
ABSTRACT

Title of dissertation: Fast Scalable Peer-to-Peer Lookup Services
for Multi-Hop Wireless Networks

Min-Ho Shin
Doctor of Philosophy, 2007

Dissertation directed by: Professor William A. Arbaugh
Department of Computer Science

Distribution Date (version) : Jan. 15, 2008

Recent years have seen growing popularity of multi-hop wireless networks such

as wireless mesh networks and sensor networks. Such systems require efficient lookup

services for reliable system operation such as packet routing, key-discovery, and

object lookup. The lack of infrastructure, however, makes the centralized lookup fail

to scale in multi-hop wireless networks. For example, consider a citywide wireless

mesh network which provides wireless connection service to a number of mobile

users. Due to a high volume of user access and inherent vulnerability of wireless

links, centralized authentication methods fail to scale. The decentralization of user

authentication, however, faces a challenge of key discovery ; how to find the location

of user keys. Motivated from the user authentication problem in wireless mesh

networks, this dissertation work aims to provide efficient and scalable distributed

lookup services for multi-hop wireless networks.

Employing the notion of peer-to-peer lookup where each node can both query

and respond, I present two different methods: Valley-Walk and Rigs. A loosely-

structured scheme Valley-Walk strategically places object copies and locates

them efficiently only with a minimal local structure. The Valley-Walk finds

target objects in near-optimal hop counts with a moderate number of copies (e.g.,

10% the network size) stored in the network. Without a global structure, however,

Valley-Walk fails to guarantee the low cost search with a small number of copies.

A tightly-structured scheme Rigs (Ring Interval Graph Search) realizes a

Distributed Hash Table (DHT) in multi-hop wireless networks. Experimental study

shows the limitations of existing DHTs in mult-hop wireless networks due to its

independence of underlying topology. Unlike DHT, Rigs constructs a search struc-

ture Ring Interval Graph such that queries are forwarded only to local neighbors.

Rigs guarantees successful object lookup with near-optimal performance.

Fast Scalable Peer-to-Peer Lookup Services
for Multi-Hop Wireless Networks

by

Min-Ho Shin

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2007

Advisory Committee:
Professor William A. Arbaugh, Chair/Advisor
Professor Jonathan Katz
Professor David Lovell
Professor David Mount
Professor Neil Spring

c© Copyright by
Min-Ho Shin

2008

Table of Contents

List of Figures 7

1 Introduction 10
1.1 Wireless Mesh Networks . 11
1.2 Peer-to-Peer Object Lookup Service 15
1.3 Problem Definition And Design Goal 18
1.4 Thesis Statement . 20
1.5 Contribution . 21

2 Related Work 22
2.1 Distributed Systems . 22
2.2 Data Search In Peer-to-Peer Networks 24
2.3 DHT: Distributed Hash Table . 28

2.3.1 Chord . 31
2.3.2 Prefix-Tree Based DHT . 32

2.4 LMS: Local Minima Search . 36
2.5 Limitation Of DHT In Multi-Hop Wireless Networks 38
2.6 Wireless Peer-to-Peer System . 39

3 Valley-Walk: A Loosely-Structured Peer-to-Peer Lookup Service 42
3.1 Hash Space . 43
3.2 Valley-Walk . 44
3.3 Valley-WalkLM : Local Minima Based Key Distribution 47

3.3.1 The Number Of Local Minima 49
3.3.2 Tunable Local Minima . 52

3.4 Valley-WalkKD: Key Distance Based Key Distribution 54
3.5 Performance Analysis . 56

3.5.1 Model Of Valley-WalkLM 56
3.5.2 Analysis Of Valley-WalkLM -iid 61
3.5.3 Analysis Of Valley-WalkLM 62
3.5.4 Analysis Of Valley-WalkKD 65

4 Rigs: A Topology-Dependent DHT With Ring Interval Graph 71
4.1 Hamiltonian Search . 72
4.2 Ring Interval Graph . 76

4.2.1 Definition Of Ring Interval Graph 77
4.2.2 Construction Of Ring Interval Graph 78

4.3 Hashing And Search . 79
4.3.1 Hashing With Rigs . 80
4.3.2 Shorted Interval Forwarding 82
4.3.3 Replication . 85

5

5 Simulation 87
5.1 Methodology . 87

5.1.1 Algorithms . 90
5.1.2 Metric . 93

5.2 Results For Searching Performance 97
5.2.1 By Replications . 98
5.2.2 By Network Size . 101
5.2.3 By Node Density . 103
5.2.4 Tail Probability . 104
5.2.5 Random Graph . 106

5.3 Results For Authentication Performance 107
5.4 Summary . 111

6 Conclusion And Future Work 116
6.1 Conclusion . 116
6.2 Future Work . 117

A Proofs For Theorems In Chapter 3 120
A.1 Proof Of Theorem 3.5.2 . 120
A.2 Proof Of Theorem 3.5.3 . 122
A.3 Proof Of Lemma 3.5.4 . 125
A.4 Proof Of Theorem 3.5.5 . 126
A.5 Proof Of Lemma 3.5.6 . 128

Bibliography 131

6

List of Figures

1.1 Wireless mesh network in metropolitan area 12

1.2 A typical wireless mesh network with a central authentication server. 13

1.3 DHT in multi-hop wireless network 16

1.4 Object lookup problem . 18

2.1 The hash space of Chord and its data search. 30

2.2 The local snapshot of the global prefix tree in Pastry 33

2.3 The binary tree in Kademlia . 35

2.4 Searching in Kademlia . 36

3.1 Hash space . 43

3.2 Valley-Walk . 45

3.3 Local minima . 47

3.4 r > |LMk|: Split . 50

3.5 r < |LM | : Merge . 51

3.6 Key distance based pre-distribution 55

3.7 Key-holders and local minima by Valley-WalkKD 56

3.8 Dependency between consecutive forwardings in a Valley-Walk . . 57

3.9 Example of a Valley-Walk . 58

3.10 Incremental Valley-Walk . 60

3.11 Comparison of my analysis, Morselli’s, and ns2 simulation results for
Valley-WalkLM . 65

3.12 Analysis model of Valley-WalkKD 66

3.13 Valley-WalkKD and incremental Valley-WalkKD 68

3.14 Comparison of my analysis and ns2 simulation for Valley-WalkKD. 70

7

4.1 Hamiltonian cycle and node numbering along the cycle 72

4.2 Search with the Hamiltonian ring . 73

4.3 Hamiltonian cycle and node numbering along the cycle 74

4.4 Construction of non-Hamiltonian search 75

4.5 Ring Interval Graph . 76

4.6 Construction of RIG through DFS on the network graph 79

4.7 Construction of RIG for continuous intervals 80

4.8 Range-based forwarding by RIG . 82

4.9 RIG searching with a shortcut from node 0 to node 4 83

5.1 Topologies . 88

5.2 Chord and its stretches . 94

5.3 Search performance by replication factors - (1) 98

5.4 Search performance by replication factors - (2) 100

5.5 Search performance by network size -(1) 102

5.6 Search performance by network size -(2) 103

5.7 Search performance by network size - (3) 104

5.8 Search performance by network size - (4) 105

5.9 Search performance by node density - (1) 106

5.10 Search performance by node density - (2) 107

5.11 Search performance by node density - (3) 108

5.12 Search performance by node density - (4) 109

5.13 Tail probability-(1) . 110

5.14 Tail probability-(2) . 111

5.15 Random geometric graph : by replication factors - (1) 112

8

5.16 Random geometric graph : by replication factors - (2) 113

5.17 Authentication performance . 114

5.18 Authentication delay . 115

9

Chapter 1

Introduction

Recent years have seen growing popularity of multi-hop wireless networks such

as Wireless Mesh Networks (WMNs) and sensor networks. A multi-hop wireless

network consists of multiple nodes communicating only with nearby nodes through

wireless medium. Any two nodes separated farther than transmission range can

communicate with each other only through intermediate nodes. Many systems ex-

ploit the multi-hop wireless network especially when the radio transmission range

is limited compared to the entire span of the network. The sensor network, for

example, is a multi-hop wireless network of spatially distributed sensor devices to

cooperatively monitor physical or environmental conditions, such as temperature,

sound, vibration, pressure, motion, or pollutants, at different locations. The formu-

lation of a multi-hop wireless network allows for the sensor network to cover a wide

area where no infrastructure is available.

For reliable system operation, most multi-hop wireless networks require ef-

ficient resource lookup services such as packet routing, key discovery, and object

lookup. Among such lookup services, the key discovery problem in wireless mesh

networks motivated this dissertation work. Although I demonstrate the contribution

of the work only through the key discovery problem in wireless mesh networks, this

dissertation work provides an efficient and scalable solution for generic peer-to-peer

10

lookup problem in multi-hop wireless networks.

1.1 Wireless Mesh Networks

A wireless mesh network is a collection of mesh nodes that provides wireless

network service to mobile users. Wireless mesh network is gaining popularity for

citywide network service because of the flexibility of network deployment and the

resilient performance [1, 2, 3, 4, 5, 6, 7]. For example, Houston, Texas, has deployed

about 50 Cisco mesh routers throughout the city and additional 150 mesh routers are

planned for deployment. In 2005, Tempe, Arizona, has deployed a citywide wireless

mesh network spanning 40 square miles for residents, businesses, visitors, as well as

municipal workers [2]. The Tempe network later expanded to the neighboring cities

Chandler and Gilbert forming the largest contiguous wireless mesh network in the

U.S., encompassing 187 square miles [8]. These mesh networks can provide various

applications such as mobile data access, voice over IP, intelligent transportation

system, and surveillance camera connection over the whole city. There is a growing

number of cities, not restricted to US, which deployed or plan to deploy citywide

wireless mesh networks.

The advantage of wireless mesh network for citywide networks is attributed to

wireless connection between mesh routers (or mesh nodes), which distinguishes the

wireless mesh network from the traditional infrastructure-based wireless networks

such as WLANs. In wireless mesh networks, mesh nodes are equipped with multiple

radio interfaces; one of which is for the connection to mobile users and the rest is for

11

(a) MetroMesh by Cisco (b) Strixsys mesh node

Figure 1.1: Wireless mesh network in metropolitan area

the inter-router connection to form a multi-hop wireless backbone. Benefit of wire-

less backbone is twofold; flexible management and reliable performance. Without

tangled wires between mesh nodes, network deployment and maintenance become

economic. For example, an outdoor WMN in a campus or a metropolitan area re-

quires minimal wired infrastructure when we can attach wireless routers on trees

or light poles. WMN is also resilient against node failures due to redundant routes

by intelligent multi-hop routing protocols [9, 10, 11]. Such routing protocols can

dynamically reroute packets according to the network condition such as node failure

or link congestion. Multiple channel access and separation of radios for upstream

and downstream also improve the performance (called 3rd generation of wireless

mesh networks). Figure 1.1 shows an example of a wireless mesh network deployed

in a metropolitan area.

One of the important characteristics of such a wide-area system is a huge num-

ber of users accessing the network while changing their locations. Each connection

requires user authentication to assure the authenticity of the access and the privacy

12

INTERNET

SERVER

G
L2 L3

L1
��
��
��

��
��
��

���
���
���
�����
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

Figure 1.2: A typical wireless mesh network with a central authentication server.

of communication. For reliable services, it is required that the system provides an

efficient and resilient authentication service.

Figure 1.2 illustrates a typical solution for the user authentication with a single

dedicated authentication server. In the figure, each mesh node has two wireless

interfaces, one for mobile users and the other for the wireless backbone. The gateway

node (G in the figure) connects the network to outside networks, such as the Internet.

The central server performs user authentications and other management tasks. The

conventional centralized authentication, however, fails to scale in large wireless mesh

networks due to inherent vulnerability of wireless links. With a single centralized

server, every authentication message should travel to the server through a multi-

hop wireless path. The problem of the centralized authentication is three-fold; low

performance, unfair authentication delay, and single point of failure. In Figure

1.2, all authentication messages converge to links around the server degrading the

performance and reliability of the authentication traffic as well as data traffic. Since

13

multi-hop wireless networks exhibit notably different throughput for different path

lengths, users near the server can experience better authentication performance

than farther users. The centralized authentication also suffers from a single point

of failure; failure, compromise, or DOS attack of the server or nearby links can

cause a system-wide failure or security problems. Replication of the central server

is costly; it requires not only hardware cost but also data synchronization and

load balancing between servers. Replication merely replicates the same problem

in multiple locations.

Decentralization of authentication process can overcome the limitations of the

centralized approach. Consider the following design of distributed authentication

scheme. Suppose we have m secret keys for user authentication and the network

consists of n mesh nodes. We want to store r copies of each key among mesh nodes

such that whenever a key k is needed, we can efficiently locate a node with a copy

of k. To provide such a key-discovery scheme, we have to address the following

problems. First, we need a systematic approach on where to store r copies of

each key and how to find them in an efficient and reliable manner. A brute force

approach is to store every key at every node. However, a compromise of one node can

compromise the entire user keys. The scheme should be able to find keys efficiently

even if the number of key copies is relatively smaller than the network size. Second,

we need the authentication process secure against key compromise. It is clear that

compromising a mesh node is easier than compromising a dedicated central server.

One way to circumvent this security weakness is to perform multiple authentications

in parallel with multiple mesh nodes so that a compromise of one mesh node does

14

not imply a compromise of the authentication process involving the node. We can

easily accomplish the parallel authentication with existing authentication protocols;

let the user perform multiple authentication procedures in parallel with multiple

mesh nodes using different keys.

This dissertation work addresses the key discovery problem by addressing a

more general problem of peer-to-peer object lookup problem. In the following sec-

tion, I define peer-to-peer object lookup problem and discuss existing solutions.

1.2 Peer-to-Peer Object Lookup Service

Object lookup service is the fundamental building block of network systems.

From the packet routing in the Internet to the distributed file sharing mechanisms

in peer-to-peer (P2P) systems, object lookup methods abound in the literature.

Especially, the file sharing problem in P2P networks resembles our key discovery

problem; place multiple copies of objects (or keys) in the system such that any

interested node can efficiently locate a copy of the object. To date, a number of

approaches for P2P object sharing have been seen in the literature.

Loosely-structured schemes such as LMS (Local Minima Search) [12] and Yap-

pers [13] achieve better performance with fewer overhead than flooding or random

walk based lookup schemes. Such schemes require minimal local structure which

hints intermediate nodes to forward toward the destination. Although scalable,

these schemes suffer from low success probability in finding the target.

More systematic approach can be found with the distributed hash table (DHT)

15

1

0

2

9

4

10
6

7

85

3

11

0

1

2

3

4

5
6

7

8

9

10

11

k

(a) DHT search on the graph (b) DHT search on hashing space

Figure 1.3: DHT in multi-hop wireless network

[14, 15, 16, 17]. DHT maps each object to a node such that any item can be located

within a certain number of routing hops using a small per-node routing table. These

systems have been used in a variety of distributed applications, including distributed

stores [18, 19, 20, 21] and content distribution [22, 23, 24, 25].

DHT, however, has limitations for multi-hop wireless networks. A DHT in a

P2P system constructs an overlay network by adding virtual links between nodes

regardless of their physical proximity [26]. As a result, a neighbor node in the

overlay network can be separated by many hop counts in the underlying network.

Since the hop count has a significant impact on delay in multi-hop wireless networks

[27, 28, 29, 30, 31, 32], the lack of locality with DHT causes large delay in multi-hop

wireless networks. Figure 1.3 shows an example of DHT-based search (e.g., Chord) in

a multi-hop wireless network. Figure 1.3-(a) shows the underlying network topology

16

and Figure 1.3-(b) shows the overlay network where each node is located on a ring-

shaped hash space and each node keeps a set of node pointers for its neighbor

nodes (not shown in the figure). Suppose node 1 wants to find the key k, which is

stored in node 10. In a typical Chord system, the query is forwarded along the path

(1, 7, 9, 10) denoted by the dashed arrow lines in Figure 1.3-(b). In this example, the

key-holder is found in three hops. In the physical topology, however, the shortest

path to the key-holder is just two hops along the path (1, 6, 10) but the query packet

actually traveled six hops along the path (1, 3, 7, 6, 9, 4, 10).

