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ABSTRACT

Title of dissertation: DYNAMIC SPECTRUM ACCESS IN
COGNITIVE RADIO NETWORKS

Thomas Charles Clancy III
Doctor of Philosophy, 2006

Dissertation directed by: Professor William Arbaugh
Department of Computer Science

Since the 1930’s, the Federal Communications Commission (FCC) has con-

trolled the radio frequency energy spectrum. They license segments to particular

users in particular geographic areas. A few, small, unlicensed bands were left open

for anyone to use as long as they followed certain power regulations. With the re-

cent boom in personal wireless technologies, these unlicensed bands have become

crowded with everything from wireless networks to digital cordless phones.

To combat the overcrowding, the FCC has been investigating new ways to

manage RF resources. The basic idea is to let people use licensed frequencies, pro-

vided they can guarantee interference perceived by the primary license holders will

be minimal. With advances in software and cognitive radio, practical ways of doing

this are on the horizon. In 2003 the FCC released a memorandum seeking comment

on the interference temperature model for controlling spectrum use. Analyzing the

viability of this model and developing a medium access protocol around it are the

main goals of this dissertation.
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A system implementing this model will measure the current interference tem-

perature before each transmission. It can then determine what bandwidth and power

it should use to achieve a desired capacity without violating an interference ceiling

called the interference temperature limit.

If a system consisting of interference sources, primary licensed users, and sec-

ondary unlicensed users is modeled stochastically, we can obtain some interesting

results. In particular, if impact to licensed users is defined by a fractional decrease

in coverage area, and this is held constant, the capacity achieved by secondary

users is directly proportional to the number of unlicensed nodes, and is actually

independent of the interference and primary users’ transmissions. Using the basic

ideas developed in the system analysis, Interference Temperature Multiple Access, a

physical and data-link layer implementing the interference temperature model, was

formulated, analyzed, and simulated.

Overall, the interference temperature model is a viable approach for dynamic

spectrum access, and ITMA is a concrete technique implementing it. With the help

of cognitive radios, we can reform spectrum policy and have significantly more room

to innovate, ushering in a new era of high-speed personal wireless communications.
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Chapter 1

Introduction

In 1934 the US Congress created the Federal Communications Commission

(FCC) to consolidate the regulation of interstate telecommunication and supercede

the existing Federal Radio Commission. Among its responsibilities is the man-

agement and licensing of electromagnetic spectrum within the United States and

its posessions. For example, it licenses very-high frequency (VHF) and ultra-high

frequency (UHF) broadcast television (TV) stations and enforces requirements on

interstation interference.

The 21st century has seen an explosion in personal wireless devices. From

mobile phones to wireless local area networks (WLAN), people want to be perpet-

ually networked no matter where they are. Services like mobile phone and global

positioning system (GPS) use frequencies licensed by the FCC, while others like

WLAN and Bluetooth use unlicensed bands.

The most popular unlicensed bands are the Industrial, Scientific, and Medical

(ISM) bands at 900 MHz, 2.4 GHz, and 5.8 GHz. While setting up a home wire-

less network to access your broadband Internet connection does not fall within the

original “ISM” definition, lack of general use of these bands prompted the FCC to

loosen restrictions. Within these frequency ranges, anyone can transmit at any time,

as long as their power does not exceed the band’s regulatory maximum. The end
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result is that the ISM bands are crowded. We now have cordless phones interfering

with home audio networks interfering with the uplink from your personal didigal

assistant (PDA) to your computer.

Twenty years ago, the FCC was primarily concerned with long-distance telecom-

munications. Managing spectrum resources typically involved guaranteeing minimal

interference levels between spectrum licensees, who included radio stations, broad-

cast television stations, and telecommunications providers. To accomplish this, they

manually survey each area and select power, frequency, and bandwidth parameters

for everyone that minimize overall interference.

Mitigating interference in this new wave of personal wireless devices is a much

more difficult problem. Certainly individually licensing every person’s home WiFi

network would help cut down on interference, but it would by no means be a scalable

solution. Rather than manual, static spectrum allocation, the FCC needs an auto-

matic, distributed, and dynamic approach to managing radio frequencies in order

to enable better spectrum sharing.

Such a scheme would define at least two classes of spectrum users. The first

would be primary users who already posess an FCC license to use a particular

frequency. The second would be secondary users consisting of unlicensed users.

Other classes could also be defined, prioritizing users’ access to the frequency band.

Primary users would always have full access to the spectrum when they need it.

Secondary users could use the spectrum when it would not interfere with the primary

user.

A motivating example is the current broadcast television frequency bands. Of
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the 68 channels, on average only 8 channels are used in any given TV market, or

roughly 12%. Were unlicensed devices allowed to coexist with broadcast television,

we would have an additional 350 MHz of prime spectrum real estate.

To this end, many approaches to dynamic spectrum allocation have been pro-

posed. In the mid-to-late 1990s, Satapathay and Peha at Carnegie Mellon did some

of the initial foundational work on spectrum sharing [27, 28, 29]. They showed

that from a queueing theory perspective, independent networks could achieve an

overall better capacity by cooperating. Examining the FCC-proposed “listen before

talk” approach, they showed such greedy algorithms could lead to very poor spec-

trum utilization, and developed a system that imposed artificial penalties on greedy

algorithms to keep them constrained.

Much research was conducted as a part of the Dynamic Radio for IP-Services

in Vehicular Environments (DRiVE) and Spectrum Efficient Uni and Multicast Ser-

vices over Dynamic multi-Radio Networks in Vehicular Environments (OverDRiVE)

projects starting in 2000. Their main concern was video content delivery to vehicles

[15, 22, 33]. The OverDRiVE architecture involves partitioning spectrum in space,

frequency, and time. Each Radio Access Network (RAN) would be allocated certain

blocks by a central authority in response to their predicted capacity needs.

Later, the CORVUS project at Stanford used similar ideas [4, 5]. They create

a channelized spectrum pool from unused licensed spectrum, and have algorithms

to allocate it efficiently.

Researchers at Rutgers [14, 24] have proposed schemes that use a “spectrum

server” to allocate resources. In addition to the standard allocation ideas, they’ve
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added a market model driven by resource pricing and utility functions.

OverDRIVE and CORVUS are centralized, requiring someone to decide who

should use which spectral resources at what time, while guaranteeing minimal inter-

ference to licensed devices. While achieving good results, current politics involved

in frequency licensing would make adopting such an approach unlikely. The need

for a central authority hampers feasible deployment.

More recently, research has begun on distributed techniques for dynamic spec-

trum allocation, where no central spectrum authority is required. Decentralized

approaches may be less efficient, but require much less cooperation. Game theoretic

aspects of this are studied in [21].

Of the decentralized approaches, some require control channel communication

between devices. They make local, independent decisions about how to best com-

municate, and use these low-bandwidth side channels to negotiate communications

paramters [16, 35]. An open question still exists though – what if your control

channel is overcome by interference? How do you negotiate a transition to a new

frequency?

Challapali, et al, assumes that licensed digital signals will likely have a periodic

pattern in how they transmit, and spectrum access opportunities can be predicted

and exploited [6].

This dissertation proposes an entirely new concept for dynamic spectrum allo-

cation. Our radio nodes treat licensed users, other unlicensed radio networks, other

unlicensed nodes within the same network, interference, and noise all as interference

affecting the signal-to-interference ratio (SIR). Higher interference yields lower SIR,
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which means lower capacity is achievable for a particular signal bandwidth. Radio

nodes search for gaps in frequency and time where the measured interference is low

enough to achieve communication at a target capacity, subject to an overall inter-

ference constraint. A major distinction is that all other proposed schemes avoid

licensed signals, while we try to coexist with them.

Chapter 2 covers background material, including an overview of cognitive radio

technology and an introduction to information theory. Chapter 3 describes the

Interference Temperature Model (ITM) and derives information theoretic bounds

on its performance. Chapter 4 details Interference Temperature Multiple Access

(ITMA), a medium access control scheme implementing the ITM. Chapter 5 extends

ITMA to support arbitrarily-shaped signal power spectrums in an effort to take

better advantage of the ITM. Chapter 6 concludes and discusses future work.
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Chapter 2

Foundations

This chapter covers basic background material. Its goal is to bring the average

reader up to speed on some of the history and analytical techniques that will be later

employed.

2.1 Cognitive Radio Evolution

Over the past 15 years, notions about radios have been evolving away from

pure hardware-based radios to radios that involve a combination of hardware and

software. In the early 1990s, Joseph Mitola introduced the idea of software defined

radios (SDRs) [17]. These radios typically have a radio frequency (RF) front end

with a software-controlled tuner. Baseband signals are passed into an analog-to-

digital converter. The quantized baseband is then demodulated in a reconfigurable

device such as a field-programmable gate array (FPGA), digital signal processor

(DSP), or commodity personal computer (PC). The reconfigurability of the modu-

lation scheme makes it a software-defined radio.

In his 2000 dissertation, Mitola took the SDR concept one step further, coining

the term cognitive radio (CR) [19]. CRs are essentially SDRs with artificial intelli-

gence, capable of sensing and reacting to their environment. Figure 2.1 graphically

contrasts traditional radio, software radio, and cognitive radio.
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Figure 2.1: Logical diagram contrasting traditional radio, software radio, and cog-
nitive radio

In the past few years, many different interpretations of the buzz word “cogni-

tive radio” have been developed. Some of the more extreme defintions might be, for

example, a military radio that can sense the urgency in the operator’s voice, and ad-

just QoS guarantees proportionally. Another example is a mobile phone that could

listen in on your conversations, and if you mentioned to a friend you were going to

hail a cab and ride across town, it would preemptively establish the necessary cell

tower handoffs [20].

Though more representative of Mitola’s original research direction, these inter-

pretations are a bit too futuristic for today’s technology. A more common definition

restricts the radio’s cognition to more practical sensory inputs that are aligned with

typical radio operation. A radio may be able to sense the current spectral environ-

ment, and have some memory of past transmitted and received packets along with
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Figure 2.2: Functional portions of a cognitive radio, representing reasoning and
learning capabilities

their power, bandwidth, and modulation. From all this, it can make better deci-

sions about how to best optimize for some overall goal. Possible goals could include

achieving an optimal network capacity, minimizing interference to other signals, or

providing robust security or jamming protection.

Another contentious difference in interpretation has to do with drawing the

line between SDR and CR. Often times, frequency agile SDRs with some level of

intelligence are called CRs. However, others believe that SDRs are just a tool in

a larger CR infrastructure. Remote computers can analyze SDR performance and

reprogram them on the fly. For example, this remote intelligence could decide none of

the SDRs’ modulation schemes are sufficient for their current environment. It could

create a new scheme on the fly, generate hardware description language (HDL) and

new FPGA loads, and reload them over the network to add this new functionality.
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Figure 2.2 shows functional components of a more concrete cognitive radio ar-

chitecture. The SDR is accessed via a CR application programming interface (API)

that allows the CR engine to configure the radio, and sense its environment. The

policy-based reasoning engine takes facts from the knowledge base and information

from the environment to form judgements about RF spectrum accessing opportu-

nities. In addition to a simple policy-based engine, a learning engine observes the

radio’s behavior and resulting performance, and adjusts facts in the knowledge base

used to form judgements.

A fundamental problem with a system like this is its complexity. Can the

proposed learning and reasoning be done in near real time, to keep up with an ever

changing RF environment? Can we come up with a simple set of metrics that can

perform well without being overly computationally complex? This research aims

to identify such metrics and control algorithms for implementing them. We do not

overly delve into the artificial intelligence aspects of how reasoning and learning

can be done in a generalized way, but apply basic principles to the metrics and

algorithms we implement.

Seeing the advances in smart radio technology, the FCC began researching

ways in which CRs could use licensed bands, provided they didn’t interfere with

existing licensees. A motion to allow operations to operate was recently approved

and adopted by the FCC [11], and allows cognitive radios to operate in certain

frequency bands. The FCC also proposed the interference temperature model [10],

the instantiation of which is the subject of much of this dissertation.
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2.2 Information Theory Primer

Information theory is a field that began development in the late 1940s as a

result of Claude Shannon’s research into communication systems. He proved fun-

damental limits on achievable data rates in digital communications systems. Since

its inceptions, however, the basic concepts of information theory have diffused into

many unrelated research fields [9, 30].

The fundamental building block of information theory is entropy, which mea-

sures the number of information bits conveyed by a random variable. In particular,

if X is a discrete random variable over a space of size n, and notationally

P[X = xi] = pX (xi) (2.1)

then the entropy H(·) is defined as

H(X ) =
n
∑

i=1

−pX (xi) log2 pX (xi) (2.2)

In order to maximize the entropy function, we must have pi = 1/n, or a uniform

probability distribution.

Next, consider a communications channel. Let A be a random variable rep-

resenting a transmitted symbol. Let B represent the received signal. In most real

cases, A 6= B because noise and interference affects our communication systems.

