other tuples fail on div. While this result is precise,
it is unclear whether the assumption of having Float as the type of the receiver or
argument may indicate a type error elsewhere in the program. In addition, this
system does not include intersection types and does not infer types that resemble
intersection types. The result of each send is simply the union of all results from
the separate tuples. Although our type inference system includes logic to choose a
single type from an intersection type annotation, we also do not currently support
the inference of intersection types. Madsen et al [52] subsequently present Ecstatic,
a type inference system for Ruby based on the cartesian product algorithm. In
Ecstatic, types are again sets of classes, and Ecstatic does not support many types

of code blocks. Moreover, the test applications used with Ecstatic only depend on
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Ruby core and standard libraries.

Ancona et al [15] present RPython, a subset of python that is statically typed
and can be compiled for the CLI and JVM platforms. The Translation Toolchain
in RPython performs static type inference. This inference tool appears to have a
limited type language. For example, RPython forbids a method to return different
types on different branches. On the other hand, RPython provides some metapro-
gramming support through a separate initial, load time phase, during which highly
dynamic features may be used. After this phase, RPython performs type inference
and no longer allows dynamic modifications of classes and methods. Aycock [4]
presents aggressive type inference for Python. He performs experiments to show
that in Python programs, only a small percentage of variables have flow sensitivity,
and dynamic features are rarely used. Thus, he makes an aggressive but simplify-
ing assumption that variables maintain a constant type in Python programs, which
makes static type inference possible without features such as union types. Salib [10]
proposes StarKiller, a static type inference system and compiler for Python. The
algorithm is based on the cartesian product algorithm, and handles data and param-
eteric polymorphism. In addition, Starkiller handles foreign code interactions with
programmer provided descriptions. The system does not handle dynamic features.

Hackett et al [54] present a hybrid type inference approach that combines
unsound static type inference with dynamic checks for JavaScript. The dynamic
checks account for special cases such as numeric overflow and undefined values from
out of bounds array access, which may adjust type assumptions. In contrast, our

type inference system does not consider these special cases, and such errors lead to
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runtime exceptions. Cartwright et al [53] propose soft typing for an ML language.
During type inference, the system also automatically inserts explicit runtime checks
on “suspect” type errors. The key idea is that possibly ill-typed programs may still
execute. On the other hand, our type inference system does not insert any runtime
checks, and the statically inferred types are final. If our type inference system fails
to unify types during static analysis, then the system reports an exception and halts
execution.

Heintze [56] describes a type inference system where program variables are sets
of values. In this system, types include unions, intersections, as well as projections,
complementations and quantifications. However, the system ignores inter-variable
dependencies of the form x = a iff y = b for simplicity. The paper shows that the set
constraints can be described with regular grammars, and computing the least model
of the constraints is decidable. Although our type system does not consider inter-
variable dependencies from conditionals, we do consider inter-variable dependencies
based on intersection type annotations, which are necessary for some of our apps to
type check.

Aiken et al [55] present another soft typing system that performs ML style type
inference. The most novel feature of this system is conditional types, which are used
to model precise control flow. The result of a case statement only includes the types
of reachable branches. Since types are sets in this system, a branch is considered
reachable if the intersection type of the case variable and the set of all values that
match the branch guard is non-empty. Although our type inference system does not
model such control flow, we use implication types in conjuction with possible types
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to select reachable arms from intersection types.

Thiemann [13] presents a type system that tracks type convertibility for a
subset of JavaScript. The system does not consider features such as polymoprhism,
and there is no implementation of the system. Anderson et al [3] introduce a type
inference system for a subset of JavaScript. The system models runtime modifica-
tions of objects through assignments to members of the object. However, Ruby does
not support such modifications.

Finally, Tobin-Hochstadt et al [44] present a type system for Scheme that uses
propostional logic to infer more precise types based on the branch guards. Our type
inferencce system uses implication and possible types to infer more precise types
by selecting a single type from an intersection type annotation. However, we do
not currently consider conditional predicates prior to the ocurrence of the types.
Guo et al [48] propose a system that infers abstract types based on the interactions
between types. Although Guo et al’s system has only been applied to C and Java
programs, the ideas could be applied to dynamic languages as well. In this system,
an abstract type is a group of program variables that interact in the program. The
system assumes that the two operands of a comparison operator interact and belong
to the same abstract type. This idea is similar to our method-name based constraint
resolution rule struct-cmp, where we may add subtyping constraints between the

receiver type and the argument type of a comparison method call.
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Chapter 5: Conclusion and Future Directions

In this dissertation, I presented several pieces of work showing how we could
bring some benefits of static types to dynamic languages.