Some topology-aware DHT schemes have been proposed [33, 18, 15, 34, 17, 16,

35, 36, 37] but because of different assumptions between wired and wireless networks,

their performance improvement in multi-hop wireless networks is not apparent.

Topological models of P2P and DHT, such as power-law network [38, 39, 40, 41, 12],

are also incompatible with that of wireless networks which is best characterized as

a geometric random graph [42].

In this dissertation work, I introduce a notion of topology-dependent DHT

(TD-DHT) which builds a DHT structure only through local edges. I propose

a TD-DHT scheme called Ring Interval Graph Search (Rigs), which constructs a

novel lookup structure the Ring Interval Graph (RIG) to guide queries toward the

destination by narrowing down candidate subgraphs. Nodes can build a RIG in

a distributed manner with a minimal global information such as the network size.

Simulation results show that the Rigs achieves a near-optimal searching perfor-

mance.

I also propose a loosely structured scheme Valley-Walk which strategically

17

k

k

k

k?

Figure 1.4: Object lookup problem

places object copies and locates them efficiently only with a minimal local structure.

The Valley-Walk finds target objects in near-optimal hop counts with a moderate

number of copies (e.g., 10% the network size) stored in the network. Without a

global structure, however, Valley-Walk fails to guarantee the low cost search

with a small number of copies.

1.3 Problem Definition And Design Goal

Object lookup problem: Suppose we have n nodes and m objects {k1, k2, · · · , km}.

Given a parameter r < n, we want to distribute r copies of each object in r distinct

nodes, called holders, such that, given i ∈ {1, . . . , m}, any node can efficiently locate

a holder of the object ki. Figure 1.4 shows an example of the object lookup problem

when three object copies are distributed in the network. Holders of the object are

labeled by k in the circle and the grey node wants to find a holder of the object.

The arrow lines represent the searching path. We call the number of object copies a

18

replication number and the ratio of replication number to network size a replication

factor. The replication number and the replication factor are system parameters

which are determined according to system requirements for lookup performance.

I assume geometric random graph as network topology. A geometric random

graph is a graph probabilistically generated as follows. We place n nodes in the

given area uniformly at random. Given a fixed communication range R, any pair of

nodes share an edge if and only if their Euclidean distance is less than R. Especially

for the mesh network setting, I am also interested in a restricted geometric random

graph such that no two nodes are closer than the minimum distance, say R/2, and

the degree of each node is relatively small so that the network diameter is not too

small. This type of topology, which I call a mesh topology, is of interest because the

wireless mesh network will be carefully deployed with similar properties to minimize

inter-node interference and maximize the coverage area.

I assume a uniform query rate for every object. For example, in a wireless

mesh network, each user visits the network with the same frequency, or following

the same Poisson process with the same inter-arrival time1. I also assume that the

location of the lookup request is uniform throughout the network such that each

node initiates the same amount of queries on average.

The design goals of my key discovery schemes are as follows.

1. Scalable with increasing query rate and network size

2. Efficient lookup by localizing query traffic

1With different query rates, we should replicate different number copies for each object. [43]
studies optimal replication strategies.

19

3. Distributed algorithm

First, the scheme should be scalable as the query rate increases. Even if the

query rate is fixed for each node, the aggregated query rate in the network grows

as the network grows in size and the aggregated query rate impacts on the search

performance. Second, the query traffic should be (i) localized and (ii) balanced.

The query traffic is localized if it finds the target object in small hops. Lastly,

the algorithm should exploit only local information and, if needed, limited global

parameters such as the number of nodes or the replication number.

1.4 Thesis Statement

In this dissertation, I support the following thesis: In multi-hop wireless net-

works, we can build a scalable and efficient peer-to-peer lookup mechanism, and

it can provide a decentralized solution for key discovery problem in wireless mesh

networks. To support this thesis, I design, analyze, and evaluate the following

peer-to-peer lookup schemes.

• Valley-Walk: a loosely structured peer-to-peer lookup scheme which guides

the query to a neighbor which asymptotically approaches to the destination.

• Rigs: a tightly structured lookup scheme which guides the query always to-

ward the destination by forwarding the query to a neighbor which leads to a

smaller subgraph containing the target.

20

1.5 Contribution

This dissertation work contains the following contributions:

• Identify the limitation of existing DHTs with multi-hop wireless networks

• Introduce the notion of topology-dependent DHT (TD-DHT)

• Propose two peer-to-peer lookup schemes for multi-hop wireless networks, both

loosely-structured (Valley-Walk) and tightly-structured (Rigs).

• Provide an analytical bound on the performance of Valley-Walk

• Provide a fast scalable key discovery solution for wireless mesh networks

21

Chapter 2

Related Work

2.1 Distributed Systems

We can find interesting related works in the literature of distributed systems.

The goal of distributed systems is to store huge amount of data in multiple storages

and efficiently retrieve the data of interest. Before DHT comes into the picture, most

schemes in distributed systems have been focusing on decentralizing index trees.

R-tree [44] is a tree data structure for indexing multidimensional objects, a

multidimensional variant of B-tree. R-tree is useful for spatial access methods where

one can find an object in a two-dimensional space. The first parallelized version of

R-tree (Parallel R-tree) is proposed by Kamel and Faloutsos [45] for indexing with

a single CPU but multiple disks. The Master R-tree (M-tree) [46] and the Master

Client R-tree (MC-tree) [47] attempts to distribute the R-tree structure among

multiple independent servers.

In a Master R-tree, a single server maintains all the internal nodes of the

R-tree except the leaf level data nodes which are maintained by other servers. A

Master Client R-tree is a two-level distributed R-tree that has a single master index

on a master server and local client indexes on the other servers. The Master Client

R-tree is similar to the Master R-tree in the sense that it declusters leaf level nodes

across data servers. However each data server creates its own local index using the

22

leaf level nodes that are assigned to it. Therefore, the master index does not have

to keep the pointers to the data objects in its master index. Instead, it contains

the server address where its local index must be searched again in order to get

pointers to the data objects. The query processing of the M-tree or the MC-tree is

centralized because it requires a dedicated server which maintains global status of

the distributed index. Such a central point becomes a bottleneck with high query

rates.

The P2PR-tree [48], designed for spatial indexing, decentralizes the R-tree for

better scalability than two-level MC-trees. P2PR-tree is hierarchical and performs

pruning of the search space by maintaining more information concerning nearby

peers than far ones. However, the P2PR-tree is not fully decentralized, because it

requires a large number of dedicated servers that maintain part of a static parti-

tioning of the index. Thus, the P2PR-tree is similar to a replicated version of the

Master-Client R-tree [49, 47], and has several other problems related to its static

partitioning strategy.

The P-tree [50] fully decentralizes the traditional B+-tree and allows for one

dimensional range queries. The P-tree assumes that a peer stores only a single data

object, thus in order to store more than one data object each peer needs to be

mapped to multiple virtual peers. The routing algorithm in a P-tree is based on

virtual peers, thus a peer may be accessed multiple times while routing to virtual

peers. For this reason, the P-tree is not suitable for a system that stores many data

objects.

For fully distributed indexing, distributed systems began to employ distributed

23

hash tables (DHTs) developed for peer-to-peer networks. I discuss DHT schemes in

later sections.

2.2 Data Search In Peer-to-Peer Networks

Data lookup is important in P2P networks especially for file sharing. Once

data is inserted in the network, it is replicated in various nodes such that any

node requesting the data can find the data with high probability. There are several

approaches for data search in P2P networks.

Centralized Search

Napster [51], one of the most famous P2P systems in its early stage, has

central directory servers to maintain the list of connected nodes and the files they

provide. Since each server maintains independent information, users cannot get

global information from one server. With a single server having the complete list of

data and their locations, the system does not scale well. Morpheus [52] combines

centralized and decentralized approaches with a hierarchical structure. “Super-peer”

nodes act as centralized resource for a small number of clients, but these super-peers

then connect to each other to form a pure P2P network. Searching in Morpheus

is still centralized; Super-peers maintain the list of peers and their shared files and

answers the queries from peers looking for files.

24

Breadth First Search (Flooding)

With unstructured systems such as Gnutella [53], there is neither a centralized

directory nor a control over the topology. The typical search method is flooding

such that every node within certain hop distance gets the query message. Although

flooding finds the data with the shortest distance, the query message can overload

the network and finding optimal TTL (time to live) value is not trivial [39]. Iterative

deepening [54] (or Expanding ring [39]), Directed BFS, and Local indices improve

flooding search. Iterative deepening broadcasts the query packet with increasing

TTL until it finds the data. Directed BFS (Breadth-First Search) forwards the query

only to a subset of neighbors to reduce the overhead of flooding. Local indices let

each node keep a list of nearby nodes, say less than r hops, and their data. Search

with local indices let nodes only at certain hop distances process the query using

their local indices. Flooding based searching methods are not desirable for multi-hop

wireless networks because of limited bandwidth and interference.

Depth First Search

Random-walk is a well-known blind search which forwards a query message

to a randomly chosen neighbor at each step until it reaches the data. Detection

of loop and use of TTL can improve the performance of random-walk. This search

mechanism does not generate as much message traffic as BFS-based algorithms since

there is only one message being routed in the network. The response time, however,

is high because of the low probability of hitting the data. To reduce the response

25

time, k-random-walk starts independent k random-walks simultaneously expecting

to reduce the response time by a factor of k. Each “random walker” stops its walk

when TTL equals zero or other walkers already found the data. To check other

walker’s success, each walker should (occasionally) check back with the original

requester before walking to the next node. Despite its simplicity and low overhead,

random-walk is not appropriate for key discovery problem because of low success

probability.

Loosely-Structured Search

In a loosely structured method, the system adds hints in placements of the data

and searching algorithm uses those hints at each step. FreeNet [40] uses a simple

inserting and routing algorithm called steepest-ascent hill-climbing search. FreeNet

associates each data being inserted with a globally unique identifier (GUID) using

SHA-1 hash function. The searching algorithm in FreeNet is heuristic and there is

no analytical bound. FreeNet starts from a uniform random state and evolves into

a non-uniform clustered state. Each node builds a routing table using caching, from

an initial list of neighbors to the list of data keys stored in known nodes. The routing

table grows when either a query to a data succeeds or an inserting data succeeds.

To insert a data with a given TTL, each node forwards to a neighbor who is believed

to have a data with closest key to the one being inserted until TTL expires1. All

intermediate and final node stores the data. To find the data, each node performs the

1Although this behavior changed in newer versions of FreeNet, I describe this technique because
this provides similar insight to proposed schemes.

26

same forwarding algorithm as the insertion. When a data is found, all intermediate

nodes from the querying node to the destination inserts an entry associating the

holder with the requested key. Although the idea of choosing a node holding a key

closest to the requested data is similar to the proposed Valley-Walk there are

many differences between them. First, FreeNet does not use node’s unique identity

in finding the data holders but Valley-Walk and DHT schemes extensively utilize

the notion of consistent hashing where the relationship between the node key and

the data key, hashed on the same key space, plays a main role in determining

the data holders. The lack of this property makes the FreeNet hard to analyze.

Also the number of node lists at each node can grow arbitrarily and the simulation

shows a power-law distribution of the storage [40]. We cannot employ FreeNet like

mechanism in multi-hop wireless networks because the next nodes in forwarding

path can be arbitrarily far from the current nodes. The lack of systematic approach

of finding the data in FreeNet makes the scheme inappropriate for key discovery

problem.

LMS [12] and Yappers [13] achieves better search performance than unstruc-

tured methods by adding minimal structure to the network to expedite the search.

Yappers (Yet Another Peer-to-PEeR System) partitions the key space of data and

nodes into a small number of buckets. It combines structured (local DHT) and un-

structured (global flooding). Each node has to keep immediate neighborhood (say

2 hops) and extended neighborhood (say 5 hops). Authors do not present formal

analysis. Its flooding mechanism makes Yappers inappropriate to multi-hop wireless

networks. I discuss LMS in detail in a later Section 2.4.

27

Decentralized And structured (DHT)

These systems adds a significant amount of structure by closely coupling its

overlay topology and the placement of data. CAN [15], Pastry [16], Chord [14],

Tapestry [17], and Kademlia [55] provide such structured systems using hash-like

interfaces, often called Distributed Hash Table (DHT). The advantage of structured

systems are the theoretical bounds on the worst-case performance and guarantee of

successful search. Structured systems, however, is not appropriate for the dynamic

node membership with frequent join and leave of the nodes. I discuss DHT schemes

in more detail in Section 2.3.

2.3 DHT: Distributed Hash Table

In this section, we discuss the distributed hash table (DHT) as a data discovery

solution in P2P networks. The limitation of DHT in multi-hop wireless networks

will be discussed.

The distributed hash table (DHT) is a class of distributed systems that provide

a lookup service similar to a hash table; (id2, object) pairs are stored and any

participating node can efficiently retrieve the object associated with a given id.

More precisely, DHT maps the object id to the node which holds (or supposed to

hold) the object. DHT provides only one operation lookup for a given id, which

yields a location of the object with that id. The same operation is used for inserting

a new object into the network.

2I choose to use id instead of key to avoid confusion with cryptographic keys.

28

Responsibility for maintaining the mapping from an id to an object is dis-

tributed among the nodes, in such a way that a change in the set of nodes causes

a minimal amount of disruption. This allows for DHT to scale to extremely large

numbers of nodes and to handle continual node arrivals, departures, and failures.

To this end, DHT schemes use consistent hashing [56]; hash the object and the node

into the same ID space (or hash space) and assign a node to a subset of ID space so

that any object whose id belongs to the subset of ID space is assigned to the node

in charge of that subset of ID space, called owner/holder. DHT determines which

node becomes an owner of a portion of ID space by their “closeness” to the object

id values. To find the owner of a given object id, each node forwards the query to

one of its known nodes whose id is “closer“to the object in the ID space.

Different DHT schemes define different notions of “closeness” between a node

id and an object id. In Chord [14], the distance between a node id and an object id

is the numeric distance from the object id to the node id in a clockwise direction

along the ring-like ID space. Pastry [16], however, defines the distance as the number

of common prefix bits between the node id and the object id. For an example of

Chord, in Figure 2.1, five nodes {A, B, C, D, E} are located at {0, 1, 3, 5, 6} on the ID

space of length 8 and any object whose key belongs to intervals {(6, 0], (0, 1], (1, 3],

(3, 5], (5, 6]} are stored in {A, B, C, D, E}, respectively. More precisely speaking, a

DHT provides a mapping from the object id to the owner of the object, which in

turn provide the object value itself.

What distinguishes different DHT schemes is the construction of ID space and

the routing structure over it. Chord builds ID space on a ring-like linear space and

29

0

1

5

7

4

3

6 2

A

E

D C

B

(A)

(E)

(D)

(C)

(B)

data=4

Figure 2.1: The hash space of Chord and its data search.

maintains a routing structure similar to Skiplist [57] where the routing table contains

pointers to nodes distant at least halfway around the ID space, a quarter of the way,

an eighth of the way, and so forth. Pastry [16], Tapestry [17], and Kademlia [55]

use tree-like structures, and CAN [15] uses a multi-dimensional ID space. Note that

all DHT schemes build their routing structure to construct an overlay network, a

network with virtual links between nodes over an underlying network such as the

Internet.

A DHT forms an infrastructure that can be used to build more complex ser-

vices, such as distributed file systems, peer-to-peer file sharing and content distri-

bution systems, cooperative web caching, multicast, anycast, domain name services,

and instant messaging. Applications that use DHT include BitTorrent, eMule, YaCy,

and the Coral Content Distribution Network.

30

2.3.1 Chord

In this section, I describe Chord in detail because the proposed schemes use

similar ID space and the notion of “closeness” between nodes and objects.