Assuming A and B are not independent, then communication is possible. To

quantify it, we define a measure called mutual information. Mathematically, it is
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defined as

I(A;B) =
∑

i,j

pA,B(ai, bj) log2

(

pA,B(ai, bj)

pA(ai)pB(bj)

)

(2.3)

A more convenient and perhaps intuitive notation for mutual information is in

terms of conditional entropy, and measures the randomness of A assuming we know

B equals a particular value. It is defined in terms of conditional probabilities as

H(A|B) =
n
∑

i=1

n
∑

j=1

−pA|B(ai|bj) log2 pA|B(ai|bj) (2.4)

Using this, we can redefine mutual information as

I(A;B) = H(A) − H(A|B)

= H(B) − H(B|A)

(2.5)

In words, the mutual information between A and B is the entropy of A minus the

entropy of A given full knowlege of B. So, consider our degenerative case where A

and B are independent. There H(A|B) = H(A) because knowledge of B tells us

nothing about A. As a result,

I(A;B) = H(A) − H(A|B)

= H(A) − H(A)

= 0

(2.6)

Next, we define the idea of channel capacity [30]. This represents the maximum

amount of information that can be conveyed through a communications channel.
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From an information theoretic perspective, a communications channel is responsible

for passing data between two points, and will likely add some sort of noise to the

original signal. Thus if the value of our transmitted signal is distributed as A, the

output of the channel is some function of the original signal. We specify the channel

output as B = f(A) where f(·) specifies a probability distribution for B given A.

Obviously, the more mutual information between A and B, the more likely we

can decode A from B. If I(A;B) = 0, then communication is impossible because

the output of our channel is statistically independent of the channel input.

Assuming the mutual information is nonzero, the goal is to then determine

exactly what data rates can be achieved by the channel. The goal is to determine

the optimal probability distribution over A to maximize I(A;B), when B = f(A).

Mathematically, this can be written

C = max
pA(a1)...pA(an)

I(A;B) (2.7)

Thus, we select the optimal probability distribution for A to maximize the mutual

information between the channel input and output.

For our purposes, we’ll mostly focus on the Shannon-Hartley Law [30], which

states that for an additive, white, Gaussian noise (AWGN) channel with bandwidth

B, signal power S, and noise power N , the capacity C is

C = B log2(1 + S/N) (2.8)
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Assuming B is in Hertz and S and N are in Watts, C will be in bits per second.

Since this theorem is the primary relation used to associate bandwidth, capacity,

and power, here we formally define each.

Bandwidth is measured in cycles per second, or Hertz (Hz). It represents the

difference between the upper and lower frequencies used in an RF transmission.

The “edges” of a signal in the spectral domain are somewhat subjective, and often

subject to the quality of a radio’s bandpass filters. Thus, we will define it in terms of

the baseband radio’s symbol rate. If we are transmitting M -bit data symbols at R

bits per second, the resulting bandwidth is M/R Hertz. Certainly spread spectrum

schemes will complicate this definition, and as a result this describes the narrowband

bandwidth. See Section 2.3 and Chapter 5 for more information on spread spectrum.

Variables S and N are our signal and noise powers, respectively. The signal

power S is the average power of our signal, averaged across bandwidth B.

Noise N is caused by background electromagnetic radiation. Its value can be

computed from the thermodynamic relationship

N = B k TN (2.9)

where B is our bandwidth in Hertz, k = 1.38 · 10−23 is Boltzman’s constant, and TN

is the temperature of our environment in Kelvin. Noise can be artificially increased

through a number of sources, the most important of which is interference, which we

will discuss at length in Chapter 3.

Ideally, and in most typical scenarios, noise is AWGN. It’s additive because
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Figure 2.3: Four multiple access schemes, showing how each operates differently in
the frequency and time domains.

noise is added to our signal, not multiplied. The term white means that the noise

power at two times t1 and t2, where t1 6= t2, is statistically independent. Gaussian

noise simply has values distributed according to a Gaussian random process. This

is generally a reasonable assumption since noise is additive and coming from many

sources simultaneously. The central limit theorem says that the total noise will have

a Gaussian distribution.

Later on, we will use the Shannon-Hartley theorem in the case where N is

actually colored interference. It will be shown that in our environment, the bounds

from the Shannon-Hartley theorem still hold.

2.3 Multiple Access

In the previous section, we were primarly concerned with two-party communi-

cations. However in most real environments, there are many users all simultaneously

trying to communicate with each other. In order to support everyone, there must

be a way to share the communications channel.

To achieve this, we use a multiple access scheme for multiplexing users’ com-
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munications. This multiplexing can be done in time, frequency, or code. Figure 2.3

graphically shows most of them, and we describe each in detail below.

In time-division multiple access (TDMA), users are multiplexed in the time

domain, each being allocated a certain window in which to communicate. Time is

typically segmented evenly into short windows, and each device in the network is

assigned recurring time slots when they are scheduled to transmit. This scheduling

typically requires a centralized controller in the network with knowledge of the

capacity needs of each device.

A slight variant of TDMA is carrier-sense multiple access (CSMA). CSMA also

multiplexes in time, but it does so in a less organized manner. In particular, when

a device has data to transmit, it first listens. If no other devices are transmitting,

it transmits. If the channel is in use, it waits until the channel is idle. A major

problem in this scenario is devices transmitting simultaneously, causing interference

and data loss. The advantage to CSMA is that no centralized controller is needed,

but the disadvantage is that communications resources are often used inefficiently.

Moving on to the frequency domain, we have frequency-division multiple access

(FDMA). Here, each device is assigned a frequency for communication, much like

frequency modulation (FM) radio. FDMA also suffers from inefficiency, since users

typically cannot switch frequencies on the fly to use idle channels if they have a lot

of data to send.

There are several hybrid approaches that combine TDMA and FDMA. A cen-

tralized controller schedules data transmissions in both the frequency and time

domain. A common example of this is called orthogonal frequency division mul-
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Figure 2.4: Power spectra for a narrowband signal both before and after it has been
spread.

tiple access (OFDMA), which is based on orthogonal frequency division multiplexing

(OFDM).

The final technique, called code division multiple access (CDMA) is more dif-

ficult to explain because it multiplexes neither in the time nor frequency domain.

To understand CDMA, a basic understanding of direct sequence spread spectrum

(DSSS) communications is required.

In DSSS, before being transmitted, analog waveforms are multiplied by a high-

frequency pattern from the set {−1, 1}∞ called a spreading code. The effect is that

the signal’s power is “spread” over a larger bandwidth. We can see this illustrated

in Figure 2.4. The narrowband signal is multiplied by a random stream of ±1 at

rate 15 times faster than the original signal. This creates a spread signal 15 times

wider and 15 times weaker. The receiver can simply multiply the spread signal by

the same spreading code to recover the original narrowband signal.
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With CDMA, all devices implement DSSS and communicate simultaneously

at the same frequency, however devices are all assigned unique, mutually orthogonal

spreading codes. Only with the right spreading code can a receiver transform the

spread signal into the original narrowband signal. The orthogonality helps minimize

noise introduced into the narrowband signals. Thus at any given time, many users

could be transmitting data, creating a wideband mass of spectral energy. Receivers

use spreading codes to then recover the desired narrowband signal from the mass.

One implementation issue for CDMA involves receivers knowing which spread-

ing code to use. In most systems today, all wireless devices communicate only with

a centralized controller, and the controller has access to all the spreading codes. For

distributed, ad hoc environments, the idea of receiver-oriented codes can be used

[23], where each receiver has an assigned code, and communications are essentially

addressed using particular spreading codes.

Additionally, there has been much research into techniques for despreading

DSSS signals without knowledge of the original spreading code [1, 12]. Such ap-

proaches generally require short, repeating spreading codes and cyclostationary

channels.

Most of these schemes will yield similar overall channel capacity, as seen by

the Shannon-Hartley law. For example, in FDMA, the total bandwidth B will

be subdivided into n frequency bands, yielding a fractional C/n capacity for each

user. In TDMA, each transmitter will have a duty cycle of 1/n, giving them a total

capacity of C/n.

It is important to notice that we can utilize the Shannon-Hartley theorem
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Figure 2.5: Four-step process of spreading and despreading a signal. Notice that
since spreading and despreading are symmetric operations, interference power is
distributed at whitened.

when measuring the capacity of CDMA in the presense of interference. Interference

is inherently non-white, but the CDMA despreading process whitens interference,

as long as there is no correlation between the interference and the spreading code.

The multiple access protocols and algorithms described in Chapter 4 utilize

CDMA.

Overall, this chapter should have given the average reader some background

in the topics discussed in this dissertation. For a more complete treatment of topics

presented, see [3, 9, 18, 25, 31, 34].
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Chapter 3

Interference Temperature Model

This chapter aims to analyze the interference temperature model by estab-

lishing mathematical models for the interference interactions between primary and

secondary users of a particular bandwidth at a particular frequency. Using these

models, probability distributions on interference are developed. From these, we can

quantify both service impact on the licensee, and also achievable capacity for the

underlay network. This chapter encompasses research published in [7, 8].

3.1 Interference Temperature

The concept of interference temperature is identical to that of noise tem-

perature. It is a measure of the power and bandwidth occupied by interference.

Interference temperature TI is specified in Kelvin and is defined as

TI(fc, B) =
PI(fc, B)

kB
(3.1)

where PI(fc, B) is the average interference power in Watts centered at fc, covering

bandwidth B measured in Hertz. Boltzmann’s constant k is 1.38 · 10−23 Joules per

Kelvin degree.

The idea is that by taking a single measurement, a cognitive radio can com-
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Figure 3.1: Example PSD for an unlicensed signal partially overlapping a licensed
signal

pletely characterize both interference and noise with a single number. Of course,

it has been argued that interference and noise behave differently. Interference is

typically more deterministic and uncorrelated to bandwidth, whereas noise is not.

For a given geographic area, the FCC would establish an interference tempera-

ture limit, TL. This value would be a maximum amount of tolerable interference for

a given frequency band in a particular location. Any unlicensed transmitter utilizing

this band must guarantee that their transmissions added to the existing interference

must not exceed the interference temperature limit at a licensed receiver.

While this may seem clear cut, there is ambiguity over which signals are con-

sidered interference, and which fc and B to use. Should they reflect the unlicensed

transceiver or the licensed receiver? For example, consider Figure 3.1. Should we

use B1 or B2 as our bandwidth for our computations? These ambiguities precipitate
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Table 3.1: Comparison of the ideal and generalized interference temperature models.

Ideal Model

• Interference to unlicensed transmitters included in the interfer-
ence temperature measurement is defined as background interfer-
ence and tranmissions from secondary users

• Interference temperature limit is defined over the bandwidth of
the licensed signal

Generalized Model

• Interference to unlicensed transmitters included in the interfer-
ence temperature measurement is defined as background interfer-
ence, transmissions from primary users, and tranmissions from
secondary users

• Interference temperature limit is defined using the bandwidth of
the unlicensed transmission

the need for the two interpretations described in Table 3.1.

3.1.1 Ideal Model

In the ideal interference temperature model we attempt to limit interference

specifically to licensed signals. Assume our unlicensed transmitter is operating with

average power P , and frequency fc, with bandwidth B. Assume also that this band

[fc − B/2, fc + B/2] overlaps n licensed signals, with respective frequencies and

bandwidths of fi and Bi. Our goal is to then guarantee that

TI(fi, Bi) +
MiP

kBi

≤ TL(fi) ∀ 1 ≤ i ≤ n (3.2)

In other words, we guarantee that our transmission does not violate the inter-

ference temperature limit at licensed receivers.
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Note the introduction of constants Mi. This is a fractional value between 0 and

1, representing a multiplicative attenuation due to fading and path loss between the

unlicensed transmitter and the licensed receiver. The idea is that the interference

temperature model restricts interference at the licensed receiver, not the unlicensed

transmitter, and therefore we must account for attenuation between these two de-

vices. Since we cannot know our distance to all licensed receivers, let us assume

that this value is fixed by a regulatory body to a single constant M .

There are two main challenges in implementing the ideal model. The first

involves identifying licensed signals. One key question arises: how do you distinguish

licensed signals from unlicensed ones? For specific cases, this can be relatively easy.

In particular, consider the problems faced by IEEE 802.22 [13], currently under

investigation by their spectrum sensing task group. They wish to coexist with

digital television (DTV) signals, and can implement very specialized, matched filter

sensors to look for DTV transmitters. If you know exactly with whom you are

coexisting, then this problem becomes simpler.

The second problem involves measuring TI in the presence of a licensed signal.

We wish to measure the interference floor underneath the licensed signal. Again, this

can be relatively easy if we have knowledge of the licensed waveform’s structure. For

example, with DTV, we can measure during the blanking interval when the signal

is not present. Also, if we have precise knowledge of the signal’s bandwidth B and

center frequency fc, we can approximate the interference temperature as

TI(fc, B) ≈ P (fc − B/2 − τ) + P (fc + B/2 + τ)

2kB
(3.3)
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where P (f) is the sensed signal power at frequency f and τ is a safety margin of a

few kHz.

Assuming a specialized environment where we can locate licensed signals and

measure interference temperature, our next goal is to determine radio parameters

fc, B, and P that achieve a desired capacity C. This will be a piecewise-continuous

optimization problem with constraints defined in (3.2). If we use a sculptable wave-

form like OFDM we may be able to more easily meet the various constraints.

On interesting problem related to this model is what happens if you don’t

overlap any licensed signals, or the signals are so low power that we cannot detect

them? There would be no maximum power constraint, and if there were undetected

signals, we could cause harmful interference.

We could impose the interference temperature limit across the entire frequency

band, rather than just where licensed signals are detected. The problem with this is

that no bandwidth is defined over which to apply the interference temperature limit.

A regulatory body could fix a bandwidth, but then the interference temperature

limit becomes a simple power constraint.

3.1.2 Generalized Model

The generalized interference temperature model, on the other hand, has a

different interpretation to signals and bandwidths. The fundamental premise of the

generalized model is that we have no a priori knowledge of our signal environment,

and consequently have no way of distinguishing licensed signals from interference
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and noise.