First, I described the Ruby Type Checker (rtc), is a purely dynamic tool that
adds type checking to Ruby. Rtc type checks values at method entrance and exit,
which is later than a purely static system, but earlier than a traditional dynamic
type system. Rtc supports type annotations on classes, methods, and objects. In
addition, rtc includes union and intersection types, higherorder (block) types, and
parametric polymorphism among other features. Furthermore, programmers can
control where type checking occurs to reduce runtime overhead.

Next, while rtc is effective in type checking, it has trouble dealing with metapro-
gramming, which generates code as the program executes. Thus, I developed Hum-
mingbird, a run-time static type checking tool that type checks Ruby code even in
the presence of metaprogramming. In Hummingbird, type annotations execute at
run-time, including type annotations created by arbitrarily complex metaprogram-
ming. When a method is called, Hummingbird statically type checks its body in the
current dynamic type environment. Moreover, Hummingbird uses a caching system

to reduce performance overhead.
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Finally, to reduce the burden of manual annotations required with rtc and
Hummingbird, I presented a practical type inference system. The main goal of
this system is to infer types that are concise, meaning the types are precise enough
to cover all expected classes while appearing as short as possible. In addition, our
practical inference system provides better support on intersection and generic types.
The inference system gathers constraints on a method’s body as soon as it is called
at run-time. After all constraints have been gathered, the inference system uses a set
of advanced constraint resolution rules and an unconventional solution extraction
algorithm to infer types. We applied our practical type inference approach to three
apps and have shown it to be very successful, even without access to the full app

code.

High Level Results and Conclusions Throughout the dissertation I studied
how to bring the benefits of static typing to dynamic languages. 1 presented three
tools for Ruby, including a dynamic type checker, a just-in-time static type checker,
and a practical type inference system. I applied all three tools to various Ruby
programs and obtained promising results. I conclude that these specialized type
systems effectively increase the type safety of Ruby programs with static typing
features. In addition, the ideas of these type systems can be ported to other dynamic

languages.

Future Work Rtc, Hummingbird, and the practical type inference system have

several limitations we plan to address in future work.
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More method name-based constraint resolution rules. In this dissertation,
we introduced some method named-based constraint resolution rules, including
rules on comparison methods, hash access methods, and methods such as

include?. We plan to add more varieties of method-based rules.

Eliminating unlikely classes that match structural types. We found the
structural-to-actual class conversion to be very helpful in practical type infer-
ence. However, we encountered many structural types with too many actual
class matches during evalution, especially with the Talks apps, where we did
not have access to the full code. We plan to develop a set of special rules to
help us eliminate matching classes that are highly unlikely to be the expected
actual classes. For example, we could simply eliminate matching classes that

are not defined in the application and the Ruby core library.

Backtracking support on intersection types. The type inferencce system cur-
rently use possible types, intersection types and delay operations to help us
resolve intersection types to a single type. Alternatively, we could subsume
all three features by developing a backtracking system to resolve intersection
types. In particular, whenever we are unable to choose the right arm of an
intersection type, set it to one of the types and continue with the inference
as unsual. If we encounter a type error, then backtrack and choose another
arm of the intersection type. In theory, it may be difficult to design such
a backtracking system efficiently as a variable may rely on many intersection

types where each intersection type has many arms. However, in practice, most
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1 case v

2 when Fixnum
3 x = A.new
4 when String

5 x = B.new
6 else

7 x = C.new
8 end

variables appear to have no intersection type dependencies, and variables with
such dependencies tend to depend on only one intersection type. Furthermore,
intersection type annotations could be rewritten to so that the arms are listed

from the most common case to the least common case.

Intermediate variable inference elimination. The sequencing of type inference
rule states that the type of a sequence of statements is the type of the last
statement. This suggests that we can eliminate the inference of certain in-
termediate types. However, we may not catch certain type errors with this

elimination.