Chord [14] uses a one-dimensional circular id space onto which both nodes and

objects are mapped. A node owns all the object ids between itself and clockwise

preceding node. A chord id space can be expressed as 0, 1, 2, . . . , 2m−1 for a given

parameter m > 0. Figure 2.1 shows an example of chord id space with m = 3 and

five nodes {A, B, C, D, E} with object id segment they own. For example, an object

with id value 2 belongs to the segment of C and therefore, the object is stored in

node C. It is sufficient for each node to keep who is the clockwise successor in order

to find an object; each node forwards the query to its successor until the owner node

is reached. To expedite search, however, Chord nodes keep a list of m nodes, called

finger table such that ith node in node v’s finger table is the owner of the object id

of id(v) + 2i−1 where id(v) is node v’s id and i = 1, 2, . . . , m. For example, node

A’s finger table has three entries with node pointers B for i = 1, C for i = 2, D

for i = 3. When node A wants to find the owner of object 4, it finds the closest

node preceding the object 4, which is C in this example. Therefore, A forwards the

query to C and C finds that its successor (or the first entry of its finger table) is

the owner of the object 4 and forwards to D.

Chord provides the worst case search cost of O(log n) and guarantees successful

search for all queries. To replicate object by r copies, one can store each object at

the owner node and r− 1 successive nodes from the owner. There are replication or

31

caching schemes for DHT [16, 18, 58, 59, 60] but they are mainly for load balancing

purpose.

DHT schemes, including Chord, can provide a key discovery mechanism by

storing pairs of the key id and the key-holder’s address and search by the key id to

find a key-holder. The DHT, however, has some drawbacks to be used for multi-hop

wireless networks. The important requirements for key discovery problem are to find

a key holder in short distance. Most DHTs fail to satisfy this locality requirement

for the following reasons. Since existing DHT schemes assume an overlay network,

neighboring nodes in an overlay network are not necessarily close to each other.

Therefore, a search with a small number of hops in the overlay network can actually

have a large number of hops spanning throughout the network. There are some

improvements for DHTs to increase the locality of its neighbors [33, 18, 15, 34, 17,

16, 35, 36, 37], but results are limited in multi-hop wireless networks.

2.3.2 Prefix-Tree Based DHT

In this section, I discuss tree-like DHT schemes, Pastry [16], Tapestry [17],

and Kademlia [55] to clarify the difference from the proposed Rigs.

Pastry gives each node a randomly chosen ID, indicating its position on an

identifier circle. It routes messages with an id to the live node with a node ID

numerically closest to the id, using 128-bit IDs in base 2b, where b is an algorithm

parameter typically set to 4. Imagine a global prefix tree that contains all the

nodes in the network. Starting from the root node, representing a null string, i’th

32

0 1 2 3

20 21 22 23

210 211 212 213

v

Figure 2.2: The local snapshot of the global prefix tree in Pastry

level has bi nodes, each of which represents all the nodes with the same prefix of

length i. If every node knows this global prefix tree, routing is trivial. Each node,

however, stores only a local snapshot of the global prefix tree. Figure 2.2 shows a

local snapshot of the prefix tree stored as a form of the routing table of node 213

when b = 2. Given the number of nodes N , the tree has ⌈log2b N⌉ rows, each with

2b − 1 entries. Each entry in row i of the table at node v points to a node whose

ID shares the first i− 1 digits with node v. Node v also maintains a leaf set L, half

of which are leaf nodes closest to and larger than v and the rest of which are leaf

nodes closest to and smaller than v. Given the leaf set and the routing table, each

node v implements the forwarding step as follows. If the sought id is covered by v’s

leaf set, then the query is forwarded to that node. In general, of course, it will not

be, until the query reaches a point close to the target object. In this case, the query

is forwarded to a node from the routing table that has a longer shared prefix than

v with the sought id. Sometimes, the entry for such a node may be missing from

33

the routing table because the node does not exist, or that node may be unreachable

from v. In this case, v forwards the query to a node whose shared prefix with the

id is at least as long as v’s shared prefix, and whose id is numerically closer to the

object id . Such a node must clearly be in v’s leaf set unless the query has already

arrived at the node with numerically closest ID to the object, or at its immediate

neighbor. If the routing tables and leaf sets are correct, the expected number of hops

taken by Pastry to route a key to the correct node is at most log2b N . Tapestry [17]

resembles Pastry in terms of the tree structure and routing.

The prefix tree has similar properties with the ring interval graph (RIG)

proposed in this dissertation work. However, the prefix trees in Pastry and Kademlia

have many differences from RIG. Since prefix trees in those schemes are built as

overlay network and each links do not hold locality requirements. However, RIG

strictly restricts the routing entries to the physically direct neighbors. Also the

construction of prefix trees require the global knowledge but RIG can be constructed

through a simple distributed algorithm. Note that we can build RIG by making it

a prefix tree.

Kademlia [55] is a peer-to-peer storage and lookup system. Kademlia takes the

basic approach of many peer-to-peer systems. Both object id and node id are from

a 160-bit id space, and the object is stored on nodes with ids close to the object for

some notion of closeness. Kademlia uses XOR metric for distance between points

in the id space. Kademlia treats nodes as leaves in a binary tree, with each nodes

position determined by the shortest unique prefix of its id. Figure 2.3 shows an

example of the binary tree where each leaf node represents a node when the number

34

1

1

1

0

0 1 0

0 1 0 1 10 0

000111 001110

1**

011 00*

101 100 011 010

Figure 2.3: The binary tree in Kademlia

of nodes are 8. The line above the tree represents the linear id space with nodes ids

in binary notations. For any given node, say node 010 in the example (black node

in the figure), we divide the binary tree into a series of successively lower subtrees

that dont contain the node. The highest subtree consists of the half of the binary

tree not containing the node. The next subtree consists of the half of the remaining

tree not containing the node, and so forth. In Figure 2.3, each subtrees are enclosed

by dashed lines labeled with the prefix that represents the subtree. The Kademlia

protocol ensures that every node knows of at least one node in each of its subtrees, if

that subtree contains a node, shown as grey nodes in the figure. The dashed arrows

shown on the id space denotes the routing table of node 010.

Every node having this structure, any node can locate any other node by its

id ; Forward the query to the node in the routing table such that the subtree the

node belongs to is the smallest one containing the target id. Figure 2.4 shows an

35

1

1

1

0

0 1 0

0 1 0 1 10 0

000111 001110 101 100 011 010

(1)(2) (3)

(1)(2)

(3)

Figure 2.4: Searching in Kademlia

example of node 010 locating node 110 by successively querying the best node it

knows of to find contacts in lower and lower subtrees; finally the lookup converges

to the target node. When node 010 queries node 101, which is the only node that

belongs to a subtree containing the target node, node 101 looks up its own routing

table and returns with the contact information of the node, 111, which belongs to

the smaller subtree containing the target (message (1) in the figure). In turn, node

010 queries node 111 and finally gets the address of node 110.

2.4 LMS: Local Minima Search

Local Minima Search (LMS) [12] is a loosely structured data lookup protocol in

P2P. LMS performs a random-walk followed by a deterministic walk. Data insertion

and lookup follows the same procedure. Authors provides an asymptotic bound on

36

the search cost as O(n log n/(grdh)) and the size of the state at each node as O(dh).

In the above notations, g is the eigenvalue gap of a random walk over the given

graph, r is the number of replications, and dh is the parameter that defines the

range of neighborhood used for the deterministic walk. LMS does not guarantee

successful search; the probability of successful search depends on the user/node key

distribution, topology, the number of replications, and the number of trials.

Since our work borrows the idea of the deterministic walk in LMS, we describe

on how LMS performs the deterministic walk in the following. LMS uses consistent

hashing; we hash all the key ids and all the mesh node ids into a unit length interval

[0, 1)3. Imagine a unit length ring such that 0 and 1 meet at the same point. Define

the distance between a key k and a node v, denoted by d(k, v), as the shortest

distance between k and v along the ring. At each step of the deterministic walk,

the node v forwards the request to one of its neighbor v′ that minimizes d(k, v′)

over the dh hop neighborhood, i.e, all the nodes within dh hop. A node v is a local

minimum for the key if v itself has the smallest key distance in the neighborhood.

We insert data only in local minima. If a probe message reaches a local minima

v without the data, v notifies the requesting node of the failure. The requesting

node then starts another random walk with a doubled TTL. Since the number

of replications can differ from the number of local minima, LMS can suffer from

performance degradation because of empty local minima.

Our algorithm Valley-Walk modifies the deterministic walk of LMS such

3In the original paper of LMS, authors use unique identifiers of keys and nodes generated
uniformly at random from an ID space of {0, 1}λ where λ is large enough to avoid collisions. We
change this to a unit interval for the ease of representation

37

that it effectively samples a series of local minima without reporting back and

restarting from the originator. While LMS takes alternations of random walk and

the deterministic walk, Valley-Walk nicely integrates both of them and achieves

better performance. Valley-Walk can also perform a topology control to mini-

mize the number of empty local minima.

2.5 Limitation Of DHT In Multi-Hop Wireless Networks

DHT schemes in P2P networks have limitation for the object lookup problem

in multi-hop wireless networks.

First, the network delay has different characteristics in wired networks and

in multi-hop wireless networks. Note that the communication delay between nodes

in a wired network does not greatly differ from location to location. With such

assumptions, DHT schemes build a topology-independent overlay network which

assigns virtual links between two hosts without knowing the underlying physical

topology. However, because of the interference between wireless links, the distance

in the underlying topology has greater impact in a multi-hop wireless network than

a wired one. Suppose we construct a P2P overlay network on a multi-hop wireless

network. Since the virtual links of a DHT can have arbitrarily large hop counts, I

call it hidden cost of a virtual link, the route following the virtual link may not be

far from the fastest route.

Another limitation of DHTs in multi-hop wireless networks is that a DHT

highly depends on the underlying network layer for the packet delivery. In other

38

words, packet forwarding at each link should rely on the underlying routing scheme.

Unlike with wired network such as the Internet, the routing in multi-hop wireless

network is costly. For example, when we use a reactive routing scheme such as

DSR due to high mobility, at each overlay hop, the routing scheme need to flood

the network to locate the next node, or it requires some control packets for routing.

Since our scheme only makes an edge between physically local neighbors, the scheme

do not suffer from the additional packet routing cost4.

P2P topologies follow the graph models such as small world network [61],

power law network [38], Gnutella graph, and random graph, and most research on

P2P searching algorithms assume such topologies [39, 40, 41, 12]. However, multi-

hop wireless networks form random geometric graphs [42]. In random geometric

graph, each node is located uniformly at random and two nodes are connected only

if their Euclidean distance is at most R. Random geometric graph exhibits differ-

ent characteristics from the topologies that appear in P2P overlay networks. For

example, random walk shows a unique mixing time property in random geometric

graphs [62, 63, 12].

2.6 Wireless Peer-to-Peer System

Some past work provides peer-to-peer lookup service in wireless networks.

Most works, however, focuses on searching algorithms based on optimized flood-

ing. ORION [64] employs a searching algorithm similar to AODV routing scheme

4one of proposed schemes may want to forward to 2-hop neighbors, which do not requires serious
routing protocol.

39

through link-layer flooding. Duran and Shen [65] propose a flooding-based search-

ing algorithm with enhancement by filtering and gossiping [66]; flooding of queries

are suppressed by local files of intermediate nodes and probabilistic query drops.

PDI (Passive Distributed Indexing) [67] actively uses caching of query results to

reduce network-wide flooding. Flooding-based searching, however, is not scalable

with large network size and highly frequent query rates.

Sozer et al. [68] proposed an interesting file sharing scheme in multi-hop

wireless networks. It constructs a global tree structure such that each node is

assigned a portion of the hash space through the incremental formation of the multi-

hop wireless network. At the beginning of the network, there exists only one node

and the entire hash space is assigned to that node. Thus, every object belongs to

the node. When a node joins the network as a child of an existing node, the parent

node divide its assigned hash space into half and gives one half to the child node.

The parent node remembers the hash spaces given to its children so that it can later

route queries to an appropriate child node, who can in turn forward the query to its

child.

Sozer’s scheme holds several drawbacks. Apart from its limitation of only

incremental construction, it fails to achieve even assignments of the hash space;

the size of hash space assigned to a node depends on the network topology and

the order of node joins. The more hash space a node is assigned to, the more

data the node should store in its storage, sacrificing its resource. Simulation results

show that Sozer’s scheme assigns hash space more than three times biased than our

algorithm Rigs. Its tree-routing also limits the routing performance compared to

40

graph-routing, as in Rigs.

41

Chapter 3

Valley-Walk: A Loosely-Structured Peer-to-Peer Lookup Service

In this dissertation work, I propose a loosely-structured P2P lookup scheme

Valley-Walk and a tightly-structured scheme Rigs. I describe Rigs in Section

4. The structure of Valley-Walk is minimal and purely localized. Each local

structure requires only local knowledge such as one-hop information. Because of

this locality, there is no guarantee that each step advances toward the destination;

we only probabilistically bound the required search length.

The Valley-Walk is a simple deterministic walk with occasional random

walk when needed. Unlike random walk which blindly chooses the next node among

neighbors, Valley-Walk gives a strong incentive to one of the neighbors which

is believed to be closer to the destination. Valley-Walk tries to compensate the

limitation of random walk – blind searching – and that of DHT – independence

of topology. Valley-Walk adds a slope to random walk so that the walk has

tendency toward closer nodes to the destination to increase possibility of hitting

the target. Because of its simple distributed characteristic, Valley-Walk is sig-

nificantly robust against network dynamics, such as mobility, node join/leave, and

failures on nodes or edges.

42

0

0.5

0.250.75

v1

v2

v3

v4

v5

v6

v7

k1

k2

k3

0.12

0.3

0.8

distk1(v3) = 0.18

hopk1(v3) = 2

distk1(v6) = 0.68

hopk1(v6) = 5

Figure 3.1: Hash space

3.1 Hash Space

Valley-Walk follows the same hash space as in Chord. Although such

ring-like hash space will be implemented by a 2m long discrete space, for the ease of

exposition, I describe the hash space as a real value unit length circle. Suppose we

have an undirected graph G = (V, E) where V is the set of nodes and E is the set

of edges. Let n = |V | be the network size. Assume that each node v is assigned a

node identity id(v) chosen uniformly at random from [0, 1), the id-space, and each

object k is assigned an identity id(k) chosen uniformly at random from [0, 1). It

is common in the literature that the identity of the object is called a key and the

id-space is called a key space. Although I mean a cryptographic credential by key

in the context of key-discovery problem, I will also use key for the object identity

and the actual meaning can be determined by the context.

Imagine the id-space as a unit-length ring where 0 and 1 meet at the same

point and the value increases in the clockwise direction. We can now locate nodes

43

and objects on the id-space of unit length ring. The Figure 3.1 shows an id-space

with 7 nodes v1, v2, . . . , v7 and 3 objects k1, k2, k3. The numbers by the nodes and

objects are their id values. We often use v and k for id(v) and id(k), respectively,

when the meaning is clear from the context.

We define two metrics, key-distance and key-hop-count. The key-distance of

node v for object k, denoted by distk(v), is the distance from k to v along the ring

in the clockwise direction. The key-hop-count of node v for object k, denoted by

hopk(v), is the number of nodes on the ring segment from k to v in the clockwise

direction including v itself. For example, let id(k1) = 0.12, id(v3) = 0.3, and id(v6) =

0.8 as in Figure 3.1. Then, distk1(v3) = 0.18, hopk1(v3) = 2, distk1(v6) = 0.68, and

hopk1(v6) = 5. Recall that Chord assigns an object k to a node v if hopk(v) = 1.

Valley-Walk however, determines the holders differently as discussed in Section

3.3 and 3.4.

3.2 Valley-Walk

The structure of Valley-Walk is minimal; each node keeps the id-table, a

list of neighbor’s id values. An entry of the id-table is (v, id(v)) where v is the

neighbor node’s address and id(v) is its identity. To keep the id-table up to date,

neighboring nodes periodically exchange their id values with each other.