Under these assumptions, we must apply the interference temperature model

to the entire frequency range, and not just where licensed signals are detected. This

translates into the following constraint.

TI(fc, B) +
MP

kB
≤ TL(fc) (3.4)

Notice that the constraint is in terms of the unlicensed transmitter’s parame-

ters, since the parameters of the licensed receivers are unknown. One question that

immediately comes to mind: under what conditions does the generalized model limit

interference as well as the ideal model?

If we rewrite our constraints in terms of P and combine them, we obtain the

following requirement:

If we solve both constraint equations (3.2) and (3.4) for P , we obtain the

following equations

P id = Bi(TL(fc) − T id
I (fi, Bi))

P gen = B(TL(fc) − T gen
I (fc, B))

(3.5)

To cause less interference in the generalized, we are interested in the case where

P id ≥ P gen. Combining, we obtain the following relation

B(TL(fc) − T gen
I (fc, B)) ≤ Bi(TL(fc) − T id

I (fi, Bi))

∀ 1 ≤ i ≤ n

(3.6)
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Assuming each licensed signal has power Pi and otherwise the interference

floor is defined by the thermal noise temperature TN , we can transform (3.6) into

the following:

kBTL(fc)(B − Bi) + kBTN

n
∑

j=1

Bj ≤
n
∑

j=1

BjPj

∀ 1 ≤ i ≤ n

(3.7)

In general, provided Bi and Pi are sufficiently large, this condition can be easily

met.

If we consider only one licensed receiver, the inequality simplifies to

kBTL

P1 − kBTN

≤ B1

B − B1

(3.8)

Thus a small TL, large B1, or large P1 will generally satisfy the constraint.

The next section describes challenges inherent in selecting transmission band-

widths necessary to meet a particular target capacity in each interference tempera-

ture model.

3.2 Measuring Interference Temperature

In this section we describe techniques for selecting a power and bandwidth to

meet a particular capacity requirement. Each model imposes different constraints

on how interference temperature (IT) should be measured, and what those measure-

ments signify.
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3.2.1 Properties of Interference Temperature

One shortcoming in the design of the interference temperature model is its

simplicity. The goal was to define a single metric that fully captures both the

properties of interference and noise. In the end, a temperature approach was used

rather than a power approach. This accurately models the noise portion of the

metric, but not the interference portion.

Our eventual goal is to determine the difference between the regulatory inter-

ference temperature limit and the measured interference temperature. This then

defines the transmission temperature our cognitive radio can use, where for a given

bandwidth we can compute the maximum allowed power.

Let’s define things a little more concretely. Thus, the interference temperature

TI can be specified as a function of bandwidth B as

TI(fc, B) =
1

Bk
PI(fc, B)

=
1

Bk

(

1

B

∫ fc+B/2

fc−B/2

S(f) df

)

=
1

B2k

∫ fc+B/2

fc−B/2

S(f) df

(3.9)

where S(f) represents power spectral density of our current RF environment.

Recall that in the ideal model, PI reflects only the interference and noise,

where in the generalized model, PI reflects both the interference, noise, and any

licensed signals. This same characterization extends to S(f).

Next, we must consider how our transmission will affect the received inter-
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ference temperature T̂I(fc, B). As described before, the end goal is to compute a

transmit power P and bandwidth B that satisfy our constraints (3.2) and (3.4),

depending on our model.

There are two basic cases to consider. First, B is known, and we wish to

compute a valid P . In the ideal model, this is fairly straightforward. Rewriting

(3.2) we have

P ≤ Bik

M
(TL(fi) − TI(fi, Bi)) ∀ 1 ≤ i ≤ n (3.10)

where the assumption is that for a selected B we overlap n licensed signals with

parameters fi and Bi respectively. If n = 0 then we must have P ≤ Pmax, the

radio’s maximum transmit power. For n > 0, to meet this constraint, we minimize

of i:

P ≤ min
i∈[1..n]

(

Bik

M
(TL(fi) − TI(fi, Bi))

)

(3.11)

This gives us a way to compute P as a function of B.

In the generalized model, we can solve for P and get

P ≤ Bk

M
TL(fc) −

1

BM

∫ fc+B/2

fc−B/2

S(f) df (3.12)

If we are trying to compute a valid B in terms of P , things get a little more com-

plicated for both models. In the ideal model, our maximum bandwidth is going

to depend on the interference at various licensed signals. Let there be n∗ signals

possibly overlappable by our radio for a given fc and maximum transmit bandwidth

Bmax. For each, licensed signal we can compute our maximum transmit power in
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that band Pi as

Pi =
Bik

M
(TL(fi) − TI(fi, Bi)) (3.13)

If ∀ 1 ≤ i ≤ n∗, Pi > P , then we will not cause any harmful interference regardless

of our bandwidth, and therefore our constraint is

B ≤ Bmax (3.14)

Otherwise, we can find the index i∗ of the signal closest to fc to which we will cause

harmful interference as

i∗ = arg max
i∈{i:Pi<P}

|fc − fi| (3.15)

From this we can compute the maximum bandwidth as

B ≤ 2 (|fc − fi∗ | − Bi∗/2) (3.16)

For the generalized model, there is no closed-form solution for a general S(f).

However, since S(f) is a real, nondecreasing, continuous function of B, there is a

solution ∀S(f), even though it may be outside our radio’s dynamic range of (0, Bmax].

Consider the degenerate case where S(f) = c, where c is much larger than

the noise floor. This implies some constant level of interference throughout our

frequency band of interest. The following solution then arises

B ≥ MP + c

TL(fc)k
(3.17)
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Interestingly, this now indicates a minimum bandwidth required for our trans-

mission, not a maximum. This is because of how the interference temperature limit

works in the generalized model. Our maximum transmit power is BTLk, which

increases as a function of bandwidth. This implies that as we use more spectral

resources in the frequency domain, we can actually cause more interference. This

subtlety is counterintuitive, but it is beneficial for our radios, since an increasing

noise floor can be offset by an increasing power constraint.

Since bandwidth and power are so interrelated, in the next sections we consider

them jointly in terms of capacity.

3.2.2 Capacity in the Ideal Model

So far we’ve bounded bandwidth in terms of power, and vice versa. Let’s

change the formulation somewhat, and consider them jointly in terms of capacity.

The Shannon-Hartley Theorem states

C = B log2

(

1 +
LP

PI + PL

)

(3.18)

where B and P are as before, PI represents interference power, and PL represents

the average power contributed by licensed signals.

Notice the addition of another constant, L. This value is similar to M , ex-

cept it represents multiplicative path loss between the unlicensed transmitter and

unlicensed receiver. We are measuring capacity at the receiver, and therefore need

knowledge of the bandwidth and power at the receiver.
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As before, let n be the number of licensed signals we overlap1. However, let

it be a function of fc and B, such that n(fc, B) is the number of signals we overlap

the frequency range [fc − B/2, fc + B/2].

Let’s assume we have a bandwidth B. The maximum transmit power is

P ∗(fc, B) =















Pmax n(fc, B) = 0

min
(

Pmax, mini∈[1..n(fc,B)]

(

Bik
M

(TL(fi) − TI(fi, Bi))
))

n(fc, B) > 0

(3.19)

Note that P ∗(fc, B) is a non-increasing function of B. As we increase our bandwidth,

we overlap more signals that could lower our transmission power.

Looking at PI and PL, we can compute the interference to our transmission as

PI(fc, B) = kBTI(fc, B)

PL(fc, B) =
1

B

n(fc,B)
∑

i=1

PiBi

(3.20)

Interference PI(fc, B) is increasing with B, as the noise floor increases due to ther-

mal noise. We cannot say anything about PL(fc, B): it could either be increasing,

decreasing, or both.

Thus our achievable capacity is

C∗
id(fc, B) = B log2

(

1 +
LP ∗(fc, B)

PI(fc, B) + PL(fc, B)

)

(3.21)

1For simplicity, we do not examine partially overlapping signals. The analysis could be extended

to account for this, but the notation becomes particularly awkward. Capacity would then become

a continuous function of B.
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As long as P ∗/(PI + PL) is decreasing at sub-exponential rate, increasing B will

generally increase C. However, it will be highly dependent on the RF environment.

In a real radio, assuming the signal processing issues associated with the ideal

model are solved, computing P and B subject to some C should be relatively simple.

For a given fc, simply characterize all n∗ licensed signals and measure the interfer-

ence temperature at each. From that data, a numeric version of C∗
id(fc, B) can be

calculated, and solved for C.

3.2.3 Capacity in the Generalized Model

Interference temperature must always be measured at some bandwidth B, due

to deterministic interference sources that are accentuated in the generalized model.

To measure TI(fc, B), down-sample the passband signal such that fc is at B/2. Then

quantize the spectrum at rate 2B, and compute its power spectral density (PSD).

This will yield a power spectrum for the frequency range fc − B/2 to fc + B/2,

which is ŜB(f). To compute the interference temperature, integrate as follows.

TI(fc, B) =
1

B2k

∫ B

0

ŜB(f) df (3.22)

Thus, we can now compute our interference temperature as a function of B.

Let’s say a minimum capacity of C is necessary for our communication. The

next goal is to find a P and B that both meet regulatory requirements and achieve

our capacity constraints. In the last section, we showed that choosing a B and

solving for a maximum P was a simple approach. However, considering S(f) may
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have very steep slopes when fc is close to a powerful licensed signal, this may be

problematic.

Thus, we must combine some of our concepts. We must compute a capacity

function C∗
gen(fc, B) in terms of B, and then solve C∗

gen(fc, B) = C for B. Let’s

assume a maximum transmit power is used for our bandwidth selection, or

P ∗(fc, B) =
Bk

M
(TL(fc) − TI(fc, B)) (3.23)

This equation uses TI(fc, B), measured using the technique described above.

Then we can define our capacity as

C∗
gen(fc, B) = B log2

(

1 +
LBk(TL(fc) − TI(fc, B))

MBkTI(fc, B)

)

= B log2

(

1 +
L(TL(fc) − TI(fc, B))

MTI(fc, B)

)

(3.24)

This result has similar properties as capacity in the ideal model. Generally, it is

increasing with B, but could vary greatly from RF environment to RF environment.

3.2.4 Solving for Capacity

Solving C∗(fc, B) = C can be difficult for both models2. For a general in-

terference environment, this must be done numerically. Figure 3.2 shows a simple

example of a 10 MHz licensed signal with square power spectral density located 10

MHz from our carrier frequency. We can see that as long as the signal’s power is

relatively low, e.g. -90 dBm, the capacity function for the generalized model remains

2We use C∗ to represent both C∗

id and C∗

gen, when distinguishing is unimportant.
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Figure 3.2: Example capacities as a function of B for the generalized model, as-
suming a licensed signal of varying strengths located at [fc +10 MHz, fc +20 MHz],
with TL = 10000 Kelvin and a noise temperature of 300 Kelvin. As the interference
power increases, the capacity past 20 MHz falls off more.

relatively linear. However, for -70 dBm, we can see that it will significantly hamper

our capacity. We can achieve maximum capacity if we avoid the signal all together.

As the previous example illustrates, the capacity function is not strictly in-

creasing, and therefore there may be multiple bandwidths that give the same capac-

ity. Certainly the best choice is to select the smallest bandwidth possible that will

achieve your desired capacity.

One could even take that a step further and add a pricing function. In the

previous example, if the interference power is -80 dBm, to go from a capacity of 100

Mbps and a capacity of 105 Mbps requires a tripling in the bandwidth. A pricing

function would penalize nodes who use extremely large bandwidths, and therefore

select 20 MHz, even if it didn’t completely satisfy its capacity constraints, as the

payoff for tripling the bandwidth would not be worth the added cost.

Putting the pricing function aside, and assuming we have a hard capacity
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constraint, and we wish to solve C∗(fc, B) = C for B, then we must employ numeric

techniques. Using the above equations, for a particular B we can compute TI(fc, B)

and consequently C∗(fc, B).

Hill Climbing Approach

We can frame the problem as a constrained optimization problem with objec-

tive function

|C∗(fc, B) − C| (3.25)

One approach is to hill climb, trying to minimize our objective function with respect

to B [26]. This function may have several global minimizers over the bandwidth

range of our radio. Our goal is to locate the one corresponding to the smallest

bandwidth.

A good approach is to run our hill climbing algorithm several times with

B0 =

{

iBmax

N

}

i=1..N

(3.26)

This will yield N , likely non-unique, solutions. Simply select the one with the

smallest bandwidth.

A simple pricing scheme can also be used. To find global capacity maximizers,

set C = ∞ and run the same algorithm. This will yield a set of points (Bi, Ci)i=1..N .

Let our capacity utility function be U(C) and our pricing function be P (B). We
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can then select the best point i∗ as

i∗ = arg max
i=1..N

(U(Ci) − P (Bi)) (3.27)

Lastly, we should address selection of N . The number of local minima will be

proportional to the number of interfering signals. This could be computed by the

radio by determining the number of local maxima n in S(f) for fc − B/2 ≤ f ≤

fc+B/2. If solving for a specific C, let N > 2n, since there would likely be a solution

on either side of the signal. If searching for global capacity maximizers, then N > n

should be sufficient. This operation could be done infrequently, and would provide

a good estimate for N , assuming interfering signals are relatively uniformly spaced

over the target spectrum band.

While we can use the hill climbing approach to both optimize C∗(fc, B) and

solve it for a target capacity, we will see in the next section that fixed-point iteration

is a more elegant way to solve C∗(fc, B) for a target capacity. Therefore, hill climbing

is most appropriate when trying to maximize capacity.