The Not type. We plan to infer more precise types by introducing the Not type
into our system. A Not type represents the guard’s type in the else branch of
a case or if statement For example, in the else branch below, we know that v is
not a Fixnum or String. In addition, the Not type can be used in conjunction
with implication types. We know that one implication for x is v # {Fixnum,

String} — C.

Intersection type inference. Although our inference type system can extract in-

formation from intersection type annotations during inference, we do not sup-
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port the inference of method types that are intersection types. We plan to

add this feature in the future.

Inference with incomplete set of annotations. Recall that our type inference
system assumes that we have existing type annotations on the dependent meth-
ods. In the future, we plan to test the effectiveness of practical type inference
with incomplete sets of dependent method annotations, as well as develop-
ing new techniques to infer practical types with partial dependent method

annotations.

User study. We plan to conduct a user study to evaluate the understandability of

the inferred types.

A richer type language. Although the current type language supports many cat-
egories of types, it is still not expressive enough to represent some types. Recall
that it is not possible to write down a type for Array#flatten, wich returns a
new array in which arbitrary depth nestings of the array have been removed

from the caller. We plan to enrich our type system to support such types.

Runtime types with static types Recall that in the practical type inference sys-
tem, we do not consider runtime types during static analysis. We plan to
explore the benefits of incorporating runtime values into static analysis. For
example, if we cannot resolve a type during inference, then we could use its
runtime type. In addition, we can also use runtime values to catch type errors

if the inferred types do not cover all expected classes.
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Chapter A: Appendix

This chapter contains the full definitions and proofs for the formalism in chap-
ter 3.

We show soundness by first showing preservation and progress. As is typical,
the hardest part of the proof is preservation, which shows that an expression’s type
is preserved under a step in the dynamic semantics. To make the theorem work, we
also need to reason about preserving key properties about the typing environment,
run-time stack, and cache. Here is the statement of the theorem, which we explain

in detail next:
Theorem 2 (Preservation). If
(1) (X,TT,DT,E,e,S) — (X', TT',DT', E',¢', §")
(2) TT + (T,e) = (I',7)
(3) T< TS
(4) T~E
(5) TT+ TS ~ S
(6) X ~ (TT,DT)
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Then there exist A, N', TS’ 7' such that

(a) TT' F (A €)= (A7)

(b) T < TS’

(c) If S =8" then A’ <T"'

(d) A~ E

(e) TT' + TS ~ &

(f) X' ~(TT',DT")

Let’s step through the assumptions and conclusions of the theorem. (1) and
(2) are standard—they assume that e takes a step and is well-typed, respectively.
The corresponding conclusion (a) states that €’ is also well-typed.

(4) assumes the type and dynamic environments are consistent—meaning val-
ues in £ have the corresponding types in I'—and conclusion (d) states that they are

still consistent after reduction. Formally:

Definition 3 (Environment consistency). Type environment I' is consistent with
dynamic environment E, written I' ~ E, if dom(I') C dom(E) and for all x €

dom(I") there exists T such that -+ (I, E(z)) = (I',7) and 7 < I'(x).

Notice this definition allows £ to include some variables that are not bound
in I". This is necessary to handle (TIf), which discards any variables from the type

environment that are bound in one arm of the conditional but not the other.
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Next, (3) and (5) concern the type of e and the stack. The goal of preservation
is to show e’s type is preserved, but consider (EApp*) and (ERet). These rules both
push and pop the stack and change the expression being evaluated—hence e’ could
potentially have an entirely different type than e.

Our solution is to introduce the notion of a type stack TS to mirror the run-
time stack. To understand how the type stack works, suppose we want to apply
preservation to Cv;.m(v)], i.e., we are about to call a method. The typing judg-
ment is 77T F (I, Clvy.m(ve)) = (I, 7). In the dynamic semantics, the (EApp*)
rules will push the current environment £ and the context C' on the stack. Corre-
spondingly, we will push the current typing judgment onto the type stack—at least
the key pieces of it. More specifically, we push an element of the form (I'[7], (I, 7')),
where I and I are the initial and final environments of the current typing judgment;
C' is the context; and 7 is the type of expression vi.m(vs), i.e., the type that the
method must return.

Given this mechanism, the key invariant to maintain is that the type of the

expression is compatible with what the calling functions expects. We define:

Definition 4 (Stack subtyping). 7 < (I'[7], (I, 7)) == TS if 10 < 7.