Valley-Walk is the minimum key-distance searching algorithm where each

node forwards a query for object k to the neighbor node with the smallest key-

distance for k, except already visited nodes for the same query. That is, node v

44

0

4

7

8

9

10

1

6

5
2

3

11

k

Figure 3.2: Valley-Walk

forwards a query for k to a non-visited node u if

distk(u) = min
w∈Nb(v)

distk(w)

where Nb(v) is the set of v’s neighbor nodes. For node v to find an object k,

v initiates a Valley-Walk and each node forwards the query according to the

Valley-Walk algorithm until a holder receives the query. To avoid loops, we

keep the last c visited nodes in the query packet or each node maintains a cache of

past queries. If all neighbor nodes are already visited, the node chooses a neighbor

uniformly at random as in a random walk.

For example, suppose we have a graph shown in Figure 3.2 where each node is

assigned an id. For the simple presentation, instead of real values in [0, 1) for node

id’s, we use integer values such that 0 represents the smallest id value assigned and

11 represents the largest id value assigned. Also assume that, for simplicity, the

identity of the queried object is zero (id(k) = 0), thus, the key-distance of a node

45

Algorithm 1 Valley-Walk

1: {v: myself, u: v’s neighbor}
2: {Nb(v): set of v’s neighbor nodes }
3: {S: set of visited nodes}
4: {node v execute the following when v receives (k, S) }
5: if v is a holder for k then
6: terminate
7: end if
8: if v is starting the query then
9: S := {v}

10: else
11: S := S ∪ {v}
12: end if
13: mindist := 1
14: next := ⊥
15: for all u : u ∈ Nb(v) ∧ u /∈ S do
16: if distk(u) < mindist then
17: next := u
18: mindist := distk(u)
19: end if
20: end for
21: if u = ⊥ then
22: pick a random u← Nb(v)
23: end if
24: send (k, S) to u

equals to the node identity (distk(v) = id(v)). Assume node 4 is a holder for object

k and node 9 queries for k. According to the algorithm, node 9 chooses node 6 as

the next node for it has the smallest key-distance among nodes {6, 11} and node

6 in turn forwards to node 0 and node 0 forwards to 1. Since node 0 is already

visited, node 1 forwards to node 4, which has the next smallest key-distance. In this

way, the query arrives at the holder node 4 in 4 hops. Algorithm 1 describes the

Valley-Walk algorithm in detail.

46

0

4

7

8

9

10

1

6

5
2

3

11

k

k 0

4

7

8

9

10

1

6

5
2

3

11

k

k

(a) Local minima graph (b) Local minima trees

Figure 3.3: Local minima

3.3 Valley-WalkLM : Local Minima Based Key Distribution

Given such a structure and Valley-Walk algorithm described in the previous

section, what is the best strategy to distribute objects such that with high proba-

bility the query finds a holder in a small number of hop counts? In this section and

the following section, I discuss two strategies for storing objects; local minima based

online object distribution (Valley-WalkLM) and key-distance based offline object

distribution (Valley-WalkKD). Valley-WalkLM determines the holder based

on the network topology and Valley-WalkKD determines only from the id-space

regardless of the actual network topology. Therefore, Valley-WalkLM can dis-

tribute objects only after the network deployment (online) and Valley-WalkKD

can distribute objects before the deployment (offline).

Given an object k, a node is called Local Minima if its key-distance to k is

smaller than any of its neighbor nodes. In Figure 3.3(a), each node is labeled with

47

the key-distance for k. In this graph and given object k, there are two local mini-

mum nodes 0 and 2 denoted by gray circles. The local minima based Valley-Walk

(Valley-WalkLM) stores copies of object k in each local minimum; in the exam-

ple, node 0 and 2 become object holders. Note that the Valley-Walk starting

from any node will stop at a local minimum. The arrow lines in Figure 3.3(a) rep-

resents the forwarding direction of queries by Valley-Walk algorithm. As seen in

this example, with Valley-WalkLM , any node can find a holder by performing a

Valley-Walk and there can be no loop along the search. Figure 3.3(b) shows how

Valley-Walk with local minima partitions the network into a set of trees with

local minima as their roots.

Formally, given an undirected graph G = (V, E) (Figure 3.3(a)) and an object

k, we construct a directed graph Gk = (V, Ek) (Figure 3.3(b)) as follows. For

(u, v) ∈ E, there exists a directed edge (u, v) ∈ Ek if and only if v has the smallest

key-distance over u’s neighbors including u itself, that is, for all w ∈ Nb(u) ∪ {u},

distk(v) < distk(w). Let LMk denote the set of local minima for k. Then, Gk is a

set of |LMk| disjoint trees with local minima as their roots and node v is the parent

of node u if (u, v) ∈ Ek. Assuming that no two nodes have the same identities, Gk is

acyclic because the key-distances along the directed edges are monotonic decreasing.

Since every node is either a local minimum or has a parent node, Valley-Walk

searching always guarantees of finding a holder.

48

3.3.1 The Number Of Local Minima

The limitation of Valley-WalkLM is that the replication number should

equal to the number of local minima. Consider the probability that a node v with

degree dv becomes a local minimum for object k. For fixed k, distk(u) is uniformly

distributed on [0, 1) and the probability that distk(u) > x is

P [distk(u) > x] = 1− x.

Since node id ’s are chosen independently, the probability that all v’s neighbors have

key-distances greater than x is

P [distk(u) > x for all u ∈ N(v)] = (1− x)dv .

Therefore, the probability that node v becomes a local minimum equals to the

probability that all neighbor’s key-distances are greater than v’s key-distance, i.e.,

P [v ∈ LMk] = Pr[distk(u) > distk(v) for all u ∈ N(v)]

=
∫ 1

0
Pr[distk(u) > x for all u ∈ N(v)|distk(v) = x] dx

=
∫ 1

0
(1− x)dv dx

=
1

dv + 1
.

Therefore, if δ is the minimum degree of nodes, the expected number of local

49

0

4

7

8

9

10

1

6

5
2

3

11

k

k

k
k

0

4

7

8

9

10

1

6

5
2

3

11

k

k

(a) Local minima graph (b) Local minima trees

Figure 3.4: r > |LMk|: Split

minima is bounded as

E[|LMk|] ≤
n

δ + 1
. (3.1)

where n is the number of nodes in the network.

Since the number of local minima is a random variable whose expected value

depends on the node degree and the network size, we do not have much control over

the number of replications we can store in the local minima. In the following, I

discuss how we can control the replication number in Valley-WalkLM method.

Suppose we want the replication number to be r. Then, the actual number of

local minima |LMk| is either larger or smaller than r.

case 1: r > |LMk|: When the number of objects to be stored is larger than

the number of local minima, we can store objects at local minima and store the

remaining objects in randomly chosen nodes. In local minima tree’s point of view

50

0

4

7

8

9

10

1

6

5
2

3

11

k 0

4

7

8

9

10

1

6

5
2

3

11

k

(a) Local minima graph (b) Local minima trees

Figure 3.5: r < |LM | : Merge

(see Figure 3.3(b)), election of object-holders from non-local-minima is performing

split operation where some subgraph Gki
is being split into two subtrees. Suppose we

choose node u for an object-holder and u ∈ Gki
. Then, u is becoming a root node for

the subtree below u and this is splitting the original subtree into two different trees.

For example, in Figure 3.4, we have 4 replications while there are only two local

minima. We randomly chose two more object-holders, node 3 and 6 and the original

two trees are split into four new trees (Figure 3.4(b)). Note that this split operation

costs nothing; the searching process stops when it reaches an object-holder.

case 2: r < |LMk|: When the number of objects to be stores is less then the

number of local minima, there exist local minima without objects. For example, in

Figure 3.5(a), the replication number 1 is less than the number of local minima 2

(node 0 and 2) and a local minimum node 2 is not chosen as an object-holder. When

the query starts at node 11 and reaches at the local minima node 2, since node 2

51

does not have the object, it continues with Valley-Walk until it reaches node

the object holder node 0. As a consequence, continuous Valley-Walk results

in a merge operation of local minima trees (see Figure 3.5(b)). I choose to call

this process merge operation for ease of explanation but the actual merging path

from the empty local minimum to an object-holder differs from query to query.

For example, when the query starts from node 8 in Figure 3.5(a), the search path

becomes 8, 2, 3, 5, 4, 0, which makes different merged tree from when it starts from

node 11. Unlike the case when r > |LMk|, the mergin path can be large and the large

different of |LMk| − r can significantly increase the searching cost. In the following

section, I discuss how we can control the number of local minima to minimize the

merging cost.

3.3.2 Tunable Local Minima

In this section, we discuss how to tune the number of local minima to mini-

mize the searching overhead due to relatively smaller replication numbers than the

number of local minima. As the merge operation becomes costly as |LMk| − r in-

creases, we attempt to reduce |LMk| by reducing E[|LMk|]. By Equation 3.1, we

can suppress the expected number of local minima E[|LMk|] by increasing the min-

imum node degree δ. We can increase node degree by expanding the neighborhood

to multiple hop neighbors such as 2-hop neighbors.

Suppose we have the replication number of r and the network size of n. Let

X be a random variable representing the number of local minima |LMk|. Then,

52

X =
∑n

i=1 Xi where Xi is a Bernoulli random variable for ith node to become a

local minimum and Pr[Xi = 1] = 1
di+1

where di is the degree of ith node. We want

to bound the following upper-tail probability Pr[X > x]. We introduce a Binomial

random variable Y ∼ B(n, 1
δ+1

) where δ is the minimum degree in the network. Y

represents an ideal case where each node has identical probability of becoming a

local minimum and, since 1
di+1
≤ 1

δ+1
, the probability becomes an upper bound of

the actual case. Therefore,

Pr[X > x] ≤ Pr[Y > x] (3.2)

=
n
∑

i=x+1

(

n

i

)

(

1

δ + 1

)i (

1−
1

δ + 1

)n−i

(3.3)

Now we can make the probability that |LMk| > r as small as we want by adjusting

the minimum degree δ. Suppose we want Pr[|LMk| > r] < ǫ for ǫ > 0, then

we can find the smallest δ̂ which satisfies Pr[Y > r] < ǫ. For example, suppose

there are 100 nodes (n = 100) and we want to distribute 10 object copies. To have

Pr[|LMk| > 10] < 0.05, δ = 15 suffices since Pr[|LMk| > 10] < Pr[Y > 10] = 0.048.

Similarly, we can also increase |LMk| when |LMk| < r until |LMk| ∼ r by decreasing

the maximum node degree ∆.

Tuning δ and ∆: To increase δ as we want, a node with degree less than δ

expands its neighborhood by adding randomly chosen 2-hop neighbors (or 3-hop if

needed) into their neighbor set until its degree becomes δ. Also one can decrease the

maximum node degree ∆ by shrinking the neighborhood so that each node has less

than or equal to ∆ neighbors. However, the shrink of neighborhood can cause an

53

apparent degrade of searching performance because the dropped one-hop neighbor

might be an object-holder. Therefore, in practice, we do not decrease the degree

below its natural one-hop degree. We only expand the neighborhood if needed.

With adjusted neighborhood, the neighbor relationship becomes asymmetric; v can

be a neighbor of u but u is not for v. The Valley-WalkLM construction is still

valid with the asymmetry neighborhood relationship.

3.4 Valley-WalkKD: Key Distance Based Key Distribution

Valley-WalkLM only works when we are able to store objects in local min-

ima online. When it is not the case, for example, there is no secure way to find local

minima or transfer objects to local minima, we should store objects in the nodes

prior the deployment. We need a strategy of storing objects such that object-holders

become a local minimum or near a local minimum with high probability. I propose a

heuristic strategy which stores objects in the nodes which has as small key-distance

to object as possible.

Given a replication number r and an object k, we assign k to the nodes with r

smallest key-hop-counts, that is, {v|hopk(v) ≤ r}. Figure 3.6 shows an example of

object assignments when r = 3. In Figure 3.6, nodes 2, 3, 4 are assigned as object-

holders of object k1 since they are closest to the object (hopk1(2) = 1, hopk1(3) =

2, hopk1(4) = 3). Likewise, object k2 is stored in nodes 8, 9, 10 k3 is in nodes 10, 11, 0.

Note that this object assignment is done before deployment and the network topol-

ogy is not known at that time. The assignment requires to sort nodes by their

54

0

4

7

8

9

10

1

6

5
2

3

11

k1

k1

k1

k2

k2

k2

k3

k3

k3

0

1

2

3

4

5
6

7

8

9

10

11

k2

k1

k3

(a) Network topology (b) Hash space

Figure 3.6: Key distance based pre-distribution

node ids and to find the closest node for each object, thus the total processing

time is O((n + m) log n). Figure 3.6(b) shows an example deployment with the pre-

deployment object assignment; object holders are shown as gray nodes with their

objects shown next to them.

Since we determine key-holders before deployment, the key-holders may or

may not become local minima. Figure 3.7(a) shows a deployment of the network

and the local minima tree for key k2. In the figure, gray nodes are key-holders

and thick circles are local minima. The arrow lines points the direction toward local

minima which Valley-Walk may follow during the search. As shown in the figure,

k2 is stored in nodes 8, 9, 10 and they are all local minima. There is also one more

local minima node 0 but it does not have k2. For k1, however, while node 2 and 4

are local minima, node 3 is not. As shown in Figure 3.7(b), there exists only two

local minima (node 2 and 4) but also node 3 become a root because it has the key.

55

0

4

7

8

9

10

1

6

5
2

3

11k2

k2

k2 0

4

7

8

9

10

1

6

5
2

3

11

k1

k1

k1

(a) (b)

Figure 3.7: Key-holders and local minima by Valley-WalkKD

3.5 Performance Analysis

In this section, we analyze the performance of Valley-WalkLM and

Valley-WalkKD in terms of search path. I model the Valley-Walk as a se-

ries of independent random variables on [0, 1) and analyze the tail probability, the

probability that the search length is larger then a given value. The analytic re-

sults show that, most of the time (90%), the search succeeds in 3 hops or 6 hops

by Valley-WalkLM or Valley-WalkKD, respectively. Comparison with packet

simulations show that our analytic bounds are tight.

3.5.1 Model Of Valley-WalkLM

For simplicity, I assume that we can store objects in and only in local minima:

r = |LMk|. In this case, all the local minima become object-holders and, therefore,

Valley-Walk stops whenever it reaches a local minimum. A node is a local

56

vivi−1 vj−1 vj

c

di−1 dj−1

Figure 3.8: Dependency between consecutive forwardings in a Valley-Walk

minimum if its identity is smaller than the identity of the next node chosen by

Valley-Walk algorithm. Figure 3.9(a) shows an example of a Valley-Walk

on a graph of size 12 where the key-distance of each node is shown on the circle.

Starting at node 9, the query finds a local minimum node 0 with a Valley-Walk-

path v0 = 9, v1 = 6, v2 = 0. Node 0 is a local minimum because its next node

chosen by Valley-Walkis node 1 > 0. In the following, I denote the minimum

key-distance of a set of nodes V by distk{V } = min{distk(v)|v ∈ V }.

I model the Valley-Walk as a random process (a series of random variables)

as follows. Given an object k and a querying node v0, let v0, v1, v2, . . . be the series

of nodes visited by Valley-Walk, called Valley-Walk-path. Let Xi = distk(vi)

be a random variable for the identity of vi on the Valley-Walk-path and, then

X0, X1, X2, . . . is a random process. The search length of Valley-WalkLM denoted

by L, is the smallest integer i such that Xi < Xi+1.

In general, for i < j, Xi and Xj are not independent because they are minimum

key-distances from two possibly non-distinct sets, i.e., Xi = distk{Nb(vi−1)} and

Xj = distk{Nb(vj−1)}, and possibly Nb(vi−1)∩Nb(vj−1) 6= ∅. Figure 3.8(a) depicts

57

0

4

7

8

9

10

1

6

5
2

3

11

LM

v1

v2

v0 9v0 9v0

6

11

v1

(a) A Valley-Walk (b) Step 0 (c) Step 1

9v0

6

11

v1

0

7
5

3

v2

9v0

6

11

v1

0

7
5

3

v2

4

1

LM

9

v0

6

0

1

11

7

3

5

4

v1 v2 v3
Minwalk

k
e
y

d
i
s
t
a
n
c
e

(d) Step 2 (e) Step 3 (f)

Figure 3.9: Example of a Valley-Walk

the dependency between Xi and Xj. In the figure, Xi is the minimum key-distance

among di−1 neighbors of node vi−1 and Xj is that of dj−1 neighbors of node vj=1.