Fixed-Point Iteration Approach

Many problems that you can solve with hill climbing can also be solved using

fixed-point iteration. The basic idea is to take the original problem, C∗(fc, B) = C

and rewrite it as Bi = f(C∗(fc, Bi−1), C), and hope that {Bi}i=0...n converges.

Due to the complexity of C∗
id(fc, B), in this section we will only consider ap-

plication of fixed-point iteration to the generalized model. Next, consider a refor-
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mulation of the original problem.

Theorem 1 The sequence {Bi}i=1..n where

Bi+1 =
C

log2

(

1 + L(TL(fc)−TI(fc,Bi))
MTI(fc,Bi)

) (3.28)

converges linearly to a solution to

C = B log2

(

1 +
L(TL(fc) − TI(fc, Bi))

MTI(fc, Bi)

)

(3.29)

as long as

B0 >
2CT ∗

I

TN

log2

(

1 +
L(TL(fc) − T ∗

I )

MT ∗
I

)−2

(3.30)

where

T ∗
I = max

B∈(0,Bmax]
TI(fc, B) (3.31)

and a solution exists in B ∈ (0, Bmax].

Proof: We’re examining our problem in terms of fixed-point approximation.

Let

g(B) =
C

log2

(

1 + L(TL(fc)−TI(fc,B))
MTI(fc,B)

) (3.32)

The theory of fixed-point iteration methods dictates that if B = g(B) has at least

one solution in some interval [a, b], g(B) is continuous, and |g ′(B)| < 1 then any

starting point in that interval will converge to a solution [2]. Intersect the interval
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[a, b] with our feasible interval, (0, Bmax]. The result is a range for B0:

B0 ∈ [a, min{b, Bmax}] (3.33)

TI(fc, B) is continuous, so consequently g(B) is continuous. The derivative

constraint can be expressed as follows:

CLTL(fc)|T ′
I(fc, B)|

TI(fc, B)(LTL(fc) + (M − L)TI(fc, B))
< log2

(

1 +
L(TL(fc) − TI(fc, B))

MTI(fc, B)

)2

(3.34)

Obviously this constraint is not entirely useful, as it is in terms of B, which we do

not yet know. In order to simply this further, we need to remove our dependence on

B. First, we use the definition of T ∗
I provided in the theorem statement, and notice

that

TN ≤ TI(fc, B) ≤ T ∗
I (3.35)

Next we need to examine the derivative of our interference temperature.

T ′
I(fc, B) =

Ŝ(B)

B2k
− 2

B
TI(fc, B) (3.36)

Thus to maximize |T ′
I(fc, B)|, let Ŝ(B) = 0 and TI(fc, B) = T ∗

I . The result is

|T ′
I(fc, B)| ≤ 2T ∗

I /B (3.37)
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Substituting, we have

B0 >
CLTL(fc)2T

∗
I

TN(LTL(fc) + (M − L)TN)
log2

(

1 +
L(TL(fc) − T ∗

I )

MT ∗
I

)−2

>
CLTL(fc)2T

∗
I

TN(LTL(fc))
log2

(

1 +
L(TL(fc) − T ∗

I )

MT ∗
I

)−2

>
2CT ∗

I

TN

log2

(

1 +
L(TL(fc) − T ∗

I )

MT ∗
I

)−2

(3.38)

Thus we have proved our theorem. �

We now have a viable algorithm for computing the required bandwidth B in

terms of desired capacity C. If B0 > Bmax, this does not necessarily mean a solution

does not exist, since we derived a sufficient condition, and not a necessary one. If

divergence is detected, then the capacity C must be decreased in order to find a

solution.

The key point is that fixed-point iteration can find a solution if one exists,

but may not always succeed. As a result, it may be useful to implement a hybrid

algorithm that first tries fixed-point iteration, and if divergence is detected, switch

over to a hill climbing approach. Note that the algorithms can be executed on a PSD

snapshot taken with bandwidth Bmax, and consequently radio sensing resources need

not be tied up during algorithm execution. In Chapter 4, ITMA will be discussed,

whose data-link layer does bandwidth selection based on a target capacity. It uses

fixed-point iterations to find the required bandwidth.
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3.3 Frequency Selection

In the previous sections we describe how to select a bandwidth given a center

frequency fc. However, one of the major uses for cognitive radio is to dynamically

select your center frequency to exploit spectrum access opportunities.

There are two main schools of thought on dynamic center frequencies. In

particular, the ability to change fc in real time increases higher-layer protocol com-

plexity, since the receiver must know that the transmitter has changed frequency.

These competing ideas are related to how radios exchange radio parameters.

The first assumes there is a management or control channel through which

radios can coordinate. Devices could indicate the center frequency, waveform, desti-

nation, and time of their next transmission. Thus, fc is something to be optimized

and changed in real time.

However, others consider the management channel an unrealistic assumption.

In a dense, busy packet network environment, management of the management

channel becomes a problem. Also, how can we guarantee the management channel

is not causing harmful interference?

In Chapter 4, we propose a logical management channel embedded within the

main channel. This, however, assumes a fairly static center frequency.

Here, we look at how to select fc for optimal performance, and ignore protocol

issues for coordination. We simply address how you can select the best fc at a

particular time. The approach is a simple extension of the ideas in the last section.

We defined our capacity functions for each model in the previous sections, and
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described techniques to solving

C∗(fc, B) = C (3.39)

for B. However, if we assume fc is no longer fixed, how does that change things?

We advocate selecting an fc at the beginning to maximize your eventual per-

packet capacity, and leaving it fixed unless communication at that frequency be-

comes impossible. Thus, the optimal center frequency is

f ∗
c = max

f∈[fmin,fmax]

(

max
B∈(0,Bmax]

C∗(f,B)

)

(3.40)

Maximizing over B ca be done using the hill climbing approach. Assuming

the space of frequencies is channelized, then [fmin..fmax] is a discrete set, and the

hill climbing can be executed for each f .

Alternatively, we can look at the structure of C∗(fc, B) in more detail. In

particular, in the presence of uniform interference, both capacity functions are max-

imized when licensed signals are completely avoided. Assume n licensed signals are

detected within our radio’s overall candidate frequency band. Let each be located

at center frequency fi and have bandwidth Bi. Assume {fi}n
i=1 is an ordered set,

where

f1 ≤ f2 ≤ · · · ≤ fn (3.41)

Our best frequency is going to be half way between the two signals with fur-
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thest distance between them. In particular, if

i∗ = arg max
i=1..n−1

(

fi+1 −
Bi+1

2

)

−
(

fi +
Bi

2

)

(3.42)

then

f ∗
c =

1

2

((

fi∗+1 −
Bi∗+1

2

)

+

(

fi∗ +
Bi∗

2

))

(3.43)

Recall, however, that this assumes our interference is uniform. If interference

varies some, but not a significant amount, we can adapt our previous optimization

somewhat. In particular, if

∣

∣

∣

∣

d

df
T id

I (f,B)

∣

∣

∣

∣

< ε ∀ f ∈ [fmin, fmax] (3.44)

then we can define our channelization {ci}n−1
i=1 as

ci =
1

2

((

fi+1 −
Bi+1

2

)

+

(

fi +
Bi

2

))

(3.45)

and then maximize over our channels to compute

f ∗
c = max

f=c1..cn−1

(

max
B∈(0,Bmax]

C∗(f,B)

)

(3.46)

As discussed, center frequency should be selected to promote a radio environ-

ment that will maximize our potential capacity. Typically, this involves steering

clear of licensed signals, so we use this fact to pick a set of candidate center fre-
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quencies. By computing our maximum capacity at each, we can decide which is

optimal.

3.4 Network Capacity Analysis Model

In this section we assume a fixed transmit bandwidth that overlaps a single

licensed signal. Our goal is to quantify the total network capacity achievable by the

underlay network. Notationally, bandwidths BU and BL respectively represent our

unlicensed and licensed bandwidths. We use the notation N (µ, σ2) to indicate a

Gaussian random variable with mean µ and variance σ2. Also, exp(µ) indicates an

exponentially distributed random variable with mean µ.

3.4.1 Model Geometry

Here we describe some of our model fundamentals that will be used in later

sections.

Lemma 1 Consider a disc of radius R. The distance D between a point selected

with uniform distribution over the area of the disc and the center of the disc has

c.d.f.:

P(D ≤ x) =































0 x < 0

x2/R2 0 ≤ x ≤ R

1 x > R

(3.47)

Proof: The probability that a point is less than distance x from the center is the

ratio of the area of a disc with radius x, and the total area of the disc. Thus we can
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compute

P(D ≤ x) =
πx2

πR2
= x2/R2 (3.48)

The remainder of the expression is to handle edge cases. �

Lemma 2 Let P be the λ-wavelength power experienced by a receiver at the center of

a disc with radius R, from a single transmitter with position uniformly distributed

over the disc, with a transmit power distributed exp(µ). The expected value and

variance of P are

E[P ] =
µλ2 log R

8π2R2

Var[P ] =
λ4µ2

128π4R4

(

R2 − log2 R2 − 1
)

(3.49)

Proof: Consider a disc with radius R. At the center of the disc is a receiver, and

surrounding it are transmitters. If a transmitter’s location is uniformly distributed,

then its distance to the center D has distribution computed in Lemma 1.

If the transmitted power T of a signal with wavelength λ has distribution

T ∼ exp(µ) and experiences path loss3 over distance D, the received power is

P =
λ2

16π2D2
T (3.50)

3For the purposes of this chapter, we assume a path loss constant of 2, indicating simple free-

space path loss. Typically, this value is larger, between 3 and 4, due to the effects of multipath

fading. However, using any value other than 2 makes the integrals symbolically uncomputable.

These model assumptions must be taken into account when evaluating the results of the analysis

based on these models.
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This power P is a random variable defined in terms of random variables T and D.

We can compute its distribution precisely as

P(T ≤ x) =

∫ r2

r1

2d

R2

∫ 16π2xd2/λ2

0

1

µ
e−p/µ dp dd

=
r2
2 − r2

1

R2
+

1

αR2x

(

e−αxr2

2 − e−αxr2

1

)

(3.51)

where

α =
16π2

λ2µ
(3.52)

Notice that we left distance integration limits as r1 and r2. If we want to

consider transmitters located across the entire disc, we should use r1 = 0 and r2 = R.

The latter is fine, however the former causes problems with the laws of physics. In

particular, we are using free-space path loss which decays as a function of distance

squared. At zero distance a division by zero results.

To work around this problem, we let r1 = 1. This physically corresponds to

a guarantee that no transmitters will be within a meter of the receiver. Using this

assumption, we have

P(P ≤ x) =
R2 − 1

R2
+

1

αR2x

(

e−αR2x − e−αx
)

(3.53)

using the same value for α.
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Let PP(x) be the p.d.f. for P , and is computed as

PP(x) =
d

dx
P(P ≤ x)

=
1

R2x

(

1 +
1

xα

)

e−xα − 1

x

(

1 +
1

R2xα

)

e−R2xα

(3.54)

If we compute the expected value through integration we get

E[P ] =

∫ ∞

0

xPP(x) dx

=
µλ2 log R

8π2R2

(3.55)

For the variance can compute it as

E[P2] =

∫ ∞

0

x2PP(x) dx

=
µ2λ4

128π4R4
(R2 − 1)

(3.56)

and then

Var[P ] = E[P2] − E[P ]2

=
λ4µ2

128π4R4

(

R2 − log2 R2 − 1
)

(3.57)

Thus proving our lemma. �

Now, we’re going to change the geometry somewhat, and introduce another

disc. Consider two concentric discs C1 and C2, with radii R1 and R2, respectively,

with R1 � R2. Assume that C2 contains RF transmitters uniformly distributed over

the area with density δ2. Assume their transmit power is exponentially distributed
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with mean µ2, and their transmission wavelength is λ.

Theorem 2 The signal power P2 from radios in C2 as seen in C1 is normally

distributed as follows:

P2 ∼ N
(

λ2µ2δ2 log R2

8π
,

λ4µ2
2δ2

128π3R2
2

(R2
2 − log2 R2 − 1)

)

(3.58)

Proof: This is simply an application of our previous lemma. There are δ2πR2
2 i.i.d.

transmitters, so their total power is normally distributed and can be computed using

the Central Limit Theorem. The above values result. �

This result is particularly interesting. First, notice that as R2 increases, our

mean increases logarithmically. This is an intuitive result, since nodes further away

will contribute a diminishing amount to the interference environment. Also intrigu-

ing is that the variance is constant with respect to R2.

The mean being logarithmic allows the large-scale estimation done in Sections

3.4.2 and 3.4.3. As long as R1 � R2, interference effects are roughly constant

throughout C1, since log(R2) ≈ log(R2 − R1).

Corollary 1 A reasonable upper bound for P2 is:

P

[

P2 <
λ2µ2

8π2R2

(

δ2πR2 log R2 +

√

2δ2π(R2 − log2 R2 − 1)

)]

> 0.98 (3.59)

Proof: A good confidence interval is µP2
+ 2σP2

, which is the value used above. �
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Next, let’s move the transmitters to C1. Assume C1 contains RF transmitters,

uniformly distributed over the area with density δ1. Assume their transmit power

is exponentially distributed with mean µ1, and their transmission wavelength is λ.