Then (3) assumes that the type of e is a subtype of the type expected by
the calling function. (At the top-level, we initialize the type stack with a frame
that expects whatever the top-level type is.) (b) states that the type of €’ is also
a subtype of the type expected by its calling function. Thus, if the stack does not

change, this means that e’ and e have the same type (up to subtyping). If the stack
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does change, then we still maintain the invariant.

Of course, we need this invariant to hold no matter how many pushes and pops
happen. Thus, rather than only talk about the top element of the type stack, we
need to ensure that all elements of the type stack are consistent with all elements

of the dynamic stack. Formally:

Definition 5 (Stack consistency). Type stack element

(C[7], (I, 7")) is consistent with dynamic stack element (E,C), written

TTF (D[], {17, 7)) ~ (E,C), if ' ~ E and TT + (I'[0 — 7],C) = (I",7'). (Here
we abuse notation and treat O as if it’s a variable.)

Type stack TS is consistent with dynamic stack S, written TT = TS ~ S, is

defined inductively as
1. TThF -~
2. TT + (D[r), (I, 7)) = TS ~ (B,C) == S if
(a) (L[7],{I", 7)) ~ (E,C)
(b) TS ~ §
(c) 7 < TS if TS # -

Thus, (5) assumes the type and dynamic stacks are consistent, and (e) con-
cludes they remain consistent after taking a step.
Next, (c) relates the output environment of ¢’ with the output environment of

e.There are two cases. If the stack did not change (the antecedent of the conclusion
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is true), then the output environment of ¢’ should be compatible with IV. Again

because of (TIf), we need to allow the environment to shrink:

Definition 6 (Type environment subsumption). We write 'y < T'y if dom(T'y) C

dom(I'y) and for all x € dom(T's), it is the case that T'y(z) < ['y(x).

If the stack does change, then the output environment is irrelevant: It either is
captured in the type stack if this is a push due to a method call. Or it is discarded as
the stack frame is popped when a method returns. Hence in this case the antecedent
of (c) is false, and the conclusion is trivial.

Finally, we need to reason about the cache. As we saw earlier, the key cache
invariant to preserve is that all the derivations stored in the cache hold and apply

to the premethod stored in DT and the type stored in T7T. Formally:

Definition 7 (Cache consistency). We say that cache X is consistent with type
class table TT and dynamic class table DT, written X ~ (TT,DT), if for all
Am € dom(X) where X(A.m) = (Dy, D<), with Dy = (TT + ([x +— 7, self —
Al,e) = (I,7)) and D< = (1 < 7o), it is the case that Dy and D< hold and

DT(Am) = Xx.e and TT(A.m) =1 — 7.

Thus, (6) assumes the cache is consistent, and (f) concludes the new cache is
also consistent.

To show preservation, we also need a few lemmas:

Lemma 1. For all Ty and T'y, it is the case that T'y < (I'y UTy).
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Lemma 2 (Contextual Substitution). If

TTF (T,e) = (I, 1)

TTF (T, Cle]) = (T4, 7¢)

then TT + To[0 — 7'],C) = T, 1¢).
Lemma 3 (Substitution). If

1. TT+ (AOw— 7¢],C) = (A, 1)

2. TTE (-0) = (-, 7)

3. m<71¢c
Then TT = (A, Clv]) = (A, 78) where T/ < 7.

Finally, we can prove preservation:

Proof. (Preservation) By induction on (X, TT, DT, E e, S) —
(X', TT', DT, E', ¢, §").

e Case (EContext). Notice that we cannot have S' # S, since the only cases
where that can happen is if (EApp) or (ERet) apply, and they cannot be used
as a hypothesis of (EContext). Thus the left-hand side of the implication (c)
is true, and we have A’ < I". Using this fact, the remainder of the proof is

routine.

e Case (ESelf). By assumption we have
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(1) (X, TT,DT, E,self, S) — (X, TT, DT, E, E(self), §) by (ESelf)

(2) TT + (T, self) = (I', I'(self)) by (TSelf)

(3) T'(self) < TS

) T ~E

(5) TT+ TS ~ S

(6) X ~ (TT,DT)