Since node vi−1 and vj−1 can share c neighbors, there can be dependency between

Xi and Xj in the form of Xi < c and Xj < c where c = distk{Nb(vi−1)∩Nb(vj−1)}.

By the following new experiment, I create an independent random process whose

distribution of search length is exactly the same as the original dependent random

process.

We convert the original Valley-Walk to a modified version incremental -

Valley-Walk, which has the same distribution of the search length with the orig-

58

inal. In the following description, we say “reveal key-distance of a node” to mean

that we assign a node the key-distance as the same value when we assign them in the

original Valley-Walk. For simple presentation, we say node v has key-distance

i when v has ith smallest key-distance (i = 0, 1, 2, . . .) among all the nodes in the

network.

In the original Valley-Walk(e.g., Figure 3.9(a)), we choose key-distances of

all the nodes at random before starting the Valley-Walk. In the incremental-

Valley-Walk, however, at each step of the walk, we reveal key-distances only for

the nodes that we need to know to determine next node (Figure 3.9(b)–(e)). For

example, in Figure 3.9(b), we start from node v0 by revealing its key-distance, say

9. To determine next node v1, we reveal key-distances of node 9’s neighbor nodes,

say 6 and 11 as in Figure 3.9(c). Then, node 6 becomes v1 since it has the smallest

key-distance among node v0’s neighbors. We continue for finding v2 because v0 is not

a local minimum for distk(v1) < distk(v0). In the next step, we reveal key-distances

of v1’s neighbor nodes which has not yet been revealed, i.e., node 7, 0, 5, 3 in Figure

3.9(d) and chooses node 0 as v2. In the next step shown in Figure 3.9(e), we find

that v2 is a local minimum because all revealed key-distances of v2’s neighbors are

larger than v2’s, and we stop the search at v2.

Figure 3.9(f) illustrates the incremental-Valley-Walk as a random process

where, at node vi (i = 0, 1, 2, . . .), we reveal key-distances for vi’s neighbor nodes

that is not revealed yet, and choose the smallest value as the key-distance of the

(i + 1)th node. The solid lines shows neighbor relationships between nodes and the

horizontal dashed lines and dashed circles show that the node is a neighbor of both

59

vivi−1 vj−1 vj

Cj−1

Nbj−1

Rj−1

9 6 3 1

7

10

13

11

4

8

5

12

vivi−1 vL vL+1

CL

di−1

3

5

6

7

8

1

8

9

10

11

NbL

RL

06

(a) Case 1 (b) Case 2

Figure 3.10: Incremental Valley-Walk

previous and current node and, thus, we do not reveal key-distance of such a node

since it already has been.

Let X ′

0, X
′

1, X
′

2 . . . be the random process in the incremental-Valley-Walk.

Then, X ′

i’s are independent random variables since X ′

i is determined from disjoint

sets. For example, in Figure 3.9(f), node 6 is the smallest of {6, 11} and node 0 is

the smallest of {0, 3, 5, 7}.

Lemma 3.5.1 The distribution of search length L′ in the incremental-Valley-Walk

has the same distribution of search length L in Valley-Walk.

Proof It is suffice to show that, if X0 > X1 > . . . > XL < XL+1, then X ′

i = Xi for

i ≤ L and X ′

L < X ′

L+1.

Note that X ′

0 = X0. Assume that X ′

i = Xi for i < j ≤ L. Then, X ′

j < X ′

i

for i < j. Let Nbj−1 be vj−1’s neighbors, Cj−1 ⊂ Nbj−1 be vj−1’s neighbors whose

key-distances are already revealed, and Rj−1 ⊂ Nbj−1 be vj−1’s neighbors whose key-

distances are not revealed yet (see Figure 3.10(a)). Note that all nodes in Cj−1 have

60

larger key-distances than vj−1. Since X ′

j < X ′

j−1, vj /∈ Cj−1. Therefore, minimum

key-distance of Cj−1 is larger than X ′

j which is the minimum key-distance of Rj−1.

Since X ′

j < distk{Cj−1} and X ′

j = distk{Rj−1}, X ′

j = distk{Nbj−1}, thus X ′

j = Xj .

By induction, X ′

i = Xi for i ≤ L

In Figure 3.10(b), since XL < XL+1, distk{NbL} > XL, therefore, distk{RL} >

XL. Since X ′

L+1 = distk{RL} and X ′

L = XL, X ′

L < X ′

L+1.

3.5.2 Analysis Of Valley-WalkLM -iid

In the following analysis, I focus on the incremental-Valley-Walk for it is

equivalent to the original Valley-Walk with local minima object distribution in

terms of the distribution of search length. We denote Xi for X ′

i, the key-distance of

ith node in the searching path of incremental Valley-Walk.

Let Fi and fi be the cdf(cumulative probability function) and pdf (probability

density function), respectively, for the random variable Xi. Note that Xi’s follow

different distributions because they have different size of node sets from which the

next node is chosen, i.e, Fi 6= Fj if i 6= j. For example, in Figure 3.9(f), X1 is the

smallest key-distance of two nodes while X2 is that of 4 nodes.

To get an insight of my analysis on Valley-WalkLM , we first analyze the

simplified version of Valley-WalkLM , called Valley-WalkLM -iid where Xi’s

follow the same distribution, i.e., Fi = Fj for all i, j ≥ 0. The Theorem 3.5.2

shows that, if Xi’s are iid (independent identical distribution), the distribution of

the search length is independent of the actual distribution of Xi.

61

Theorem 3.5.2 (Valley-WalkLM -iid) If X0, X1, . . . follow identical independent

distribution, then, the tail probability of the search length L is

Pr(L ≥ k) =
1

(k + 1)!
(3.4)

and

E[L] = e− 2 (3.5)

where e is the base of natural logarithm.

Proof Please see Appendix A.1 .

The result of Theorem 3.5.2 shows that, if incremental-Valley-Walk chooses

the next node from the same number of neighbors at all steps, the tail probability

becomes 1/(k + 1)!. Also the distribution of L is independent of Xi’s distribution.

For example, even if we choose the second smallest key-distances from the candidate

nodes, the distribution of L remains the same.

3.5.3 Analysis Of Valley-WalkLM

In Valley-WalkLM , Xi’s follow the different but independent distributions.

Let di be the degree of node vi and d̂i be the number of revealed nodes by node

vi. Then, d̂i < di. We define the previous node of the first node v0 as v−1 and let

d−1 = d̂−1 = 1. Then, Xi is the smallest value out of d̂i−1 random values on [0, 1)

62

for i = 0, 1, 2, · · ·, and therefore,

Fi(x) = Pr(Xi ≤ x)

= 1− (1− x)d̂i−1 (3.6)

fi(x) = F ′

i (x) = d̂i−1(1− x)d̂i−1−1 (3.7)

for i ≥ 0.

The probability that a node vi on the path becomes a local minimum is

Pr(vi ∈ LMk) = Pr(distk(vi) < distk(vi+1)) (3.8)

=
∫ 1

0
Pr(x < distk(vi+1)|distk(vi) = x) dx (3.9)

=
∫ 1

0
(1− x)d̂i (3.10)

=
1

d̂i + 1
(3.11)

Therefore, the probability that a node in the path becomes a local minimum de-

creases as the number of candidate nodes for the next node increases, thus the

search path increases. Let ∆ be the maximum degree in the network. Then the

modified network where all the nodes have degree ∆ gives an upper bound of the

expected search length and also the tail bound. We define F (x) = 1− (1− x)∆ and

f(x) = F ′(x).

63

Theorem 3.5.3 (Valley-WalkLM) For the search length L of Valley-WalkLM ,

Pr(L ≥ k) ≤
1

k!

k
∑

i=0

(

k

i

)

(−1)i

∆i + 1
(3.12)

≤
1

k!
(3.13)

Proof Please see Appendix A.2 .

Morselli et al. [12] showed a tail bound of ∆
2k−1 . Our bound is tighter than

Morselli’s because

1

k!
≤

1

2k−1
(3.14)

≤
∆

2k−1
(3.15)

for all k ≥ 0.

Figure 3.11 shows that our analysis is significantly closer to the actual tail

probability than Moriselli’s. The big difference between the cross line and the circle

line shows that my analysis is much tighter than Moriselli’s. The starred line shows

the results of packet simulations for Valley-WalkLM with n = 50. In the packet

simulations, the network had the average degree of 6.5 and the maximum degree of

11. We used the same maximum degree ∆ = 11 in the analysis results. Although

we see the difference between the packet simulation and my analysis, the error is

caused by the large variance in the degree of the network. When the degree has

a small variance, my analysis is very close to the simulation results. The average

64

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

Search Length (hops)

T
ai

l P
ro

ba
bi

lit
y

Simulations
Analytic Bound
Morselli’s

Figure 3.11: Comparison of my analysis, Morselli’s, and ns2 simulation results for
Valley-WalkLM

search length and its analytic upper bound was 1.49 and 1.54, respectively.

3.5.4 Analysis Of Valley-WalkKD

Valley-WalkKD strategically store objects in the nodes before deployment

such that object-holders become local minima with high probability. Given a repli-

cation number r and an object k, the r closest nodes in terms of key-distance distk(v)

(distance from id(k) to id(v) in the clockwise direction) become object-holders. In

other words, the nodes within r clockwise hops, i.e., hopk(v) ≤ r, become object-

holders (see Figure 3.6).

Given an object k and n nodes v1, v2, . . . , vn, let random variables D1, D2, . . . , Dn

be key-distances from the nodes , i.e., Di = distk(vi). Then, Di’s follow the uniform

65

Y1 Y2 Y3 Yr Yn

k k k k

?

Xi < Yr Yr < Xi

X0 X1 Xi

Figure 3.12: Analysis model of Valley-WalkKD

distribution on [0, 1). Let Y1, . . . , Yn be the same values as D1, . . . , Dn in increas-

ing sorted order. Then, with the replication number r, the set of object-holders is

{Y1, Y2, . . . , Yr}. In Figure 3.12, Yj is the random variables for jth smallest key-

distance among n nodes and Xi is a random variable for the key-distance of the ith

node in the search path. As shown in the figure, the ith node becomes an object-

holder if its key-distance is less than the largest key-distance of the object-holder.i.e.,

Xi < Yr. To analyze the search length, therefore, we have to know the probability

distribution of both Yj and Xi as well as their joint probability.

For later calculations, I introduce the following lemma for the definite integra-

tion.

Lemma 3.5.4 For i, k ≥ 0,

∫ 1

0
xi(1− x)k dx =

1

(i + k + 1)
(

i+k

i

) (3.16)

Proof Please see Appendix A.3 .

66

Theorem 3.5.5 answers for the probability distribution of Yk, the kth smallest

value of n uniform random variables.

Theorem 3.5.5 (Distribution of Yk) Let D1, D2, . . . , Dn be a set of continuous

random variables which independently follow the uniform distribution on [0, 1). De-

note the kth smallest value among them by a random variable Yk. Then, for y ∈ [0, 1)

and 1 ≤ k ≤ n, the cdf of Yk is FYk
(y) = Pr(Yk ≤ y) = 1− Pr(Yk > y) where

Pr(Yk > y) = 1−
k−1
∑

i=0

(

n

i

)

yi(1− y)n−i (3.17)

with

E[Yk] =
k

n + 1

Proof Please see Appendix A.4 .

Suppose the search path by Valley-WalkKD is {v0, v1, v2, . . .} where vi is

the ith node in the path. Let X0, X1, X2, . . . be the random variables for the key-

distances of the nodes along the path, i.e., Xi = distk(vi). Like Valley-WalkLM ,

I can make a similar argument about the incremental-Valley-Walk such that

the distribution of search length by incremental-Valley-Walk equals to that of

Valley-Walk with Valley-WalkKD. However, I choose not to exploit such con-

version approach because replacing the number of revealed nodes at each step with

the smallest number of revealed nodes (mostly 0) fails to provide a tight bound of

the search length. Instead, I take a simplified assumption, independence between

67

vivi−1 vj−1 vj

Cj−1

Nbj−1

Rj−1

6 2 4 3

5

10

13

11

7

8

9

12

Vj−1

vivi−1 vj−1

vj

Cj−1

Nbj−1

Rj−1

6 2 4 14

5

10

13

11

7

8

9

12

Vj−1

(a) Case 1 (b) Case 2

Figure 3.13: Valley-WalkKD and incremental Valley-WalkKD

Xi’s, with sacrifice of upper bound. By independence between Xi’s, I mean that,

at each step i for determining vi, we re-sample key-distances of all vi−1’s neighbors.

By simulations, I show that the independence assumption generates bound-like ap-

proximations to the tail probability of search length and the error is low.

Lemma 3.5.6 The probability that the first node v0 becomes an object-holder is

Pr(v0 becomes an object-holder) =
r

n + 1
(3.18)

and the probability that ith node in the search path vi (i > 0) becomes an object-

holder is

Pr(vi becomes an object-holder) = d
r−1
∑

i=0

(

n

i

)

(n + d)
(

n+d−1
i

) (3.19)

where d is the degree of vi−1.

Proof Please see Appendix A.5 .

68

Theorem 3.5.7 (simplified Valley-WalkKD) For k > 0, a tail probability of

the search length L with the independence assumption is

Pr(L ≥ k) ≤ (1− p0)(1− p)k−1 (3.20)

where p0 = r/(n + 1) and, given the minimum node degree δ,

p = δ
r−1
∑

i=0

(

n

i

)

(n + δ)
(

n+δ−1
i

)

Proof Let pi(i = 0, 1, 2, . . .) be the probability that the ith node becomes an object-

holder. By Lemma 3.5.6, p0 = r/(n + 1) and

pi = d
r−1
∑

i=0

(

n

i

)

(n + d)
(

n+d−1
i

)

for i > 0, where n is the number of nodes, r is the number of object copies, and d

is the degree of the previous node. Let p be the upper bound of pi’s such that

p = δ
r−1
∑

i=0

(

n

i

)

(n + δ)
(

n+δ−1
i

)

where δ is the smallest degree in the network. Then, p ≤ pi for all i > 0. We can

consider the distribution of the search length L as a geometric random variable with

69

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Search Length (hops)

T
ai

l P
ro

ba
bi

lit
y

Simulations
Analytic Bound

Figure 3.14: Comparison of my analysis and ns2 simulation for Valley-WalkKD.

p0 for the first trial and p for the rest of the trials. For k > 0, we have

Pr[L ≥ k] ≤ (1− p0)(1− p)k−1

Figure 3.14 shows the tail probability P (L > k) by both packet simulations and

analytic bounds of simplified Valley-WalkKD in Theorem 3.5.7. In the packet

simulations, the minimum degree was 4 and I used the same δ = 4 for analytic

bounds. The difference between two lines is due to high variance of node degree and

two lines are very close when the variance of node degree is low.

70

Chapter 4

Rigs: A Topology-Dependent DHT With Ring Interval Graph

Valley-WalkLM and Valley-WalkKD bear limitations. With Valley-WalkLM

a node becomes a local minimum if it has the lowest id among its neighbors. The

number of local minima in the network depends on the degree of nodes and we can

control the number of local minima by adjusting the node degrees. Let the natural

local minima be the local minima generated without adjusting node degree. Simula-

tion results show that Valley-WalkLM performs close to optimal when the number

of natural local minima is close to the number of replications. To make the number of

local minima close to the given replication number, nodes shrink or expand the neigh-

borhood to change their degrees. On the other hand, Valley-WalkKD requires

pre-distribution with processing time of O((n + m) log n). Also, Valley-WalkKD

search can be arbitrarily large if the network has only a small number of replications,

such as one or two. Those limitations of Valley-WalkLM and Valley-WalkKD

comes from their loosely-structured characteristics.

In this chapter, I propose a structured searching scheme Rigs for multi-

hop wireless networks which guarantees successful searches and performs close-to-

optimal. Rigs is a fully structured searching mechanism. The structure exploits

the locality of neighboring nodes and can be generated in a distributed fashion. All

the nodes need to know only neighbor information and the network size.