Theorem 3 The signal power P1 from radios in C1 as seen in C2 at a distance r

from the center with R1 � r < R2 is normally distributed as follows:

P1 ∼ N
(

R2
1δµ1λ

2

16πr2
,
R2

1δµ
2
1λ

4

128π4r2

)

(3.60)

Proof: Here we apply the Central Limit Theorem to πδR2
1 nodes, each with ex-

ponentially distributed power at roughly distance r from the receiver. This total

power then undergoes free-space path loss, and the above distribution results.

In particular, for a single node transmitting with power T , we have receive

power P where

P =
λ2

16π2r2
T

∼ exp

(

λ2µ1

16π2r2

)
(3.61)

This has moments

E[P ] =
λ2µ1

16π2r2

Var[P ] =
λ4µ2

1

128π4r4

(3.62)

We use the Central Limit Theorem to sum all transmitters. The result is as specified

above. �
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Next we’re going to use Lemma 1 to prove some minimum distance bounds

that will be used later.

Lemma 3 Let δπR2 points be randomly placed over a disc of radius R, with density

δ. Let Dmin be a random variable representing the distance between the center of the

disc, and the point closest to the center of the disc. The c.d.f. of Dmin is

P(Dmin < d) = 1 − e−d2πRδ/2 (3.63)

Proof: The distance of each of point and the center of the disc a random variable

Di, as defined by Lemma 1. Our goal is to determine the distance distribution for

the closest one.

Dmin = min
i=0..NL

Di (3.64)

The resulting distribution for Dmin is the Rayleigh distribution [9].

PDmin
(x) = Rayleigh(R/NW , x)

= Rayleigh(1/δW πR, x)

= xδW πRe−x2δW πR/2

(3.65)

We can compute the c.d.f. by integrating, and obtain

P(Dmin < d) = 1 − e−d2πRδ/2 (3.66)

Thus, we have proved the lemma. �
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Next, let’s define the idea of density uniformity. In particular, if we say area A

has node density δ, then that means we have a total of δA nodes in area A. However,

this could imply that all nodes are located in a single corner of A, and when looking

at some area A′ < A, we could discover a different node density. While our original

density was correct for A, it is no longer correct for A′.

Let’s define our density in terms of the area, δ(A). Density uniformity defines

a minimum area Amin for which

P(|δ(Amin) − δ(A)| > ε1) < ε2 (3.67)

for some tolerances ε1 and ε2.

Corollary 2 Given density δ and minimum area πR2
min, with probability p we can

be sure the distance between a point and its closest neighbor is at least d is

d =

√

−2 log(p)

πRminδ
(3.68)

Proof: Application of the previous lemma to the described scenario. �

These theorems will provide the foundation for the computations performed

in the upcoming sections.

3.4.2 Wireless WAN

In this section, we define a wireless WAN (WWAN) to be a wireless network

utilizing the interference temperature model that has an operational radius signifi-
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Interference Radius

WWAN Radius

WLAN Radius

Interference Radius

Licensed Transmitter Radius Licensed Transmitter Radius

Figure 3.3: Diagram of the two models. In the first, we have a wireless wide-area
network (WAN), in which radii are as follows: RL � RW � RI . In the second, the
wireless local area network (LAN) has radii RW � RL � RI .

cantly larger than our licensed radio network. Figure 3.3 illustrates this. An example

of this could be a mobile broadband radio network covering hundreds of kilometers,

coexisting with a traditional UHF TV broadcasting station.

The goal of our analysis is to examine the capacity that can be achieved by an

underlay network. Our first step is to determine the base interference temperature

seen by our WAN nodes.

Using Theorem 2, we can compute the distribution on PI in terms of our

average interferer power µI , interferer density δI , and radius RI . However, since

interference temperature is likely to change frequently, radios should measure it over

some fixed time period and use the maximum recorded value. This will correspond

to our confidence interval value from Corollary 1. As a result, we estimate

PI =
λ2µI

8π2RI

(

δIπRI log RI +
√

2δIπ(R2
I − log2 R2

I − 1)

)

(3.69)

Now assume that our WAN node transmit power is exponentially distributed

with mean µW . This mean is going to be a function of our interference temperature
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and interference temperature limit. The interference temperature is going to include

power from interferers PI , unlicensed transmitters PW , and in the generalized model

also the licensed signal PL. The power of the interferers was just determined as PI .

The power from the unlicensed devices must be represented in terms of µW .

Computing a probability distribution for PW yields some rather nasty inte-

grals, and as a result we will use the worst case of the transmitter being located at

the center of the unlicensed network. Thus we can use reuse Corollary 1.

PW = E[PW ]

≤ λ2µW

8π2RW

(

δW πRW log RW +
√

2δW π(R2
W − log2 R2

W − 1)

)
(3.70)

Use the following value for the ideal model

µid
W =

TLkBL

M
− PI − PW

=
TLkBL

M
− λ2µI

8π2RI

(

δIπRI log RI +
√

2δIπ(R2
I − log2 R2

I − 1)

)

− λ2µid
W

8π2RW

(

δW πRW log RW +
√

2δW π(R2
W − log2 R2

W − 1)

)

(3.71)

Solving for µid
W , we have

µid
W =

8π2TLkBL/M − λ2µI

(

δIπ log RI + R−1
I

√

2δIπ(R2
I − log2 R2

I − 1)

)

8π2 + λ2

(

δW π log RW + R−1
W

√

2δW π(R2
W − log2 R2

W − 1)

) (3.72)

For the generalized model, we must also subtract the average power from the

licensed transmitter PL, and evaluate TL over BU rather than BL. Assuming the
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licensed signal’s power is exp(µL), we can compute PL using Lemma 2.

PL = E[PL]

=
µLλ2 log RW

8π2R2
W

(3.73)

Substituting into µgen
W , we obtain the relation

µgen
W =

TLkBU

M
− PI − PW − BL

BU

PL

=
TLkBL

M
− λ2µI

8π2RI

(

δIπRI log RI +
√

2δIπ(R2
I − log2 R2

I − 1)

)

− λ2µid
W

8π2RW

(

δW πRW log RW +
√

2δW π(R2
W − log2 R2

W − 1)

)

− BLµLλ2 log RW

8π2BUR2
W

(3.74)

Again, solving for µgen
W , we get

µgen
W =

8π2TLkBL/M − λ2

(

µI

(

δIπ log RI + R−1
I

√

2δIπ(R2
I − log2 R2

I − 1)

)

+ BLµL log RW

BUR2

W

)

8π2 + λ2

(

δW π log RW + R−1
W

√

2δW π(R2
W − log2 R2

W − 1)

)

(3.75)

Next, we examine the WAN network capacity, which is defined as the sum of

the per-link capacities. Our mean transmit power is µW , at bandwidth BU .

We can then use free-space path loss to compute the received SIR in a CDMA-

based access network, averaging the licensed power over the unlicensed bandwidth.

This averaging is the appropriate thing to do for CDMA, since our despread oper-

ation will effectively spread the narrow-band noise, raising the noise floor for our
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despread signal.

E[SIR] =
µW

E[PI ] + E[PW ] + BL

BI
E[PL]

· λ2

16π2E[d2]
(3.76)

Computation of E[d2] is a little tricky. The random variable d represents the

distance between an unlicensed node and its closest neighbor. We can compute this

using the Rayleigh distribution we derived in Corollary 2. In particular, for our

density uniformity parameter Rmin, we know that

E[d2] =
2

π2R2
minδ

2
W

(3.77)

Plugging this into our SIR, we obtain,

E[SIR] =
µW δ2

W λ2R2
min

32π

(

E[PI ] + E[PW ] +
E[PL]BL

BU

)−1

=
π

4
µW δ2

W R2
min

(

µIδI log RI + µW δW log RW +
µLBL log RW

πBUR2
W

)−1
(3.78)

Thus our per-link capacity is defined by the Shannon-Hartley Theorem.

C = BU log

(

1 +
π

4
µW δ2

W R2
min

(

µIδI log RI + µW δW log RW +
µLBL log RW

πBUR2
W

)−1
)

(3.79)

As before, µW is defined as µid
W or µgen

W , depending on the model. The total network

capacity is the per-link capacity multiplied by the number of nodes.

CN = CπR2
W δW (3.80)
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For a given set of µ, δ, and R parameters, our per-device capacity is O(BU log BU).

3.4.3 Wireless LAN

For our Wireless LAN model, we now assume that the radius of our under-

lay network is significantly smaller than, and wholly contained within our licensed

network.

The first steps are completed as before. The computation of PI and µW are

the same. The value of µW reflects either µid
W or µgen

W , as derived in the previous

section, with the exception that the wireless network does not have to be at the

center of the licensed network, which affects the generalized model. Let rW , where

0 < rW < RL − RW and RW � RL, reflect this distance. Then,

µgen
W =

TLkBU

M
− PI − PW − BL

BU

PL

=
TLkBL

M
− λ2µI

8π2RI

(

δIπRI log RI +
√

2δIπ(R2
I − log2 R2

I − 1)

)

− λ2µid
W

8π2RW

(

δW πRW log RW +
√

2δW π(R2
W − log2 R2

W − 1)

)

− BLλ2µL

16π2BUr2
W

(3.81)

Solving for µgen
W , we get

µgen
W =

8π2TLkBL/M − λ2

(

µI

(

δIπ log RI + R−1
I

√

2δIπ(R2
I − log2 R2

I − 1)

)

+ BLµL

2BU r2

W

)

8π2 + λ2

(

δW π log RW + R−1
W

√

2δW π(R2
W − log2 R2

W − 1)

)

(3.82)

The capacity computations are similar, except the noise from the licensed node
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has changed, and is a function of rW .

C = BU log

(

1 +
π

4
µW δ2

W R2
min

(

µIδI log RI + µW δW log RW +
BLµL

2BUr2
W

)−1
)

(3.83)

3.5 Impact to Licensed Users

The analysis so far has assumed an interference temperature limit TL and

distance coefficient M have been specified by a regulatory body. However, we have

not yet investigated how their values affect licensed transmitters.

For each we derive ∆TL
and ∆M , which reflect the lower bound for the frac-

tional decrease in coverage area due to the implementation of the interference tem-

perature model. Their cumulative effect, ∆TL
∆M reflects the total lower bound for

decrease in coverage area.

For example, if the original coverage area was 100 square kilometers, and

∆TL
= ∆M = 0.9, then the resulting coverage area would be 81 square kilometers

or larger.

3.5.1 Selection of TL

Consider a licensed signal at frequency fc using bandwidth BL. For most cases,

the generalized model will cause less interference than the ideal model, so here we

focus on the ideal model.

Provided the interference temperature limit is met at all licensed receivers, in
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a worst-case scenario the noise floor will move from TI(fc, B)kBL to TLkBL at each

receiver. Let T̄I be the average interference temperature measured over the entire

area of our licensed receivers.

Let’s assume the same SIR is required to receive signals in both the original

environment and the new environment where the interference temperature model is

employed. This means the following relationship is true, based on path loss:

µLλ2

kBLTL16π2R′α
L

=
µLλ2

kBLT̄I16π2Rα
L

(3.84)

where α = 2 represents standard free-space path loss.

Here RL was the original licensed signal range, and R′
L is the new signal range.

We can cancel many of the variables, and the resulting relation results

TL =
T̄I

∆
α/2
TL

(3.85)

where ∆TL
represents the fraction of the original coverage area remaining once the

interference temperature model has been established. We can easily rewrite in terms

of ∆TL
as

∆TL
=

(

T̄I

TL

)2/α

(3.86)

Interestingly, or fractional increase in noise floor is directly proportional to the

fractional decrease in licensed signal coverage area for α = 2.

According to the original FCC specification [10], a likely interference tem-

perature limit would be (max TI) over some time period, thus allowing unlicensed
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transmission in the existing interference. We can compute this as a confidence in-

terval on PI . Define the interference temperature limit as

TL = E[PI ] + β
√

Var[PI ] (3.87)

where β ≥ 2.

From this we can compute our fractional decrease per our prior derivation.

∆TL
=

(

E[PI ]

β
√

Var[PI ]

)2/α

=

(

δIπ log RI

δπ log RI + β
√

δIπ/2

)2/α
(3.88)

Note that this value depends only on the density of interferers and the interferer

radius, and not on their power.

3.5.2 Selection of M

The variable M represents the attenuation due to path loss between an un-

licensed transceiver and a licensed receiver. Its use is intrinsic to the interference

temperature model which dictates interference received, not transmitted. In this sec-

tion we assume free-space path loss, since unlicensed devices typically operate over

shorter distances where the free-space model is most accurate.

In this section we propose a mathematical formulation based on Corollary 2 for

selecting a value of M to minimize the number of receivers to whom we inadvertently

cause harmful interference.
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Suppose a single unlicensed transmitter is surrounded by licensed receivers

that are randomly placed with a uniform distribution. Let the average density of

the receivers be δL devices per unit area.

From Corollary 2, we can compute the distance d necessary to guarantee that

with probability p we are distance d from the closest licensed receiver.

d =
1

πRminδL

√

−2 log(p) (3.89)

We can also define our distance d in terms of the fraction decrease ∆M of devices

with no harmful interference as

d =
1

πRminδL

√

−2 log
(

∆
1/πδW R2

W

M

)

=
1

πRminRW δL

√

−2 log ∆M

πδW

(3.90)

We can convert this to M using free-space path loss

M =
λ2

16π2d2

= −λ2R2
minR

2
W δ2

LπδW

32 log ∆M

(3.91)

Consider an example where 200 television sets exist in a single square kilome-

ter, yielding δL = 200. Let Rmin = 50 meters, equating with us being sure that there

are 8 television sets per 4 houses. Imagine we want to form an underlay network

with 10 nodes. Using our relations, we can compute d = 20 meters to ensure that

with 98 percent probability we will cause no harmful interference, or in other words
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interfere with 4 televisions on average.