Let A =A"=T, and let TS" = TS. By (2) and (4) there exists 7/ such that
- (A, E(self)) = (A,7') and 7/ < A(self). Then (a) holds, since typing of
E(self) was by (TNil) or (TObject), which do not depend of the type class
table. Also, (b) holds since 7/ < A(self) = I'(self) < TS by (3). Also, the

right-hand side of the implication (c) holds trivially. Finally, (d) holds by (4),

(e) holds by (5), and (f) holds by (6).

e Case (EVar). Similar to (ESelf) case.

e Case (EAssn). By assumption we have

(1) (X, TT,DT,E,z =v,5) = (X, TT, DT, Elx — v],v,5)

(2)
TT + (T',v) = (T',7)

TTH T,z =v) = [z~ 7],7)
by (TAssn) and either (TNil) or (TObject)

(3) < TS
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4) I ~E
(5) TT+ TS ~ S

(6) X ~ (TT,DT)

Let A = A" =Tz — 7], let TS" = TS, and let 7 = 7. Notice that in
(2), the hypothesis can only be proven by either (TNil) or (TObject), both
of which are insensitive to the type environment. Thus, by the hypothesis
of (2), we also have TT + (A,v) = (A, 7), which is (a). Also, (b), (e),
and (f) hold trivially by (3), (5), and (6). Also, the right-hand side of the
implication (c) holds trivially. Finally, from (4) and the hypothesis of (2) we

have A =T'[z — 7] ~ E[x + v], which is (d).
e Case (ENew). Trivial.
e Case (ESeq). Trivial.
e Case (ElfTrue). By assumption we have

(1) (X, TT,DT, E,if v then e; else e, S) —
(X, TT,DT, E, e, S) where v # nil
(2)
TT = (I,v) = (I, 1)
TT <F,€1> = <F1,T1>

TT <F,62> = <F2,T2>

TT = (L,if v then e else ey) = (I'y U Ty, 7 L)
by (TIf) and (TObject), since v # nil
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(5) TT+ TS ~ §

(6) X ~ (TT,DT)

Let A =T, let A/ =T, let TS’ = TS, and let 7/ = 71. From the second
hypothesis of (2) we trivially have (a). Moreover, 7/ = 7 < 7 U 7, so by
(3) we have 7 < TS, which is (b). By (4), (5), and (6) we trivially have (d),
(e), and (f). Finally, by Lemma 1 we have A’ =T'; < (I'; UT';), which is the

right-hand side of the implication (c).
e Case (ElfFalse). Similar to (EIfTrue) case.
e Case (EDef). By assumption we have
(1) (X, TT,DT, E,def Aom = \x.e,S) —
(X\Am, TT,DT[A.m — Az.e|, E,nil, S) by (EDef)
(2) TT F(I',def Aom = Az.e) = (I, nil) by (TDef)
(3) nil < TS
) T ~E
(5) TTF TS ~ S
(6) X ~ (TT,DT)
Let A=A"=T,let TS' = TS, and let 7/ = nil. Then (a) holds trivially by

(TNil). (c) holds trivially by definition. (b), (d), and (e) hold trivially by (3),
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(4), and (5).
For (f), pick some B.m' € dom(X\A.m). Observe that B.m’ # A.m, by

construction. By (6), we have

L. Dy = (TT & ([y = 7y, self = B, e) = ([, 7,))
3. Dy and D< hold
4. DT(B.m') = \y.€/
5. TT(Bm/) =1, = T
We need to show the above with the same type class table and with dynamic

class table DT[A.m +— Az.e]. But then 1, 2, 3, and 5 are trivial, and since

B.m' # A.m we have (DT[A.m — Az.e])(B.m') = DT (B.m'), thus 4 is trivial.

e Case (EType). This case is very similar to (EDef), except the reduction in

the semantics is different. By assumption, we have

(1) (X, TT,DT, E,type Am : 7., S) —
(X\A.m)[TT'|, TT', DT, E,nil, S) where TT" = TT[Am — 7,], by
(EType)

(2) TT F (I, def Aom = Az.e) = (I, nil) by (TDef)

(3) nil < TS

4 I'~FE

(5) TTF TS ~ §
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(6) X ~ (TT,DT)

(a)—(d) hold by the same reasoning above. To see (e), observe that side con-
dition A.m & TApp(S) means that in the typing judgments internal to (5),
(TApp) is never applied with A.m. Hence those same judgments hold under