71

0

1

2

3

4

5
6

7

89

10

11

(a) Hamiltonian cycle (b) Node numbering

Figure 4.1: Hamiltonian cycle and node numbering along the cycle

4.1 Hamiltonian Search

To provide an insight of my approach, I begin with explaining the basic idea.

Consider the following ring-based structure, as in Chord [14]. In Chord, every node

are places on the ring-shaped id space and each node keeps a pointer to the next node

on the ring. Therefore, given a data with an identity on the ring, every node can

forward the query toward the destination by passing to the next node on the ring.

We can build such a ring for a wireless network if the network has a Hamiltonian

cycle such that we can visit every node exactly once by following the cycle in one

direction. Unlike Chord, the next node on the ring is a one-hop neighbor in the

network topology. Figure 4.1(a) show an instance of a graph with a Hamiltonian

cycle as thick arrows. Given network size n, We can construct a consistent hashing

space along the ring as follows; starting from a pivot node, we assign each node an

id from {0, 1, 2, . . . , n − 1} with an increasing order along the cycle. Figure 4.1(b)

72

0

1

2

3

4

5
6

7

89

10

11

0

1

2

3

4

5
6

7

8

9

10

11

k(2)

k(1)

(a) Network topology (b) Key hash space

Figure 4.2: Search with the Hamiltonian ring

shows an example of node id assignments. Given a replication number r and an

object k, we hash k and r−1 virtual objects on the same hash space [0, 12) as follows.

Given an object id k and a replication number r, we generate virtual object ids as

k(i) = k + n
r
(i − 1) where i = 1, . . . , r. Key-holders of k is the successive nodes of

the virtual objects in a clockwise direction. For example, Figure 4.2(b) shows when

r is 2 and k is 3.5. In the figure, the object replications are {k(1), k(2)} = {3.5, 9.5}

and bold nodes 4 and 10 become object-holders because they are successive nodes

of each object replications.

Searching is as simple as forwards the query packet to one of its neighbors on

the ring whose id is the closest to the object. In the example, suppose node 1 wants

to find a copy of object k = 3.5. Since distk(1)(2) = 1.5 and distk(2)(0) = 2.5, node

1 forwards the query to node 2, which in turn forwards to node 3 and finally the

object holder 4 receives the query (Figure 4.2(a)).

73

0

1

2

3

4

5
6

7

89

10

11

0

1

2

3

4

5
6

7

8

9

10

11

k(2)

k(1)

(a) Node mapping (b) Key hashing

Figure 4.3: Hamiltonian cycle and node numbering along the cycle

Note that the search path on the ring is not necessarily the shortest path

toward the destination. In the previous example, although node 2 is the closest to

the destination 3.5 among 1’s neighbors on the ring, node 3, 1’s another neighbor on

the graph, is closer to the destination than node 2. We can exploit this opportunity

to expedite the search; forward to a neighbor who has closest id to the object even

if it’s not on the ring. For example, node 1 can improve search performance by

forwarding to node 3 instead of 2, and new search path becomes 1, 3, and 4 (Figure

4.3). In this way, the link redundancy of the graph provides many shortcuts toward

destinations. This opportunity of shortcut is inherent to the wireless network where

a node naturally can communicate with its neighbor nodes in vicinity without any

extra effort for communication. In the structured schemes proposed in this work, I

exploit this abundant local information to expedite the search.

Not every graph, however, has a Hamiltonian cycle and determining if one

74

(1) (2)

(3)

(4)(5)

(6)
x-1 x x+1

x+2

y

y+1

y+2z

x-2

z+1

Figure 4.4: Construction of non-Hamiltonian search

exists in a graph is NP-complete [69]. Dirac showed that a graph is Hamiltonian if

each node has degree n/2 or greater and Ore [70] showed that a graph is Hamiltonian

if, for each non-adjacent vertex pair, the sum of their degrees is n or greater. Later,

Bondy-Chvtal generalized Dirac and Ore’s results; A graph is Hamiltonian if and

only if its closure is Hamiltonian. A closure of a graph is a new graph constructed

from G by edges (u, v) if the sum of their degree is n or greater.

Without having or knowing of a Hamiltonian cycle, it is inevitable to visit

some nodes more than once. Suppose we have a non-Hamiltonian cycle with the

following property. Since the path is cyclic, each node has the same number of

incoming paths and outgoing paths (see Figure 4.4). Suppose any outgoing path

comes back through the same node. Imagine we follow the path and assign node

ids in an increasing order to each node we visit for the first time. For example,

consider a node v in Figure 4.4 where node v has four neighbors v1, v2, v3, and v4.

In this figure, a non-Hamiltonian cycle visits v1, v (message (1)), and v3 (message

(2)) assigning node ids x−1, x, x+1, respectively. After coming back with message

75

0

4

7
8

910

1

6

5

2

3

11

4

0

4

78

910

1

6

5

2

3

11

7

3

8

2
9

6 5

1

011

10

[8, 3]

[4, 7]

(a) Ring Interval Graph (b) Removal of an edge

Figure 4.5: Ring Interval Graph

(3), we visit v4 with id(v4) = y +1 (message (4)). Then the cycle goes back to node

v1. After the assignment, node v knows the followings. All the nodes behind node

v3, including v3, have id value from x + 1 to y, and all the nodes behind node v4,

including v4, have id value from y +1 to z. The rest of id values are behind node v1.

We develop this idea and build a graph structure with this property in the following

section.

4.2 Ring Interval Graph

In this section, I define a tree-like graph structure ring interval graph (RIG)

which enables a searching scheme faster than ring-based TD-DHT. Unlike ring,

RIG provides more choices on choosing the closest neighbor by partitioning the hash-

ing space into non-overlapping intervals and mapping intervals to neighbor nodes.

In the following descriptions, for ease of representation, I convert the hashing

76

space of [0, 1) into a larger space [0, n) so that we can use integer values for node

identities. One can easily convert to the [0, 1) hash space by dividing all identity

values by n. When I say node i, it denotes either node name or node identity

depending on the context.

4.2.1 Definition Of Ring Interval Graph

Given a set of n node identities N = {0, 1, . . . , n− 1}, let the ring be a cyclic

chain of nodes starting from 0 and 1, 2, . . . , n− 1 and returning to 0, as in Figure

4.2-(b). A ring interval is a set of node identities in a connected segment of

the ring. For example, given a ring of Figure 4.2-(b), {10, 11, 0, 1} is a valid ring

interval. We denote a ring interval by [a, b] where a, b ∈ {0, 1, . . . , n− 1}o. If a < b,

[a, b] = {a, a+1, . . . , b−1, b}, if a > b, [a, b] = {a, a+1, . . . , n−1, 0, 1, 2, . . . , b−1, b},

and if a = b, [a, b] = {a}. Note that I use integer values for node identities only for

simple representation but one can use any real numbers in [0, n) for node identities

and the following discussion is still valid.

Given a network graph G = (V, E) where |V | = n, a Ring Interval Graph

(RIG) is an acyclic undirected subgraph Grig = (V, Erig) with an identity assignment

mapping id : V → {0, . . . , n − 1} such that any one-cut (a removal of one edge)

partitions the graph into two distinct ring intervals. Figure 4.5-(a) shows an example

of a ring interval graph with 12 nodes. As seen in Figure 4.5-(b), the removal of

edge (1, 4) partitions the ring into two ring intervals [4, 7] and [8, 3].

Suppose a node v0 has d neighbor nodes v1, v2, . . . , vd and denote the ring

77

interval formed by nodes behind a neighbor vi by Ii. For example, in Figure 4.5-(a),

from the node 1’s point of view, the ring interval behind node 4 is [4, 7]. In this

way, node v0 can partition the ring space {0, 1, . . . , n− 1} into d + 1 ring intervals

{I0, I1, . . . , Id} where I0 = {v0} and Ii is associated with vi. Such a RIG structure

provides a interval-based routing mechanism such that, given a query for a target

identity i, each node knows the next node toward the destination by choosing a

neighbor node v associated with a ring interval I containing i.

4.2.2 Construction Of Ring Interval Graph

Given a spanning tree of a graph, one can easily construct a RIG by a depth

first search (DFS) traversal and assigning a value in the increasing order to each

node at the first visit. Figure 4.6 shows a graph and a spanning tree with DFS

trace. During a DFS traversal, we visit each node multiple times. For example,

in Figure 4.6-(b), node 1 is visited three times, first from node 0 and second and

third from 2 and 4, respectively. We keep a counter, initially set to 0, and assign the

counter’s value to a node when we visit the node for the first time, and the counter is

increased at each assignment. Figure 4.6-(b) shows an example construction of RIG

on a given spanning tree. Starting node 0, we traverse along the edges (1), (2), . . . ,

and assign integer values in the visiting order. The resulting spanning tree with

assigned id values become a RIG.

Construction over different spanning trees creates different RIGs. As shown

by simulation results, TD-DHT schemes based on different RIG provides different

78

0

4

7
8

910

1

6

5

2

3

11

0

4

7

8

9

10

1

6

5

2

3

11

(1)

(2)

(3)

(4)

(5)

(a) Network Graph (b) DFS tree

Figure 4.6: Construction of RIG through DFS on the network graph

performances. In this work, I study two kinds of constructions, depth first spanning

tree and breadth first spanning tree. RIG construction with depth first spanning

tree is easy to implement in a distributed setting as in wireless networks, and we can

combine construction of DFS spanning tree with the construction of RIG. Breadth

first searching tree is used for broadcasting or multi-casting in wireless networks.

Given a BFS tree, one can easily construct RIG by DFS traversal on the tree.

4.3 Hashing And Search

In this section, I describe the construction of RIG-based TD-DHT structure,

called Rigs. We assume that the construction of Rigs can be based on either DFS

spanning tree or BFS spanning tree. We call DFS-based scheme Rigs-Dfs and

BFS-based scheme Rigs-Bfs.

79

0

1

2

3

4

5
6

7

8

9

10

11

(2)

(1)

(4)

(0)

0

1

4

1

3

2

7

0

(1,)1

(3,)2

(7,)4

(0,)0

node 1’s
i-table

(1,3]

(3,7]

(7,0]

(0,1]

(a) Discrete partition (b) Continuous partition

Figure 4.7: Construction of RIG for continuous intervals

4.3.1 Hashing With Rigs

Recall the ring of [0, n) where n nodes are evenly located. We want to hash

objects on the same ring space and assign an object-holder for each object to the suc-

cessive node of the object. With a ring interval graph, one can find an object-holder

by forwarding to a neighbor who is mapped to an interval containing the object-

holder’s id. In the following, I describe the construction of RIG-based TD-DHT.

To handle objects properly, we have to convert the ring interval into the con-

tinuous real interval. Suppose we have a node with d + 1 intervals I0 < I1 <

. . . < Id and Ii is associated with node vi. Let bi be the largest of the inter-

val Ii, then we partition the hash space [0, n) into d + 1 continuous ring intervals

as (b0, b1], (b1, b2], . . . , (bd−1, bd], (bd, b0] and associate with nodes v1, v2, . . . , vd, v0, re-

spectively. For example, consider node 1 in Figure 4.5, then ring intervals [2, 3], [4, 7],

[8, 0], [1, 1] are associated with nodes 2, 4, 0, 1, respectively. Then, the new partition

becomes (3, 7], (7, 0], (0, 1], (1, 3] with associated nodes 4, 0, 1, 2 (see Figure 4.7).

80

Algorithm 2 Construction of RIG and distributed hash table

1: {v: myself, w: parent in DFS, u: v’s neighbor}
2: {V : set of visited nodes}
3: {add(x, v): add (x, v) into interval table}
4: {Execute the following when v receives (x, w) }
5: if v is the starting node then
6: id(v) := x
7: V := {v}
8: else
9: add(x, w)

10: id(v) := x + 1
11: V := V ∪ {v}
12: end if
13: add(id(v), v)
14: y := id(v)
15: for all u ∈ Nb(v) ∧ u /∈ V do
16: send (id(v), v) to u
17: wait until u sends back (y, u)
18: add(y, u)
19: end for
20: reply with (y, v) to w

Let node v maintain an interval table, or i-table, which is a sorted list

of value-node pairs, i.e., i-table = ((b1, v1), (b2, v2), . . . , (bd, vd), (b0, v0)). With the

above example, node 1’s i-table becomes ((7, (4)), (0, (0)), (1, (1)), (3, (2)).

Algorithm 2 illustrates how we can construct RIG and generate i-tables. Note

that, if Nb(v) is on the network graph G, it generates a DFS-tree based RIG and, if

Nb(v) is on the given BFS spanning tree, it generates BFS-based RIG. Each node

v runs this algorithm when v receives a RIG packet from a node w, say node 1

receives from node 0, or when v is the starting node, say node 0 in the example.

Upon receiving a value x, v increases x by one (except starting node) and set the

new value as its id value (line 4–11). The set of visiting node V now contains v.

Also v adds (x, w) into its interval table as well as (id(v), v) (line 12). Then, v sends

81

0
11

(0,7](10,11]

(7,10]

7

10

8

1

(11,0]

k=6.5

0

1

(7,0]

(1,3]

(3,7]

(0,1]

3

7

2

4

k=6.5

4

7

1

5

3

6

(7,3]

(6,7]

(4,6]

(3,4]

k=6.5

0

1

2

3

4

5
6

7

8

9

10

11

k=6.5

(a) v = 0 (b) v = 1 (c) v = 4 (d) global

Figure 4.8: Range-based forwarding by RIG

a RIG packet (id(v), v) to each unvisited neighbor u and wait for reply value y and

add (y, u) into the interval table before moving to next neighbor node (line 14–18).

v also replies to the previous node w with the last value from its children nodes or

its own id value if there is no child (line 13 and 19).

4.3.2 Shorted Interval Forwarding

Given an object k, each node forwards to a neighbor node associated with

a ring interval containing k. In Figure 4.5-(a), Suppose node 0 queries for ob-

ject 6.5. By the RIG-construction algorithm, the interval table of node 0 has

{(0, (0)), (7, (1)), (10, (8)), (11, (11))}. Figure 4.8(a) depicts node 0’s i -table. Ac-

cording to node 0’s i-table, object 6.5 belongs to the interval (0, 7], so the query is

forwarded to node 1. In turn, 6.5 belongs to the interval (3, 7] in node 1’s i -table

and, thus, node 1 forwards the query to node 4 (see Figure 4.8(b)). Similarly, node

4 in turn forwards to node 7 (Figure 4.8(c)) which is the object-holder of the object.

Figure 4.8 shows a global view of the search path from node 0 to node 7.

82

0

1

2

3

4

5
6

7

8

9

10

11

k=6.5

0

4

7
8

910

1

6

5

2

3

11

Figure 4.9: RIG searching with a shortcut from node 0 to node 4

As in ring-based schemes, RIG-based TD-DHT also can use shortcuts to

improve the search performance by choosing neighbors not in the RIG but provides

better route to the destination. In the previous example, the query from node 0

travels over the path 0, 1, 4, 7 and node 0 chose node 1 because, from node 0’s point

of view, the query must visit node 1 to reach any node in the interval (0, 7). However,

in Figure 4.6(a), node 0 has other neighbors 3 and 4 that are not on the RIG (Figure

4.5(a)). If node 0 knows that node 4 has the interval (6, 7] in its i -table, node 0 can

directly send the query to node 4 instead of 1 and achieve a shorter search path of

length 2 instead of 3 (Figure 4.9).

Suppose neighbor nodes exchange their i -table, especially the interval par-

titions. For example, node 4 sends neighbors only end points of its intervals:

{3, 4, 6, 7}. Then, a neighbor node 0 knows that node 4 knows where to forward for

intervals {(3, 4], (4, 6], (6, 7], (7, 3]}. When forwarding for object k, node v first finds

83

an interval I from its i -table such that k ∈ I. Before forwarding to the node mapped

to I, node v checks the set of neighbor’s intervals and find the shortest interval I ′

such that k ∈ I ′ and I ′ ⊂ I but I ′ 6= I. We call this the shortest interval forwarding.

For example, for object 6.5, node 0 chooses the interval I = (0, 7] from its i -table.