3.6 Conclusion

In this chapter, we’ve developed algorithms to measure interference temper-

ature and analyzed the interference temperature model from a purely stochastic

perspective. We have proved that realizable network capacity is independent of al-

most all our model parameters. We have also derived how the underlay network

will affect the licensed signal, showing a fractional decrease in coverage area equal

to ∆M∆TL
which can be computed from M and TL.

One major bullet for future work is the model for analyzing network capacity.

In particular, we assume free-space path loss, because no closed-form solutions exist

for the capacity in more higher-order RF propigation models. This area deserves

further study, though we suspect the only practical means of accurate analysis would

be through the simulation conducted in Chapter 4.
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Chapter 4

Interference Temperature Multiple Access

This chapter describes a new multiple access technique called interference

temperature multiple access (ITMA). ITMA relies on the cognitive radio’s ability

to sense its environment and regulate bandwidth and power usage on a per-packet

basis. It uses interference temperature to sense its environment, and transmits using

the bandwidth and power derived from the analysis in Chapter 3.

In this chapter, we define the physical (PHY) and medium access control

(MAC) layers for ITMA. The main goal of the PHY is to support dynamic band-

widths and powers on a per-packet basis. The lower MAC layer is responsible for

coordinating access to the PHY, and implementing the basic mechanisms of the in-

terference temperature model. The upper MAC handles higher-level functions like

device discovery and authentication. We describe some of the necessary features of

the upper MAC, but most of it is left as future work.

4.1 ITMA PHY Layer

The physical layer defines the RF properties of a link between two cognitive ra-

dios. It instantiates the bandwidth and power values determined by the interference

temperature model.

There are a couple basic underlying communication techniques that would
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Figure 4.1: Packet spectral occupancy as a function of time, illustrating the dynamic
bandwidth used by each packet

lend themselves well to this environment. The first is orthogonal frequency division

multiplexing (OFDM). In OFDM, signals are constructed in the frequency domain,

rather than the time domain, and therefore creating a signal of arbitrarily large

bandwidth can be easily achieved. See Chapter 5 for a more detailed description of

OFDM.

Another fundamental underlying waveform, and the one upon which we will

focus in this chapter, is direct-sequence spread spectrum (DSSS) [34]. In DSSS the

bandwidth of your transmitted signal is generally a function of the chip rate you

use to spread your signal. If your chip rate is n times faster than your symbol rate,

your spread bandwidth will be n times larger than your narrow-band bandwidth.

As the next section describes, the MAC layer will instruct the PHY on a

power and bandwidth to use for a particular transmission that meet the interference

temperature model constraints. The PHY must implement the specifications.
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Before each packet transmission, the cognitive node determines suitable capac-

ity C and range L requirements for the data to be sent. Typically C will be selected

on a per-application basis and L will be selected on a per-destination basis. Using

these values, the necessary bandwidth can be computed, which will be accomplished

by selecting an appropriate DSSS chip rate.

Each packet is preceded by a PHY header that is spread using one of several

well-known pseudonoise (PN) sequence with predefined chip rates. This header

contains the PN generator seed and chip rate used for the remainder of the packet.

This is illustrated in figure 4.1. For every packet transmitted, the transmitter will

compute a new PN sequence. This provides CDMA-like features for the MAC.

Long, non-repeating PN sequences should be used. A good candidate would be

simple m-sequences [31]. The space of seeds should be sufficiently large to prevent

frequent reuse, which increases the probability that two simultaneously transmitted

packets use the same PN sequence and would interfere with each other. A 16-bit

value should be sufficient.

On important requirement is that the PHY header not cause harmful inter-

ference. If fc is close to a licensed signal, than using a large bandwidth might cause

problems. As a result, for each possible well-known chip rate and spreading code,

the associated bandwidth, power, and capacity should be computed. The one max-

imizing the capacity function should be selected. This offers the highest probability

of packet delivery.

The spreading code used for the PHY header should also have a low autocor-

relation value. Since there is a possibility of two PHY headers being simultaneously
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Figure 4.2: General state machine for ITMA, indicating TI measurement loop with
decreasing QoS and eventual frequency shift if unable to transmit packets

transmitted, to minimize interference something like a Barker code should be em-

ployed.

Receiving radios must be able to sync up to the preamble and recognize the

chip rate and spreading code. This can be done using readily available spread-

spectrum technology.

4.2 Basic ITMA MAC Layer

Figure 4.2 depicts the operation of ITMA. When a node wishes to transmit a

packet, it first measures the interference temperature, TI . As described in Chapter
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3, this would likely be implemented as an iterative process, since TI is a function of

the measurement bandwidth.

The MAC then uses this value in conjunction with the interference temperature

limit TL, the desired capacity C, and the range parameter L, to compute the required

bandwidth B and chip rate. This must be done several times in order as B converges.

Given some tolerance ε, the cycle repeats until

|Bi − Bi−1| < ε (4.1)

If the bandwidth required to successfully transmit the packet is less than a specified

maximum bandwidth Bmax, the packet is transmitted.

If B > Bmax, the packet cannot be transmitted. The radio has a few options

available, including those that follow.

1. It can simply wait. Transient interference could be causing a temporary in-

ability to communicate. Once TI decreases, communication can resume.

2. It can decrease C, decreasing the packet’s data rate. For services requiring a

minimum throughput, it may not be possible to decrease C below a predefined

threshold Cmin.

3. The node can increase L, decreasing the radio’s range. If the packet’s des-

tination is at a distance or is subject to fading or shadowing, L cannot be

increased beyond some maximum Lmax.

4. If C < Cmin, L > Lmax, and some timeout period has expired, the last resort
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is to shift the network to a new center frequency. Section 4.3.1 describes this

further.

It is important to note the features afforded by using unique spreading codes

for every packet transmitted. Initially a receiver need only listen to the PHY header

for the packet. If the MAC address contained within the header does not match one

of its own, it does not have to demodulate the rest of the transmission. This means

that two packets can be transmitted simultaneously without colliding, so long as

their headers are disjoint in time. A transceiver can receive a PHY header, and

if the address does not match, it can immediately transmit its own packet without

waiting for the first packet to finish. The near-far effect can be combated by effective

choice of L (see section 4.3.2).

This observation indicates that the system will be more efficient with a large

maximum transit unit (MTU). Larger MTUs reduce header overhead. Since headers

are the only thing that can collide, the fewer of them transmitted the better.

4.3 Higher MAC Functions

This section describes some of the higher-level MAC functions implemented

by ITMA. It addresses techniques for selecting a center frequency, how to better

measure TI and L, and discusses the the hidden terminal problem and how to

mitigate its effects.
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4.3.1 Center Frequency Selection

While bandwidth and power can change from packet to packet, the center

frequency fc should remain fairly static. When a network is initially configured, an

optimal value must be selected. Algorithms for accomplishing this are described in

Section 3.3.

If the interference temperature increases to a point at which communication

within bandwidth limitations is not possible for the given QoS requirements, a

frequency shift may be required. Since significant overhead will be required to

regain connectivity among all nodes, frequency shifts should only be used as a last

resort.

When network connectivity is lost, a node enters a scan and beacon cycle. In

the scan mode, it hops between all f ∈ F searching for other nodes with whom it can

communicate. At the same time, it records the interference temperature TI at each

frequency. If no other nodes are found, it performs the initial frequency selection

and begins beaconing. After some random timeout, if no devices have connected, it

resumes the scan mode.

A potential problem is a network partition where multiple radio networks form

on different center frequencies. These can be combined in the same way IEEE 802.11

consolidates ad-hoc networks with the same network name.

ITMA intentionally does not include unauthenticated packets that instruct a

network to change center frequencies. It would yield a very powerful denial of service

attack by flooding spoofed frequency change messages at different locations within
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the network. If upper-level security is enabled and devices are authenticated, more

coordinated frequency shifts are possible if connectivity isn’t completely lost.

4.3.2 Statistics Exchange

Imagine two nodes N1 and N2 communicating. In every packet sent from N1

to N2, N1 will include its current TI and the value of received power P ′
S from the

last packet from N2.

These statistics can help N2 in several ways. First, N2 can use P ′
S to gauge

the distance between itself and N1, which can be used to optimize L and compute

Lmax. If P ′
S/kB is significantly higher than TI , L can likely be increased on packets

sent to N1.

The near-far problem affecting CDMA is a little different with ITMA since

bandwidth varies from packet to packet. In CDMA the problem is solved by strict

power control. Notice that in ITMA power is fixed, relative to TI and TL so we solve

it through bandwidth control.

Secondly, TI can be used to better judge the interference environment at N1.

N2 could take a weighted average of the surrounding interference environment when

computing PS to avoid causing unintentional interference to spectrum licensees.

4.3.3 Hidden Terminal Problem

For the most part, CDMA has been used in infrastructure networks, typically

cellular in nature. Devices only communicate with a base station or access point,
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and never to each other. As a result, it would never be the case that two or more

devices in the network were simultaneously communicating with a third device.

The hidden terminal problem [32] primarily affects CSMA networks, how-

ever moving CDMA to an ad-hoc topology introduces a new problem called the

concurrent transmission problem. Here, two or more devices in the network can

simultaneously transmit to the same destination device. As these transmissions will

be appropriately power controlled, the receiver will be capable of receiving any one

of the messages. Assuming it has only a single radio and limited DSP power, it

cannot receive more than one.

This problem is different from the hidden terminal problem, because in the

hidden terminal problem, when a packet collision occurs, all packets are lost. Here,

packets are not lost, but only one of the packets can be received. This feature greatly

improves ITMA’s ability to transmit data; however, while these extra packets do

not collide, they raise the overall interference temperature, decreasing our per-link

capacity.

To combat this problem, we introduce the idea of destination hints to help

decrease the chance of a concurrent transmission. In ITMA, radios receive the

PHY headers for all packets in their range. These headers contain the address of

the destination. Destination hints is an approach where if node A sees a header

addressed to node B, it assumes the receiver at node B is busy, and A should not

transmit for some amount of time. If we add packet timing information to the PHY

header, nodes can know precisely how long a particular receiver will be busy.

This approach would work best in single-hop networks, since everyone in the
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Figure 4.3: Diagram of a radio node capable of receiving three packets simultane-
ously

network would be able to see everyone else’s PHY headers. In multi-hop networks,

not all nodes can see all transmissions, so hints would only lessen the problem, not

solve it.

Another approach is to have radios that support receiving multiple packets si-

multaneously, much like a cellular base station. As long as SIR constraints aren’t vi-

olated, it should be possible to receive all packets. Figure 4.3 diagrams a transceiver

that can receive three packets. More than two or three receivers is not likely to help

performance, as radios supporting the bandwidth required to properly decode all

packets, given equal SIR, would not be cost effective.

4.4 Simple Example

Consider the network depicted in figure 4.4. Nodes are equidistant, spaced 500

meters. Assume we can guarantee there are no licensed receivers within 200 meters

of the transceivers. Using free-space path loss, and assuming fc = 600 MHz, the
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Figure 4.4: Small network of three equidistant nodes

loss variables can be computed as:

L = 1 · 10−7

M = 6 · 10−7

For our temperatures, let us use the following values:

TI = 293 Kelvin

TL = 3000 Kelvin

Here, we assume the background interference is caused solely by thermal noise, hence

an interference temperature of 293 Kelvin.

Let TSi
be the signal temperature for node i. Each transmitting node will

contribute to the base interference temperature TI , and therefore will cause other

nodes to decrease in power. The steady-state powers for all nodes transmitting is
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governed by

MTSi
= TL − TI − L

∑

j 6=i

TSj
(4.2)

Solving this system of equations we obtain the following solution:

TSi
=

TL − TI

2L + M
(4.3)

To compute the bandwidth required, we need an effective TI composed of the

base interference in addition to the new signals.

T̃I = TI + 2L
TL − TI

2L + M
(4.4)

Assuming a desired capacity of 5 Mbps, and substituting this into the bandwidth

equation we obtain a bandwidth requirement of 11.6 MHz. This equates to a trans-

mit power of −62.7 dBm.

Results on this order of magnitude should be quite acceptable to both spectrum

licensees and secondary users. For example, most analog television sets have a

receive sensitivity of roughly -50 dBm. These transmissions would therefore never

interfere with current broadcast TV. However, in the future, DTV will have much

tighter restrictions, with sensitivity on the order of -110 dBm. In this case, a much

lower TL would be necessary to reduce interference.
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4.5 Network Analysis

This section presents a mathematical analysis to examine network scalability

as a function of node density. For simplicity, we analyze a synchronous network

where in each time slice a device can either transmit a packet or not transmit a

packet.

Let the probability of transmission be p. Assume the transmission is omni-

directional, and can reach a maximum of m neighbors, and it is addressed to one

of the neighbors uniformly. Consequently the probability of node A transmitting a

packet addressed to particular neighbor node B in any given time slice is p/m.