TT', which only differs from 7T in its binding or A.m.
Let X' = (X\A.m)[TT']. For (f), again pick some B.m’ € dom(X'). Observe

that B.m’ # A.m, by construction. By (6), we have

L. Dy = (TT & ([y = 7y, self = Bl e) = ([, 7,))
3. Dy and D< hold
4. DT(B.m') = \y.€/
5. TT(Bm/) =71, = T
We need to show the above, but in X’ and with type class table TT" and

the same dynamic class table. By construction, X'(B.m’') = (D), D<) where

Dy = (TT' = ([y = 7,,self = B, e) = (I, 7,)), which is 1 and 2. Notice by

construction that Dy, and D), cannot refer to A.m, thus we have 3. Finally,

4 holds trivially, and 5 holds since B.m' # A.m by construction.

Case (EAppMiss). The inductive cases are similar to (EContext). In the

non-inductive case, by assumption we have
(1) (X, TT,DT, E,C[[A]l.m(v2)],S) —
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(X[Am — (Dy, D<), TT, DT, [self — [Al,z — v e, (B,C) = )
where
(1a) DT(Am) = Av.e
(1b) TT(Am) =1 — 7
(1c) typeof(vy) <7
(1d) Dy = (TT F ([x — 71, self s A, €) = (I",73)) holds
(le) D< = (7} < 7) holds
(1f) Am ¢ dom(X)
(2)
TT F (T, [A]) = (T, A)
TT + (T,vy) = (T, 7)

TT(Am) =1 — 7 T<T

TT - (T, [A].m(vs)) = (I, )

TT & (Le, Cl[Al.m(va)]) = (e, 7¢)
by (TApp) and (TObject) and possible (TNil).
(3) ¢ < TS
(4) Te ~ Ec
(5) TT+ TS ~ §
(6) X ~ (TT,DT)
Let A = [z — 7,self = A], let A’ =17, let TS = (T¢[r), (Tp,70)) = TS,
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and let 7/ = 75. Then (a) holds immediately by (1d). (b) holds by (le) and
construction of T'S’. In this case the stack changes, so the left-hand side of
the implication (c) is false, hence (c) holds trivially. (d) holds because by
(TObject) we have [A] has type A, and by the second hypothesis of (2), which
is either (TObject) or (TNil), we have vy has type 7, and by the last hypothesis

of (2) we have 7 < 7.

Next we show (e). By (4) we have I'c ~ E, and by (2) and the Contextual
Substitution Lemma we have TT F (I'c[0 — n],C) = (I, 7¢). Thus we
have TT + (T¢[r), (T'p,17¢)) ~ (E,C). Further, by (3) we have 7o < TS.
Finally, by (5) we have TT + TS ~ §. Putting this all together, we have
TTF (Lefm), (T, me)) ~ (E,C) 2 TS ~ (E,C) :: S, which is (e).

Finally, to show (f), pick some element in the domain of X’ = X[A.m +—
(Dp, D<)]. If we pick some B.m' # A.m then all the necessary properties
hold by (6). If we pick A.m, then 1 and 2 hold by construction, 3 holds by

(1d) and (le), 4 holds by (1a), and 5 holds by (1b).

Case (EAppHit). This case follows mostly the same reasoning as above. The
inductive cases are similar to (EContext). In the non-inductive case, by as-

sumption we have
(1) (X. 7T, DT, B.Cl[A|m(w)]. 5) -
(X, TT,DT, [self — [A],z +— vy),e,(E,C) :: S) where
(la) DT(A.m) = Ax.e
(Ib) TT(Am) =1 — 7
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(1c) typeof(ve) <7
(1d) Am € dom(X)
(2)
TT = (T,[4]) = (T, A)
TT F (T, vg) = ([, 7)

TT(Am) =17 — 7 T<T

TT (T, [Alm(vg)) = (T, 72)

TT & (Te, CllAl.m(va)]) = (Te, 7¢)
by (TApp) and (TObject) and possible (TNil).
(3) @ < TS
(4) Te ~ Ee
(5) TT TS ~ S

(6) X ~ (TT,DT)

By (6), we have X(A.m) = (Dy, D<) where Dy = (TT F ([x — 7, self —

Al,e) = (I, 75)) holds and D< = (75 < 72) holds. Notice that we use prop-

erties 4 and 5 of the cache in combination with (1a) and (1b) to know the

assigned types in the cache, and the method body at run-time, match in the

cached derivation.