But a neighbor node 4 has an interval I ′ = (6, 7] which contains the object and also

a proper subset of I. Therefore, node 0 finds that forwarding to node 4 instead of

1 is a shortcut toward the destination.

Theorem 4.3.1 states that the shortest interval forwarding always chooses the

closest neighbor to the destination among neighbors.

Theorem 4.3.1 (Monotonic property of shortest interval forwarding) Given

an object k, let v and v′ be two distinct nodes. Let k ∈ I ∈ itable(v) and k ∈ I ′ ∈

itable(v′).

If I ′ ⊂ I and I 6= I ′, then node v′ is closer to the destination than node v.

Proof For node v, let node u be the leading node to the interval I. If v = u, v is

the destination and we are done. Assume v 6= u. Then, edge (v, u) partitions the

network into I and R− I where R = [0, n). Suppose v′ ∈ R− I. Then, v should be

in the path from v′ to k which means that v ∈ I ′, thus v ∈ I. But v /∈ I because of

the definition of I, thus contradiction. Therefore, v′ ∈ I.

Now we claim that v′ should be in the path from v to k. Suppose not. Let

P be the path from v to k and P ′ from v′ to k. Let P = (v, . . . , w, . . . , k) and

P ′ = (v′, u′, . . . , w, . . . k) where w ∈ P ∩ P ′. The removal of edge (v′, u′) partitions

the network into two and one of them is I ′. Since k ∈ I ′, w ∈ I ′, and w and v

84

Algorithm 3 Shortest Interval Forwarding

1: {Nb(v): v and its neighbor nodes }
2: {Node v runs this when receiving query for k}
3: min := MAX
4: for all u ∈ Nb(v) do
5: for all I ′ ∈ itable(u) do
6: if k ∈ I ′ and |I ′| < min then
7: next := u
8: min := |I ′|
9: end if

10: end for
11: end for
12: forward query to next.

is connected through path P , v ∈ I ′, thus v ∈ I. But v /∈ I, a contradiction.

Therefore, v′ should be in the path from v to k.

Algorithm 4 describes the shortest interval forwarding algorithm. Unlike de-

scriptions above, node v simply checks all i -tables of neighbor nodes and forward

the query to the node with the shortest interval with k. Note that, RIG structure

guarantees that every node can find an interval that contains any object k from

neighbor’s intervals.

4.3.3 Replication

Given a replication number r and an object k, we generate additional r − 1

virtual object ids that evenly spread in the id space. If the id space is [0, n), the r

virtual object ids are {k + i
r
n | i = 0, 1, 2, . . . , r− 1}. Since each node can calculate

object ids of replicated objects, the searching algorithm intensionally chooses one of

them which is the closest among replications as follows. For each virtual object, the

node run Algorithm 4 to get the shortest interval neighbor. Choose the neighbor

85

Algorithm 4 Shortest Interval Forwarding with Replications

1: {r: replication number}
2: {Nb(v): v and its neighbor nodes }
3: {Node v runs this when receiving query for k}
4: min := MAX
5: totalmin := MAX
6: for all virtual object k′ do
7: for all u ∈ Nb(v) do
8: for all I ′ ∈ itable(u) do
9: if k ∈ I ′ and |I ′| < min then

10: next := u
11: min := |I ′|
12: end if
13: end for
14: end for
15: if min < totalmin then
16: totalnext := next
17: totalmin := min
18: end if
19: end for
20: forward query to totalnext.

which has the shortest interval among chosen neighbor for each virtual object.

86

Chapter 5

Simulation

By packet-level simulations, I evaluate the performance of the proposed algo-

rithms Valley-WalkLM , Valley-WalkKD, and Rigs and compare with that of

existing methods, such as Chord, LMS, and Sozer’s scheme. To evaluate P2P lookup

mechanisms, I simulate the user authentication scenarios in wireless mesh networks.

Network size, query rate, and replication factor are varied between simulations. The

simulation results show that proposed schemes not only outperform other schemes

but also achieve close-to-optimal performances.

5.1 Methodology

I used a packet-level network simulator ns2 [71] for the simulation. Various

network topologies are generated as follows. Define the unit node density as the case

when 50 nodes are deployed in 1000 × 1000m2 square area. Given the number of

node and node density, the topology area is recalculated accordingly. For example,

given 50 nodes with density 2.0, the topology area is reduced to one half. The

transmission range of each node is fixed to 250m.

I used two topologies; random geometric graph and mesh network graph. Ran-

dom geometric graph is generated by placing nodes uniformly at random and adding

an edge between two nodes if they are within the transmission range. Mesh net-

87

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 200 400 600 800 1000 1200 1400

0

1

2

3
4

5

6

7 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41
42

43

44

45
46

47

48

49

50

51

52

53

54

55

56

57

58

59
60

61

6263

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 200 400 600 800 1000 1200 1400

0

1

2

3
4

5

6

7 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

3637

38
39

40

41

42

43

44

45

46

47

48

49

50

51

52
53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

(a) Random geometric graph (b) Mesh network graph

Figure 5.1: Topologies

work graph, however, adds one constraint on random geometric graph; any two

nodes cannot be closer than a given minimum node distance (e.g., 100 m). This

topology simulates the real mesh network which enforces enough separation between

mesh nodes to minimize interference and control the load balance. Figure 5.1 shows

examples of the topologies with network size of 100 and unit density (d=1).

Given a network topology, during a period of 100 seconds, unlimited number

of users arrive at randomly chosen nodes which, then, perform authentication pro-

cedures. The user arrival time follows the Poisson distribution with a mean of given

user arrival rate (user/second) from 1 to 80. For each user, a user key is chosen

uniformly at random from [0, 1) and the mesh node then discovers a key-holder us-

ing the given P2P lookup algorithm. Once the query packet arrives at a key-holder,

the authentication protocol starts. I assume that underlying routing protocol can

88

Direction Content Size (B)

U → S Acc-Request/EAP-Response-ID 127
U ← S Acc-Challenge/EAP-Request/PSK-1 99
U → S Acc-Request/EAP-Response/PSK-2 181
U ← S Acc-Challenge/EAP-Request/PSK-3 101
U → S Acc-Request/EAP-Response/PSK-4 135
U ← S Acc-Accept/EAP-Success 46

Table 5.1: Message Exchange for EAP-PSK

effectively deliver the protocol packets between the serving node and the key-holder

node. DSDV (Destination-Sequenced Distance Vector) is used in this experimental

study. Note that proposed algorithms are independent of underlying routing pro-

tocols because each forwarding is mostly to one hop neighbor. Even after the 100

second period, the simulation waits for the started authentications to finish up to

300 seconds. An additional 30 seconds are spent for initialization such as neighbor

discovery or routing stabilization.

For the authentication protocol, EAP-PSK (Pre-Shared Key Extensible Au-

thentication Protocol, RFC 4764 [72]) is chosen because the protocol is a standard-

ized practical shared-key authentication method. EAP [73] and AAA [74] (Radius

[75] or Diameter [76]) based authentication framework is popular in wireless network

because the conventional setting of three entities (user, authenticator, and back-end

server) fits to the wireless network services [77] [78]. Table 5.1 shows the message

exchange and message size of EAP-PSK used for the simulations.

Table 5.2 summarizes the simulation parameters used and their values.

89

Parameter Values

number of nodes 50 ∼ 200
network density 1.0 ∼ 3.0
user arrival rate 1 ∼ 80
replication number 1 ∼ 20
random seed 11 ∼ 30

Table 5.2: Simulation Parameters

5.1.1 Algorithms

I implemented and simulated the following algorithms and compared their

performances. Without specific explanations, neighbors or neighborhood means a

set of nodes reachable by direct wireless communication, which are often called

one-hop neighbors.

RANDOM

With random walk (RandomWalk) method, each node forwards the query to

one of unvisited neighbor nodes uniformly at random. We can prevent loops by either

recording (or bloom filtering) visited nodes in that specific walk in the query packet

or having nodes keep recent forwards in their caches. In this simulations, I record

visited nodes in the query packet and nodes exclude those nodes for forwarding unless

there are no unvisited nodes left. To maximize service availability, no expiration (or

time to live) of RandomWalk packets is set, i.e, the query is forwarded until it

reaches the destination. When replicate, I place keys at nodes uniformly at random.

90

OPTIMAL

The optimal solution of the key discovery problem can be instantiated by the

following scheme; for any key, distributed uniformly at random, the serving node

magically knows who is the closest key-holder and starts the authentication to it.

The hop-stretch of this scheme is one, i.e., it always finds the key-holder through

the shortest path. We call this method OPTIMAL because no other algorithm

can perform better. However, OPTIMAL method is impractical in the real world.

The OPTIMAL query requires global knowledge of the topology and the locations

of each key. For a decentralized protocol, each node should flood the network for

each authentication request. Although the method is impractical, we experiment

with OPTIMAL method to evaluate proposed algorithms and examine how their

performances are close to optimal.

LMS

The structure of the hash space in LMS is similar with Valley-Walk; unit

length ring to which all nodes and keys are hashed. The key distance of LMS is

not directional; the shortest distance between the key and the node regardless of

the direction. To expedite the search, LMS suggests the use of 2-hop neighborhood

for forwarding rather than one hop. In this simulation, however, I use one-hop

neighbor because the use of 2-hop neighborhood degrades the performance instead

of improving in multi-hop wireless networks. This is because of the fact that the

increase of hop distance has more negative impacts on the performance than wired

91

networks.

For each authentication request, the serving node initiates a random walk with

given initial time-to-live (TTL). If it fails to find a key-holder after random walk, it

continues with a deterministic walk forwards the request to a neighbor with smallest

key distance. When it reaches a local minimum without a key, the local minimum

node reports the serving node of the failure. Then, the serving node starts another

random walk with a doubled TTL. I use TTL of three, as suggested by the authors

of LMS [12].

Chord

This is the original Chord scheme. I assume that every node somehow knows

its finger table from the beginning of the simulations. Please see Section 2.3.1 for

more detail.

Sozer’s

This scheme is an implementation of Sozer’s wireless file sharing scheme de-

scribed in Section 2.6.

Valley-WalkLM

This scheme is explained in Section 3.3. After network deployment and inde-

pendently choosing nodes’ id’s, we can decide which node becomes a local minimum.

Each query is forwarded by Valley-Walk until it reaches a local minimum (see

92

Algorithm 1). When the expected number of local minima (n
d+1

) is different from

the replication number r, we probabilistically adjust the number of local minima by

increasing (or decreasing) the minimum (or maximum) node degree to decrease (or

increase) the replication number (see Section 3.3.2).

Valley-WalkKD

This scheme is explained in Section 3.4. When a user arrives and has key k,

the r mesh nodes closest to the key become key-holders.

Rigs

These schemes are explained in Chapter 4. Only BFS based RIGS algorithm

is evaluated.

5.1.2 Metric

In this section, I define various metrics used for performance evaluation of key

discovery schemes.

Search Performance

The search performance is a direct measure of how much a key discovery

algorithm is effective on finding keys. It is easy to express the search performance

by the cost of the search or the overhead of the search. We first define four different

metrics that somehow reflect the cost of the search: virtual search length, actual

93

1

0

2

9

4

10
6

7

85

3

11

VLEN=3
ALEN=6
OLEN=2

0

1

2

3

4

5
6

7

8

9

10

11

k

(a) Chord in Graph (b) Chord on ring

Figure 5.2: Chord and its stretches

search length, shortest search length, and optimal search length.

Virtual search length (VLEN) is the number of application-level forwarding

over the high-level DHT structure. Figure 5.2 shows an example search by Chord

where node 1 queries for k and finds node 10 as a key-holder. By the Chord algo-

rithm, the query follows the route denoted by dashed arrows in Figure 5.2(a) and its

VLEN is three, the hop count in the conceptual Chord Ring in Figure 5.2(b). Most

structured DHT schemes claim the worst-case VLEN of O(log N) but in multi-hop

wireless, VLEN alone fails to correctly express the search performance.

The actual length (ALEN) is the number of hops the query packet actually

traveled on the network topology. In Figure 5.2, the query packet traveled along

the path of (1, 3, 7, 6, 9, 4, 10), thus ALEN is six.

The shortest search length (SLEN) is the shortest hop count on the physical

topology from the requesting node to the destination. In Figure 5.2, although the

94

query packet traveled 6 hops, the shortest distance between node 1 and node 10

is only two through path (1, 6, 10). If there exists more than one replicated keys,

SLEN reflects how well the algorithm finds a close key copies, or “local targets”.

The optimal search length (OLEN) is the search length of ideal algorithm which

finds a target which is the closest among the replications and the query packet travels

along the shortest path from the requesting node to the destination. For example,

suppose there is another replication at node 11 in Figure 5.2. Then, the optimal

search length should be 1, but the algorithm missed the closest replication and finds

one hop farther replication at node 10 costing 6 hops. This metric is meaningful for

evaluating simulated schemes to see how much they perform close to the optimal

solution. With the OPTIMAL algorithm in the simulations, the metric of VLEN,

ALEN, SLEN, and OLEN are all equal.

Now we define derived metrics from aforementioned metrics. The search-hop-

stretch is the ratio of the ALEN to OLEN (ALEN
OLEN), which represents the overall

performance of the algorithm compared to the optimal solution. In the example,

assuming we have another replication at node 11, search-hop-stretch is 6 (6/1).

The detour-stretch is the ratio of the ALEN to SLEN (ALEN
SLEN), which reflects

how much the actual searching path detoured from the shortest path which should

be taken by an ideal algorithm. This metric shows how much the search path of the

algorithm follows a straight line to the destination. Note that this metric do not

reflect how well the algorithm finds a target close enough to the requester. In the

example, detour-stretch is 3 (6/2).

The locality-stretch is the ratio of the SLEN to OLEN (SLEN
OLEN), which reflects

95

how close the algorithm chooses the replication compared to the optimal solution.

Locality-stretch close to one means that the algorithm successfully finds the closest

replication. In the example, locality-stretch is 2 (2/1).

The virtual-hop-stretch is the ratio of ALEN to VLEN (ALEN
VLEN), which reflects

how each virtual link of the searching scheme hides the underlying hop counts in the

real world. In our example, virtual-hop-stretch is 2 (6/3), meaning that on average,

each virtual hop costs two hops on the actual topology. Note that most proposed

schemes have the virtual-hop-stretch of one. Only Valley-WalkLM can have more

than one virtual-hop-stretch if it expands the neighborhood to two hop neighbors.

Since the average search performance cannot show the distribution of the per-

formance, I include the tail probability of the search length, the probability of having

search lengths (ALEN) at least given search lengths. For example, if the search tail

probability is 0.2 for the search length of 4, it means that only 20% of all queries

take more than 3 hops.

Authentication Performance

The authentication performance evaluates the feasibility of the given key dis-

covery algorithms when applied to the distributed authentication in wireless mesh

networks. The authentication performance is affected by searching performance and

also by the balance of the authentication traffic.

We measure the authentication performance by authentication success ratio

and authentication latency. An authentication is successful if the last message of the

96

authentication protocol is delivered. The authentication success ratio is the ratio

of the number of successful authentications to the number of initiated authentica-

tion requests. An authentication fails if an authentication message is lost due to

interference or packet drops. In this simulations, failed authentication do not retry.

The authentication latency is the time between the first message of the au-

thentication protocol sent and the last message received. The transmission delay

due to contention for channel access and queuing delay due to congestion can cause

longer authentication latency. The high network density and high node degree can

increase contention related delay and the unbalanced selection of key holders can

generate traffic congestion.

The search delay is the time between the start of the query and the discovery

of a key-holder. Long search delay can cause a long authentication latency.

5.2 Results For Searching Performance

In this section, I evaluate the search performance of the proposed schemes by

running several sets of simulations varying parameters such as replication factor,

network size, and network density. I use the metrics introduced in Section 5.1.2.

To measure only searching performance, I fix the average user arrival rate as 1

per second to minimize the impact of interference and traffic congestion on the

key discovery process. For simulations with increasing arrival rates, please refer to

Section 5.3.