Next we must consider the effects of collisions. For simplicity, let us assume

there is no contention between the PHY headers used in ITMA. A node A success-

fully receives a packet if at least one of its neighbors transmits a packet addressed

to A, and A itself does not transmit. This probability is

PITMA(p,m) = (1 − p)
(

1 −
(

1 − p

m

)m)

(4.5)

To compute bounds on capacity, we must select a probability p∗ such that the

following holds:

PITMA(p∗,m) ≥ PITMA(p,m) ∀p ∈ [0, 1] (4.6)

Unfortunately, a closed-form maximizer does not exist. However, we can com-

pute p∗ numerically and substitute it to obtain P ∗
ITMA(m). If we evaluate the limit
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numerically, we have

lim
m→∞

P ∗
ITMA(m) ≈ 1/5 (4.7)

This results in a constant complexity

O (P ∗
ITMA(m)) = O(1) (4.8)

As the neighbor count of an ITMA network increases, the probability of a

node receiving a packet during each time slice approaches an asymptote. However,

we must consider that as the number of neighbors increases, so do the number of

concurrent transmissions. As this happens, our SIR decreases, which assuming a

fixed maximum bandwidth and power, decreases our per-link capacity. The effects

of this are as follows:

Clink(m) = B log2

(

1 +
PS

mPI

)

O(Clink(m)) = O(log(1 + 1/m))

= O(1/m)

(4.9)

The last step is due to the fact that a Taylor series expansion of log(1 + 1/m) is as

follows:

log(1 + 1/m) =
1

m
− 1

2m2
+

1

3m3
− 1

4m4
+ · · · (4.10)

Application of O(·) yields O(1/m). Thus our overall per-node capacity as a function

73



of its neighbor count is

CITMA(m) = O(1) · O(1/m)

= O(1/m)

(4.11)

These results indicate that as node density increases, overall capacity de-

creases. This should be fairly obvious. As we share a fixed resource among m

nodes, the per-node allocation will be O(1/m). This indicates we want to minimize

our neighbor count in order to maximize our per-node capacity. As a network grows,

this implies a transition from a single-hop ad-hoc network to a multi-hop mesh-like

network.

Consider a multi-hop network of ITMA-based nodes covering a fixed area. As

the total number of nodes n increases in this fixed area, so does the average node

density.

If we place no restrictions on transmit power and bandwidth, and allow trans-

mission at the radio and regulatory maximums, the number of neighbors will in-

crease with n, that is O(m) = O(n). Thus, the per-node capacity is O(1/n), and

the network-wide capacity is

Cnet(n) = O(1/n) · n

= O(1)

(4.12)

So as our network density increases, if power control is not used, we have a

constant overall network capacity as a function of the number of nodes. Also notice
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Table 4.1: Summary of network capacity versus network latency trade-off in multi-
hop ITMA-based networks, in terms of node count n.

Network Capacity Latency

Minimize Latency O(1) O(1)
Hybrid Approach O(

√
n) O( 4

√
n)

Maximize Capacity O(n) O(
√

n)

that the network latency remains constant as O(1), since packets still traverse the

same distance with each hop.

To maximize capacity, however, we need to consider a power/bandwidth-

controlled scenario that keeps our neighbor count constant as n increases. Thus

O(m) = 1, implying a per-node capacity of O(1). The network-wide capacity is

then

Cnet(n) = O(1) · n

= O(n)

(4.13)

This gives us obvious capacity gains, but we must consider the latency. To

maintain a constant neighbor count, the transmission range must decrease as O(1/
√

n).

The result is a latency that increases as O(
√

n).

Certainly hybrid approaches also exist. One example is where we allow our

neighbor count to increase as O(
√

n). The result is a capacity that grows with

O(
√

n) and a latency of O( 4
√

n). These results are summarized in table 4.1. In

general, we have

capacity = O(latency)2 (4.14)
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Also, we must note that as node density increases, we will eventually reach a

saturation point. Results from the next section show that extremely dense topologies

can be easily accommodated.

4.6 ITMA Simulator

In order to evaluate ITMA and some of the various techniques for reducing

concurrent transmission, a simulator supporting interference temperature measure-

ments was created. Given the power and SIR seen by a transmission, it computes

an information theoretic maximum capacity for each packet. After a certain amount

of time has passed, the total number of successful bits is divided by the simulation

time to determine a network-wide capacity.

In this simulation, we ignore propagation delay. This is a reasonable assump-

tion as typically propagation delay is small compared to transmission time. A 10

Mbps, 300m link requires 800 µs to transmit a 1000-byte packet, while the propa-

gation delay is 1 µs. This simulator uses the free-space path loss radio propagation

model, where power decays as a function of the distance squared, though this is

configurable.

4.6.1 MAC Design

The ITMA MAC is broken down into two main events, tx-start and tx-end.

The tx-start event is executed whenever a node wishes to transmit a packet. It

executes the following tasks:
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1. if currently receiving a packet, backoff

2. select a destination node

3. measure the interference temperature

4. compute the power and bandwidth required for the transmission

5. if the required bandwidth is outside the radio or regulatory specifications,

backoff

6. set transmission flag

7. if destination node is transmitting, set packet as lost

8. if destination node is receiving as many packets as possible, set packet as lost

9. increment the number of packets the receiver is receiving

10. schedule tx-end event

The backoff command consists of rescheduling the same tx-start event for

some randomly chosen time in the future. The tx-end event is scheduled for when

packet transmission is complete. It executes the following tasks:

1. reset transmission flag

2. decrement the number of packets the receiver is receiving

3. if the packet is not lost, increment the number of received packets

4. schedule a new transmission

At the termination of every scheduled event, the simulator evaluates all current

transmissions to see if the interference temperature at each receiver has increased

too much.
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When a packet is transmitted, B and PS are computed as a function of some

desired capacity αC. Here C is the target capacity, and α > 1 is a scaling factor

that adds a safety margin. In a real radio, capacity is instantiated by some set

of modulation and coding, which cannot be changed in the middle of a packet if

interference increases. If we used the minimum B and PS, a slight increase in the

interference temperature at the receiver during packet transmission would prevent

reception. Using the scaling factor α protects us from this.

We deem a packet lost if the following inequality does not hold:

C ≥ B log2

(

1 +
P

kBTI

)

(4.15)

where B and P were computed with respect to a desired capacity times a safety

margin αC. This is evaluated as follows:

1. loop through all transmitting nodes t ∈ T ⊆ N

2. measure the IT at the receiver

3. compute the capacity C ′

4. if C ′ < C, mark packet as lost

5. end loop

4.6.2 ITMA Parameter Experiments

In this section, we simulate ITMA over its parameter sets. This will illustrate

how each parameter affects overall network performance and transmit power. All

78



Figure 4.5: Network capacity and transmit power as a function of node density

Figure 4.6: Network capacity and average transmit power as a function of the desired
per-packet receive capacity
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Figure 4.7: Network capacity and average transmit power as a function of the in-
terference temperature limit

Figure 4.8: Network capacity and average transmit power as a function of M , where
M is computed using free-space path loss over the distance specified on the x-axis
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Figure 4.9: Network capacity and average transmit power as a function of the safety
scaling parameter α

Figure 4.10: Network capacity as a function of node count, plotted with various
concurrent transmission mitigation techniques being used
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simulations assume nodes are in a 500 meter by 500 meter world, with positions

selected uniformly over the area. We assume a base interference temperature of 293

Kelvin, caused by thermal noise.

To illustrate how various parameters affect performance, we vary each while

keeping others constant at a reasonable value. Table 4.2 lists default simulation

parameters.

Each plot shows the total network capacity. All plots show both the total

network capacity and the average transmit power. The network capacity is com-

puted as the sum of all successfully received bits across the network divided by the

simulation time. The average transmit power is the mean power across all packet

transmissions.
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Table 4.2: Base simulation parameters
Parameter Value

node count n 100
target link capacity C 5 Mbps
IT limit TL 2500 K
ITMA constant M 40 meters
ITMA constant α 2.5
max radio bandwidth Bmax 20 MHz
max radio power Pmax 10 mW
center frequency fc 600 MHz

Figure 4.5 examines how capacity changes with the increase of the number

of nodes spread over the 0.25 km2 area. This is the network density problem.

Impressively, without any special interference mitigation techniques, ITMA achieves

near-linear scaling. In fact, regression analysis indicates that the achieved network

capacity C ′
net(n) is

Ω(
√

n) < C ′
net(n) < O(n) (4.16)

The simulation results in a hybrid scheme tending toward network capacity opti-

mization. Power is relatively unaffected by node density.

Figure 4.6 shows how capacity and power change with the desired packet

receive capacity. Initially, as the desired capacity increases, we have an increase

in overall network performance. However, quickly the network is saturated, and

we reach a global maximum at roughly 3.5 Mbps. Increased spectrum utilization

required to reach the target capacity causes harmful interference to other network

users. Interestingly if you look at packet delivery rates, as C increases, they approach

100 percent. Fewer packets are sent, but there are no lost packets.
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Figure 4.7 depicts both network capacity and transmit power as a function of

TL. Increasing TL represents the FCC allowing more interference from unlicensed

devices. Keeping TL small limits the transmit power and consequently the ranges

of the radios. The network capacity tops out at just under 12 Mbps, while the

average transmit power is O(log(TL)). It’s interesting that capacity doesn’t continue

increasing with the interference temperature limit increase. If you look at lost

packets, as TL increases, so does the number of transmitted packets. Unfortunately,

the number of lost packets increases too, resulting in the asymptotic behavior.

Figure 4.8 reflects network capacity and transmit power as the distance in-

creases between unlicensed transmitters and the licensed devices with which they

may interfere. To compute M from the varying distance, the free-space path loss

model was used. Increasing the distance reflects an ability to transmit with higher

powers. Network capacity maximizes at 56 meters. Transmit power is again loga-

rithmic. Packet loss is similar to increasing TL.

Lastly, we examine the safety parameter α in figure 4.9. It is used to compute

the transmit power and bandwidth necessary for a desired capacity. The higher

the value of α, the more bandwidth will be used. This will allow successful packet

reception even if the interference temperature increases at the receiver during trans-

mission. Obviously for α < 1 successful packet transmission is unlikely, as capacity

constraints are almost always violated when the packet is first transmitted. To

minimize wasted network resources, a small α should be selected. We see a global

maximum at α = 2.0.

The major results of these simulations are as follows. First, in almost all cases,
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transmit power is logarithmic in each of the parameters. Also, for two parameters,

C and α, we can find unique, global maximizers. Both parameters are local to each

radio, so cognitive nodes could update them in real time to optimize overall network

performance. Lastly, these simulations provide insight into good ways to select the

FCC-controlled parameters M and TL.

4.6.3 Concurrent Transmission Mitigation Experiments

In section 4.3.3 we introduced some techniques for mitigating the effects of

concurrent transmissions. The first is a Smart MAC that implements both desti-

nation hints, and also senses whether or not the destination is transmitting. The

second is to have a radio node with multiple receivers.

To investigate the impact these techniques have on a network of ITMA nodes,

we included support for these in our simulator. Figure 4.10 plots network capacity

for the various techniques as a function of network density. We can see that for

sparse networks, we can achieve a 30% performance increase by implementing these

techniques. However, as the node count increases, the advantage decreases. At

100 nodes, there is only a 1% increase in overall performance when the concurrent

transmission mitigation techniques are used.

It is expected that deterministic networks with relatively static traffic patterns

would benefit more from these mitigation techniques.
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4.6.4 Interference Analysis

In this section we investigate the amount of interference caused by an ITMA-

based network, and how it relates to the interference temperature limit. To accom-

plish this, a measurement routine was added to the simulator. It is responsible for

measuring the signal power on a grid with 10 meter edges, throughout the experi-

ment area. At the end of the simulation, it outputs the maximum power recorded

at each measurement site.

Figure 4.11 shows these signal powers in a three-dimensional plot, when the

simulator is executed using the parameters from table 4.2. Spikes represent the

locations of cognitive radio transceivers. The measured powers range from -100

dBm to -60 dBm.

This chapter provided an analysis of the scalability and capacity that can

be achieved by an ITMA-based network. It shows that ITMA scales such that

O(capacity) = O(latency)2. It also examines some techniques for mitigating the

concurrent transmission problem, and evaluates their performance through simula-

tion.

86



Chapter 5

Spectral Shaping

The fundamental concept of the interference temperature model is to avoid

raising the average interference power for some frequency range over some limit.

However, if either the current interference environment or the transmitted underlay

signal is particularly nonuniform, the maximum interference power could be partic-

ularly high.

Another interesting application of spectrum shaping would be in the ideal in-

terference temperature model, where we could regulate control interference power

when we overlap licensed signals, but transmit with higher power at other frequen-

cies.

5.1 Problem Formulation

To better understand the problem, let’s examine the differences between max-

imum power and average power. Figure 5.1 depicts three power curves, interference

PI(f), signal PS(f), and total PT (f), where

PT (f) = PI(f) + PS(f) ∀ f ∈ [fc − B/2, fc + B/2] (5.1)

Each signal has mean over bandwidth B of P̄I , P̄S, and P̄T , respectively.
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interference power PI(f)
average interference power PI

signal power PS(f)

average signal power PS

total power PT(f)

average total power PT

fc
freq

power

Bandwidth B

Figure 5.1: Figure showing that approximating PT (f) over the interval [fc−B/2, fc+
B/2] by the average power P̄T could yield unexpected interference exceeding regu-
latory allowances..

Assuming a fixed bandwidth, then the interference temperature model stipu-

lates that

P̄T ≤ B k TL (5.2)

As figure 5.1 indicates, even with equality we have no real guarantee on absolute

maximum interference. A stronger requirement would be

PT (f) ≤ B k TL ∀ f ∈ [fc − B/2, fc + B/2] (5.3)

Note that this requirement wholly implies the first. That is,

max PT (f) ≥ P̄T ⇒
(

PT (f) ≤ B k TL ⇒ P̄T ≤ B k TL

)

(5.4)

Thus, in order to maximize both capacity and spectral efficiency while minimizing

absolute interference, we must find some PS(f) such that PT (f) = B k TL.