Let A = [z — 7,self = A], let A =T, let TS = (T¢[rl), Tp, 70)) =

and let 7/ = 7}. Then (a) holds immediately by Dj;. (b) holds by D< and
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construction of T'S".
The reasoning for (c¢)—(e) are the same as the (EAppMiss) case. Finally, (f)
holds trivially by (6), since the cache did not change.
e Case (ERet). We have
(1) (X,TT,DT,E",v,(E,C) :: §) —
(X, TT,DT,E,C[t],S)

(2) TT + (I",v) = (I",7) by either (TObject) or (TNil).

(3) T <7c

4) I’ ~ B

(5) TT + (Telrel], T, 16)) = TS ~ (E,C) = S

(6) X ~ (TT,DT)

Let A =T¢, let A’ =T, and let TS" = TS. By (5), we have TT - (A[0 —
7], C) = (A', 75). Putting that together with (2) and (3) via the substitution
lemma, we have T'T F (A, C[v]) = (A’, 7)) where 70, < 7(.. Let 7/ = 7/, and
we have (a). By (3) we have 7, < TS, and since 7 < 7/, we therefore have
(b) In this case the stack changes, so the left-hand side of the implication (c)

is false, hence (c) holds trivially. (d) holds by (5), as does (e). Finally, (f)

holds by (6)

The progress theorem is much simpler:
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Theorem 3 (Progress). If

(1) TT F(T'ye) = (I",7)

(2) < TS

(3) T ~E

(}) TT+ TS ~ §

(5) X ~ (TT,DT)

then one of the following holds

1. e is a value, or

2. There exist X', TT', DT', E', ¢/, S’ such that

(X,TT,DT,E,e,S) — (X', TT',DT', E', ¢, 8"}, or

3. (X, TT,DT,FE, e, S) — blame

Proof. By induction on e.

e Case e = nil or e = [A]. These are values, so the theorem holds trivially.

e Case self. By assumption (1) we have

TT b (T, self) = (I, T(self))

Thus, self € dom(I"). But then by (3), self € dom(E). Thus (ESelf) can be
applied.
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(Note that assuming we start executing the program in a standard environ-
ment, self will in fact always be bound in all type and dynamic environments,

unlike variables.)

Case z. Similar to self.

Case © = v, A.new, v;e, def A.m = (A\z.e), type A.m : 7,,. These cases are
trivial, as there is one semantics rule for each of these forms, and it will always

be able to take a step.

Case if v then ey else e5. This case is trivial, since either (EIfTrue) or (ElfFalse)

will apply.

Case vg.m(vy). By assumption (1) we have

TT + (T, vp) = (T'o, A)

TT + <F0,’Ul> = <F1,T>

TT(Am) =17 — 7 TST

TT = (T, v9.m(v1)) = (1, )

There are a few cases. If (EAppNil), (EAppNExist), or (EAppNTyp) apply,
then the theorem holds trivially. Otherwise, we must have v; = [A] and
DT(A.m) = Ax.e. More importantly, by (1) we have type_of(v;) < 7, since
T = type_of(v1) by (1), i.e., v; has the expected argument type. Also by (1)

we have TT(A.m) =1 — 7.
Now there are two cases. If A.m € dom(X) we can immediately apply (EAp-
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pHit). Otherwise, if A.m & dom(X), then we must have

Dy = (TT F ([x — 1p,self = A, e) = (I", 7))

holds and D< = (7 < 7») holds because (EAppNTyp) did not apply. But then

combining this with our previous assumptions we can apply (EAppMiss).

e Else e = C[¢’]. Holds by induction and (EContext).

Finally, we can put these together to prove soundness.

Theorem 4 (Soundness). If O F (0, e) = (I, 7) then either e reduces to a value, e

reduces to blame, or e does not terminate.

Proof. Let X =0, let TT =0,1let T =0, 1let £ =0,1let DT =0, let S = (0,0) :: -,
and let 'S = (@[], (D, 7)). Then by assumption we have TT + (T',e) = (I, 7). By
construction we have 7 < TS and I' ~ F and TT + TS ~ S and X ~ (TT,DT).
Thus, these choicesof X, TT, ', DT, S, and TS satisfy the preconditions of progress

and preservation. Thus soundness holds by standard arguments. O
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