We can actually build off the algorithms developed in Chapters 3 and 4. These
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Figure 5.2: Simplified OFDM transmitter.

algorithms give us P̄S and B1 that reach our target capacity while satisfying the

interference temperature constraints. Knowledge of B is sufficient, and we compute

PS(f) = B k TL − PI(f) ∀ f ∈ [fc − B/2, fc + B/2] (5.5)

Now that we know the bandwidth and spectral shape required of our trans-

mission, the goal is to actually create a waveform that achieves it. The next sections

describe two ways of accomplishing our goal. The first technique uses power con-

trol across OFDM sub-carriers. The second approach creates spreading codes with

certain spectral characteristics that shape the signal.

5.2 Spectral Shaping with OFDM

In OFDM, waveforms are essentially constructed in the frequency domain and

converted into the time domain before being transmitted. Figure 5.2 illustrates such

1Note that B either reflects BL or BU depending on whether we are considering the ideal or

generalized model, respectively.
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a transmitter. Symbols are complex numbers representing modulated bit streams.

For example, if quadrature phase shift keying (QPSK) is the underlying modulation

technique, bit streams of length two would be modulated as 1 + j, 1− j, −1 + j, or

−1 − j. The complete block {a1, ..., aN} are then sent into the inverse Fast Fourier

Transform (FFT) to produce a time-domain waveform. The real and imaginary

components of the complex baseband signal are multiplied by sin and cos to create

the passband signal s(t). Mathematically, the complex-baseband signal v(t) can be

expressed as

v(t) =
N
∑

k=1

ake
j2πkt/T ∀ 0 ≤ t ≤ T (5.6)

Assuming a uniform distribution over the input symbols, the average power

spectrum is essentially flat as a function of frequency. Our goal is to affect this

average power. In particular, assume our bandwidth B is broken up into N sub-

carriers, as described. The desired average power for subcarrier k is

pk = B k TN − ik (5.7)

where

ik =
N

B

∫ fc−B(N−2k−2)/2N

fc−B(N−2k)/2N

PI(f) df (5.8)

Let α be the average symbol power for the underlying modulation scheme. We

can then reformulate our complex-baseband OFDM signal as

v(t) =
1

α
√

2

N
∑

k=1

akpke
j2πkt/T ∀ 0 ≤ t ≤ T (5.9)
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This will convert the average power on subcarrier k from α to pk. The
√

2 is necessary

to normalize since multiplication by pk will affect both the real and complex portions

of the waveform.

Alternatively, symbols could all be multiplied by some relative scaling value

such as pk/(B k TN−P̄I) and then the final signal s(t) could be adjusted such that its

average power was P̄S. This approach would likely make more sense in a real-world

transmitter where amplification happens in the RF front end.

Regardless, we can now shape our power spectrum. However, we must be able

to effectively utilize our spectral resources if we hope to achieve channel capacity.

In particular, the capacity on each subcarrier varies, as each has a different SIR.

This means different coding is necessary on each subcarrier to achieve capacity.

The capacity on subcarrier k is

Ck = B/N log2(B k TL/ik) (5.10)

This espression is based on the Shannon-Hartley theorem. Its vailidity is based on

the assumption that the subcarrier bandwidth is much smaller than the coherence

bandwidth for the interference, and as a result we can assume the interference is

white.
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The total capacity is

C =
N
∑

k=1

B/N log2(B k TL/ik)

= B log2(B k TL) − B

N

N
∑

k=1

log2 ik

(5.11)

If we have uniform interference, i.e. ik = P̄I , then this equals the capacities derived

earlier for the interference temperature model. However, variances in ik will actually

help us achieve higher capacities, since

1

N

N
∑

k=1

log2 ik ≤ log2 P̄I (5.12)

Thus, with proper channel coding, we can outperform the standard interfer-

ence temperature model by performing spectral shaping with OFDM. Not only can

we decrease the maximum interference experienced by others, but we can also in-

crease our capacity while using the same average transmission power and meeting

regulatory requirements.

5.3 Spectral Shaping with DSSS

Direct Sequence Spread Spectrum (DSSS) is another technique commonly em-

ployed for creating wide-band signals. Here we start with a narrow-band complex-

baseband signal and “spread” it using a spreading code.

In Figure 5.3 we can see the basic operation of a DSSS transmitter. Modulated

symbols a(t) are multiplied by a high-frequency signal c(t) before being up-converted
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Figure 5.3: Simplified DSSS transmitter.

to passband.

Our goal is to specify c(t) such that s(t) has the spectral properties we desire.

Mathematically, we have can define our complex baseband signal v(t) as

v(t) = c(t) a(t) (5.13)

Thus we have

c(t) = v(t)/a(t) (5.14)

Let’s look at v(t), the desired signal. In the frequency domain, we have

V (f) = PS(f − fc)

= ΠB(f − fc)(B k TL − PI(f − fc))

= ΠB(f − fc)(B k TL −F(i(t)))

(5.15)

Here ΠB is the width-B rectangular function, and i(t) is the current interference

environment, downsampled to passband.
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Returning to the time domain, we have

v(t) = F−1(V (f))

= F−1 (ΠB(f − fc)(B k TL −F(i(t))))

= w(t) ? (B k TL δ(t) − i(t))

= w(t) ? (B k TL δ(t)) − w(t) ? i(t)

= w(t) B k TL − w(t) ? i(t)

(5.16)

where ? is convolution and

w(t) =
sin(Bt/2)

πt
ejfct (5.17)

Thus combining everything, we have

c(t) =
w(t) B k TL − w(t) ? i(t)

a(t)
(5.18)

This approach has some major realization drawbacks. Notice that H(c(t)) ≥

H(a(t)), thus our spreading sequence actually contains more information than our

information sequence. When we multiply c(t) by a(t), we actually cancel out the

data symbols and transmit a signal with exactly the spectral characteristics we want.

No actual data flows over the main channel, and everything passes through the side

channel in which we convey the spreading code. Thus, this ideal approach is not

realistic.

As a result, we must assume i(t) and a(t) are stationary, and sample them over
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a short period of time. From them, we compute c(t) and discretize it into something

we can represent in a finite number of bits to be communicated via our side channel.

Such sampling will obviously degrade our performance, but is necessary to make the

scheme practical.

Let τc be our spreading code’s chip time and τs be our symbol time. If BN is

our narrow-band bandwidth, we must have

τc > BN τs/B (5.19)

in order to provide enough bandwidth expansion.

Thus, we must sample c(t) every τc units of time, and we need at least τs/τc

samples. More samples will provide a more accurate estimate and decrease interfer-

ence. Any fewer and we won’t get the necessary bandwidth expansion.

Assume we sample both the real and complex values of c(t) with M -bit res-

olution. Our entire spreading code can be represented in a minimum of MB/4BN

bytes. While this is not insignificant, it could be easily conveyed by a side channel,

or the ITMA PHY header. For example, with 16 bytes of data we could accom-

modate 4-bit quantization for spreading a 2 MHz narrow-band signal to a 32 MHz

wide-band signal.

Unlike OFDM, our capacity will remain unchanged. Each symbol is multiplied

by a spreading code which may amplify some portions of the symbol and attenuate

others. However, the average symbol power will remain unchanged, as compared to

a traditional spreading code.
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5.4 Conclusion

Overall, these spectrum shaping techniques can help us “fill the regulatory

gaps” in a particular interference environment. While the proposed FCC regulations

only stipulate average interference over the transmission bandwidth, we can actually

achieve the same or greater capacity by shaping our spectra.

This chapter presented an initial, motivational analysis of applying OFDM

and DSSS to ITMA. Much research still needs to be done on simulating and testing

these ideas. In particular, a complete analysis of how quantization of our spreading

codes affects the eventual waveform will yield important results on the viability of

this approach.

96



Chapter 6

Conclusion

This dissertation has examined the problem of dynamic spectrum access in the

presence of a licensed signal, when unlicensed communicating devices have intelligent

radios capable of sensing and reacting to their environment. In this chapter we

review the major results and discuss areas of further research.

The interference temperature model, as proposed by the FCC, could offer a

new paradigm for spectrum access, though many telecommunications companies

have been reluctant to jump on-board until a full analysis of possible interference

effects can be performed. Research presented here should provide a foundation for

such analysis. In particular, we can quantify how interference temperature limits

should be selected, and how those choices affect the range of licensed signals. Here

we examined a simplex, omnidirectional transmission, but these results could just

as easily be extended to duplex, directional transmitters. The mathematics may be

cumbersome, but using the results presented in this dissertation, simulators could

be easily constructed.

In particular, it has been shown that measuring interference temperature is a

tricky task. Proved are techniques that can compute a precise transmit power and

bandwidth that meet a target capacity while also satisfying the requirements of the

interference temperature model. This could be extended by examining the pricing
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schemes that trade off the utility of capacity with the cost of bandwidth. Since

capacity is a nonlinear function of bandwidth, the resulting pricing schemes could

have very interesting results.

Additionally an analytical evaluation of the interference temperature model

was completed for both WAN and LAN wireless mesh networks. For both, the ca-

pacity achieved is a simple function of the number of nodes, the average bandwidth,

and the fractional impact to the licensed signal’s coverage area, and scales as O(n),

where n is the number of nodes in the network.

Next, Interference Temperature Multiple Access is introduced. ITMA is a

PHY and MAC protocol suitable for implementation on a cognitive radio that sup-

ports the interference temperature model. It works by first sensing the RF environ-

ment and determining what bandwidth and power are necessary to communicate

with a desired capacity. If these parameters are not supported by the radio it either

lowers its capacity expectations or searches for a new center frequency that has fewer

interference problems. Packets are preceded by a PHY header that is transmitted

with known modulation parameters. This header contains the information necessary

to demodulate the rest of the packet.

A simulator for ITMA was implemented to test the MAC scheme in a mesh

topology. Results show that very realistic WAN and LAN-type applications can

easily be supported by ITMA while using transmit powers on the order of −35

dBm. The many parameter trade-offs are examined. Future work could involve a

more detailed simulator for ITMA that would allow the development and refinement

of its upper MAC-level protocols. This could be done by implementing ITMA in a
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simulator such as ns-2.

The interference temperature model deals with average powers. However, plac-

ing bounds on average power does not necessarily constrain maximum power. To

mitigate problems caused by transient interference spikes, spectral shaping tech-

niques were also investigated. The basic idea to shape our average power spectrum

to precisely complement that of the interference environment, allowing us to not

only raise the interference temperature precisely to the interference temperature

limit, but also raise the absolute interference power spectrum as close to the limit

as possible.

Implementing this idea for both OFDM and DSSS was discussed. For OFDM

we use power control on each OFDM sub-carrier. The result is an actual increase

in capacity since we can more closely target our channel coding to fit the SIR of

each sub-carrier. For DSSS we generate spreading codes with particular frequency-

domain characteristics that will achieve the desired signal spectrum. The main

difficulty is determining how to quantize the spreading code so it can be included

in the ITMA PHY header. Much future work exists in this area. In particular,

we are only considering the power spectrum at the receiver, not transmitter. Since

the transmitter and interferer are geographically separate, the interference power

spectrum at the receiver could be much different than anticipated.

Another area for future work is to examine the effects of fading on the interfer-

ence temperature model. Initial deployments will likely be stationary, and therefore

subject only to multipath fading. Modeling and simulating this can be accomplished

by simply increasing the path loss constant. Mobility will offer a more challenging
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analysis environment. Here, devices will be subject to the Doppler fading, which

results in multiplicative interference. This results in both decreased SIR, and less re-

liable interference temperature measurements. For these environments, distributed,

cooperative spectrum sensing may be required.

Before this research began, the interference temperature model had been pro-

posed, but nobody was sure exactly how it might work. The research presented in

this dissertation has filled the gaps in the model itself, and positively analyzed its

viability. ITMA is the first concrete protocol ever proposed to use the interference

temperature model, and this research has proved that it will work. While spectrum

shaping techniques have been previously researched, this particular application rep-

resents novel work in the field. This dissertation and the research contained within

has significantly advanced the state of the art in cognitive radio communications

and in particular the interference temperature model.
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Appendix A

Abbreviations

API application programming interface

AWGN additive, white, Gaussian noise

BPSK binary phase-shift keying

CDMA code-division multiple access

CR cognitive radio

CSMA carrier-sense multiple access

DSP digital signal processor

DSSS direct-sequence spread spectrum

DTV digital television

FCC Federal Communications Commission

FDMA frequency-division multiple access

FFT fast Fourier transform

FM frequency modulation

FPGA field-programmable gate array

HDL hardware description language

ISM industrial, scientific, and medical

IT interference temperature

ITM interference temperature model

ITMA interference temperature multiple access
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LAN local area network

MAC medium access control

MTU maximum transission unit

OFDM orthogonal frequency division multiplexing

OFDMA orthogonal frequency division multiple access

PC personal computer

PDA personal digital assistant

PHY physical

PN pseudonoise

PSD power spectral density

QAM quadrature amplitude modulation

QPSK quadrature phase shift keying

RAN radio access network

RF radio frequency

SDR software defined radio

SIR signal to interference ratio

TDMA time-division multiple access

TV television

UHF ultra-high frequency

VHF very-high frequency

WAN wide area network

WLAN wireless local area network

WWAN wireless wide area network
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