97

 0

 2

 4

 6

 8

 10

 12

 14

 1 3 5 7 10 15 20 25 30

S
ea

rc
h

H
op

 S
tr

et
ch

 (
A

LE
N

/O
LE

N
)

Replication Factor (%)

node=100, density=1.0
RANDOM

CHORD
SOZER

LMS
VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

 2

 3

 4

 5

 10

 20

 30

 40

 70

 1 3 5 7 10 15 20 25 30

M
ax

im
um

 S
ea

rc
h

H
op

 S
tr

et
ch

Replication Factor (%)

node=100, density=1.0
RANDOM

CHORD
SOZER

LMS
VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

(a) Search Hop Stretch (b) Maximum Search Hop Stretch

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 5 10 15 20 25 30

Lo
ca

lit
y

S
tr

et
ch

 (
S

LE
N

/O
LE

N
)

Replication Factor (%)

node=100, density=1.0
CHORD

RANDOM
SOZER

LMS
VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

 1

 2

 3

 4

 5

 6

 7

1 3 5 7 10 15 20 25 30

D
et

ou
r

S
tr

et
ch

 (
A

LE
N

/S
LE

N
)

Replication Factor (%)

node=100, density=1.0

RANDOM
CHORD
SOZER

LMS
VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

(c) Locality Stretch (d) Detour Stretch

Figure 5.3: Search performance by replication factors - (1)

5.2.1 By Replications

The replication factor is the ratio of replications to the network size. In this

section, I vary the replication factor as {1%, 3%, 5%, 7%, 10%, 15%, 20%, 25%, 30%}

with network size of 100 and density of 1.0.

Figure 5.3 shows the overall searching performances of each schemes. Fig-

ure 5.3-(a) shows the search-hop-stretch metric. This figure contrasts Chord

and Sozer’s against other schemes; although the replications factor increases, the

98

search-hop-stretch, the searching overhead compared with that of Optimal, of

Chord and Sozer’s stays high. That is, replication does not help with these

schemes. Chord’s routing entries fail to reflect the abundant replications around.

The main problem of Sozer’s is the biased hashing and most objects are stored in

a small number of nodes, and this accounts for the limitation of replication in the

scheme. Despite improving with more replications to some extent, RandomWalk

and Lms also fail to keep reflecting the replications.

Figure 5.3-(a) also shows that Valley-Walk-based schemes do not perform

well with a small number of replications. The performance of Valley-Walk is lim-

ited with small number of replications because Valley-WalkLM does not expand

its neighborhood more than 2-hops and there become many empty local minima

with scarce replication. The figure also confirms that Rigs scheme performs close

to Optimal.

Figure 5.3-(b) shows the maximum search-hop-stretch with its y-axis in log

scale for clear representation of differences between proposed schemes. In this fig-

ure, proposed schemes perform well in the order of Rigs, Valley-WalkLM , and

Valley-WalkKD. Throughout the simulations, this trend stays the same except

that the performance of Valley-WalkLM looks limited with large number of repli-

cations because, after the replication number exceeds its natural number of local

minima, the change of hitting a key-holder becomes that of random selection. In

this simulations, the number of natural local minima, the number of local minima

when no neighborhood adjustment is performed, is around 12. Note that, in the

figure, Rigs always keeps the variance of the search-hop-stretch low.

99

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

1 3 5 7 10 15 20 25 30

S
ho

rt
es

t H
op

 C
ou

nt
 (

S
LE

N
)

Replication Factor (%)

node=100, density=1.0
RANDOM

CHORD
SOZER

LMS
VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

 5

 10

 15

 20

 25

 30

1 3 5 7 10 15 20 25 30

S
ea

rc
h

H
op

 C
ou

nt
 (

A
LE

N
)

Replication Factor (%)

node=100, density=1.0

RANDOM
CHORD
SOZER

LMS
VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

(a) Shortest Hop Count (b) Search Hop Count

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 3 5 7 10 15 20 25 30

V
irt

ua
l H

op
 S

tr
et

ch
 (

A
LE

N
/V

LE
N

)

Replication Factor (%)

node=100, density=1.0

RANDOM
CHORD
SOZER

LMS
VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

(c) Virtual Hop Stretch

Figure 5.4: Search performance by replication factors - (2)

Figure 5.3-(c) shows how close key holders (i.e., local) we can find compared to

that of Optimal. After 12, Valley-WalkLM begins to find distant key-holders.

Detour stretch (Figure 5.3-(d)) shows how straight the query approaches to the

destination. As shown in the figure, Rigs always finds the target along the shortest

path.

Figure 5.4-(a) and Figure 5.4-(b) shows SLEN and ALEN, respectively, which

shows the similar trends as in the previous figures. Virtual-hop-stretch of Fig-

100

ure 5.4-(c) shows how many hops in the real world each logical forwarding costs.

The figure shows that proposed schemes only forwards to 1-hop neighbors, except

Valley-WalkLM with low replication factors, which may have logical neighbors

that is 2-hop away. Note that with Chord, every forwarding to neighbor costs more

than 3 hops.

From the simulations, it is clear that Chord schemes can be outperformed by

the simple RandomWalk as the number of replications increase. While RandomWalk

naturally benefits the higher fraction of key-holders, the logical links in Chord ig-

nore that effect and blindly forwards to the virtual neighbors distant more than 3

hops, missing nearby targets.

5.2.2 By Network Size

In this section, I vary the network size from 100 to 400 increased by 50, with

fixed node density of 1, and the replication factors of 1% or 10%.

Figure 5.5 shows that proposed schemes scale well with increasing number of

nodes. The locality-stretch in Figure 5.5-(c) shows that, even if the replication is

as low as 1%, as the number of nodes increases, schemes find different destinations.

For example, when network size is 400, there are four replications and Rigs chooses

the close enough ones while others fail to choose the best.

Figure 5.6 also shows the same trend as Figure 5.6. Although Chord performs

as good as proposed schemes with a low replication factor, its performance degrades

as the network size grows while proposed scheme stays the same. Figure 5.7 and

101

 20

 15

 10

 5
 4
 3
 2
 1
 0
 100 150 200 250 300 350 400

S
ea

rc
h

H
op

 S
tr

et
ch

 (
A

LE
N

/O
LE

N
)

Number of Nodes

density=1, replication=1%RANDOM
CHORD
SOZER

LMS
VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

 10

 5

 4

 3

 2

 1

 100 150 200 250 300 350 400

S
ea

rc
h

H
op

 S
tr

et
ch

 (
A

LE
N

/O
LE

N
)

Number of Nodes

density=1, replication=10%CHORD
RANDOM

SOZER
LMS

VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

(a) Search Hop Stretch (b) Search Hop Stretch

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 100 150 200 250 300 350 400

Lo
ca

lit
y

S
tr

et
ch

 (
A

LE
N

/O
LE

N
)

Number of Nodes

density=1, replication=1%

RANDOM
CHORD
SOZER

LMS
VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 100 150 200 250 300 350 400

Lo
ca

lit
y

S
tr

et
ch

 (
A

LE
N

/O
LE

N
)

Number of Nodes

density=1, replication=10%

CHORD
RANDOM

SOZER
LMS

VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

(c) Locality Stretch (d) Locality Stretch

Figure 5.5: Search performance by network size -(1)

5.8-(a),(b) simply reflects the trend of Figure 5.5. Figure 5.8-(c),(d) shows that

Rigs maintains even the maximum search hop count as low as Optimal.

In this section, I showed that proposed schemes are scalable for the network

size and Rigs based schemes perform close to Optimal even for a large network

size, with low variances.

102

 0

 5

 10

 15

 20

 100 150 200 250 300 350 400

D
et

ou
r

S
tr

et
ch

 (
A

LE
N

/S
LE

N
)

Number of Nodes

density=1, replication=1%

RANDOM
CHORD
SOZER

LMS
VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

 1

 1.5

 2

 2.5

 3

 3.5

 4

 100 150 200 250 300 350 400

D
et

ou
r

S
tr

et
ch

 (
A

LE
N

/S
LE

N
)

Number of Nodes

density=1, replication=10%

RANDOM
CHORD
SOZER

LMS
VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

(a) Detour Stretch (b) Detour Stretch

 1

 2

 3

 4

 5

 6

 7

 100 150 200 250 300 350 400

V
irt

ua
l H

op
 S

tr
et

ch
 (

A
LE

N
/V

LE
N

)

Number of Nodes

density=1, replication=1%
RANDOM

CHORD
SOZER

LMS
VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 100 150 200 250 300 350 400

V
irt

ua
l H

op
 S

tr
et

ch
 (

A
LE

N
/V

LE
N

)

Number of Nodes

density=1, replication=10%
RANDOM

CHORD
SOZER

LMS
VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

(c) Virtual Hop Stretch (d) Virtual Hop Stretch

Figure 5.6: Search performance by network size -(2)

5.2.3 By Node Density

In this simulations, I vary the network density from 1 to 3 by 0.5 with fixed

network size of 100 and replication factors of 1% or 10%. Density of 1 represents

a node density when there are 50 nodes inside 1000 by 1000 square area with 250

transmission range. Other densities are proportional from the density of one.

Figure 5.9 through Figure 5.12 shows various metric on the searching perfor-

mance by varying densities. As the network becomes dense, the number of degree

103

 0

 1

 2

 3

 4

 5

 6

 7

 8

 100 150 200 250 300 350 400

S
ho

rt
es

t H
op

 C
ou

nt
 (

S
LE

N
)

Number of Nodes

density=1, replication=1%RANDOM
CHORD
SOZER

LMS
VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

 1

 2

 3

 4

 5

 6

 100 150 200 250 300 350 400

S
ho

rt
es

t H
op

 C
ou

nt
 (

S
LE

N
)

Number of Nodes

density=1, replication=10%

RANDOM
CHORD
SOZER

LMS
VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

(c) Shortest Hop Count (d) Shortest Hop Count

Figure 5.7: Search performance by network size - (3)

increases, which mostly improve the searching performance because the network di-

ameter decreases and more information about other nodes is available to each node.

RandomWalk, however, cannot benefit from this abundant information because

of the blindness of its searching method. What is worse for RandomWalk with

dense network is that even if the key-holder is one of its neighbor, the probability

of hitting that neighbor is becomes low with a large number of degrees. The search-

hop-stretch in Figure 5.9-(a),(b) and the detour-hop-stretch in Figure 5.10-(a),(b)

clearly shows this trend.

Since the range of “local” becomes larger as the number of degree increases,

the locality of each scheme, whether is close to Optimal.

5.2.4 Tail Probability

The tail probability of a given search length is the probability that the search

length is at least the given length. This metric is useful to engineer the algorithm

104

 100

 90

 80

 70

 60

 50

 40

 30

 20

 10

 5

 0
 100 150 200 250 300 350 400

S
ea

rc
h

H
op

 C
ou

nt
 (

A
LE

N
)

Number of Nodes

density=1, replication=1%

RANDOM
CHORD
SOZER

LMS
VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

 10

 5

 4

 3

 2

 1

 0
 100 150 200 250 300 350 400

S
ea

rc
h

H
op

 C
ou

nt
 (

A
LE

N
)

Number of Nodes

density=1, replication=10%
RANDOM

CHORD
SOZER

LMS
VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

(a) Search Hop Count (b) Search Hop Count

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 100 150 200 250 300 350 400

M
ax

im
um

 S
ea

rc
h

H
op

 C
ou

nt

Number of Nodes

density=1, replication=1%

RANDOM
CHORD
SOZER

LMS
VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 100 150 200 250 300 350 400

M
ax

im
um

 S
ea

rc
h

H
op

 C
ou

nt

Number of Nodes

density=1, replication=10%RANDOM
CHORD
SOZER

LMS
VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

(c) Maximum Search Hop Count (d) Maximum Search Hop Count

Figure 5.8: Search performance by network size - (4)

in terms of worst-case performance as well as the variance of the performance. In

this simulations, I vary the density 1, or 2, and the replication factor 1%, 5%, and

10%, with fixed network size of 100.

Figure 5.13-(a) shows that with a small number of replications most queries

are found in 10 hops for Rigs while Valley-WalkLM and Valley-WalkKD can

have search length more than 40 hops with a probability of more than 10%. As

there are more replications, the search hop count decreases down to 6 for Rigs.

105

 0

 5

 10

 15

 20

 1 1.5 2 2.5 3

S
ea

rc
h

H
op

 S
tr

et
ch

 (
A

LE
N

/O
LE

N
)

Node Density

node=100, replication=1
RANDOM

CHORD
SOZER

LMS
VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

 2

 4

 6

 8

 10

 1 1.5 2 2.5 3

S
ea

rc
h

H
op

 S
tr

et
ch

 (
A

LE
N

/O
LE

N
)

Node Density

node=100, replication=10

RANDOM
CHORD
SOZER

LMS
VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

(a) Search Hop Stretch (b) Search Hop Stretch

 1

 1.5

 2

 2.5

 3

 1 1.5 2 2.5 3

Lo
ca

lit
y

S
tr

et
ch

Node Density

node=100, replication=1
RANDOM

CHORD
SOZER

LMS
VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

 1

 1.5

 2

 2.5

 3

 1 1.5 2 2.5 3

Lo
ca

lit
y

S
tr

et
ch

 (
S

LE
N

/O
LE

N
)

Node Density

node=100, replication=10
RANDOM

CHORD
SOZER

LMS
VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

(c) Locality Stretch (d) Locality Stretch

Figure 5.9: Search performance by node density - (1)

The increased network density improves the tail probabilities such that Rigs can

find most of queries only in 3 hops (see Figure 5.14-(b)).

5.2.5 Random Graph

In this section, I run the same set of simulation as in Section 5.2.1 for random

geometric graphs with 100 nodes and 2.0 density. I used the density of 2.0 because

a density below 2.0 makes the network disconnected.

106

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 1 1.5 2 2.5 3

D
et

ou
r

S
tr

et
ch

 (
A

LE
N

/S
LE

N
)

Node Density

node=100, replication=1RANDOM
CHORD
SOZER

LMS
VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 1.5 2 2.5 3

D
et

ou
r

S
tr

et
ch

 (
A

LE
N

/S
LE

N
)

Node Density

node=100, replication=10RANDOM
CHORD
SOZER

LMS
VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

(c) Detour Stretch (d) Detour Stretch

 1

 1.5

 2

 2.5

 3

 3.5

 1 1.5 2 2.5 3

V
irt

ua
l H

op
 S

tr
et

ch
 (

A
LE

N
/V

LE
N

)

Node Density

node=100, replication=1

RANDOM
CHORD
SOZER

LMS
VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

 1

 1.5

 2

 2.5

 3

 3.5

 1 1.5 2 2.5 3

V
irt

ua
l H

op
 S

tr
et

ch
 (

A
LE

N
/V

LE
N

)

Node Density

node=100, replication=10

RANDOM
CHORD
SOZER

LMS
VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

(a) Virtual Hop Stretch (b) Virtual Hop Stretch

Figure 5.10: Search performance by node density - (2)

Figure 5.15 and 5.16 shows the similar trends as with mesh network topology.

But the performance degrade of Valley-WalkLM compared with Optimal is more

apparent.

5.3 Results For Authentication Performance

In this section, I test for the feasibility of key-discovery algorithms when used

for user authentication problem in wireless mesh networks. I use the metrics de-

107

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 1.5 2 2.5 3

S
ho

rt
es

t H
op

 C
ou

nt
 (

S
LE

N
)

Node Density

node=100, replication=1
RANDOM

CHORD
SOZER

LMS
VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 1.5 2 2.5 3

S
ho

rt
es

t H
op

 C
ou

nt
 (

S
LE

N
)

Node Density

node=100, replication=10
RANDOM

CHORD
SOZER

LMS
VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

(a) Shortest Hop Count (b) Shortest Hop Count

Figure 5.11: Search performance by node density - (3)

scribed in Section 5.1.2.

In this set of simulations, I vary the aggregate user arrival rate from 20 users

per second to 100 users per second with fixed networks size of 100, node density of

1, and replication factors of 5% or 10%.

Figure 5.17(a)–(b) shows the authentication success ratio with replications

factor of 5% and 10%. With a small number of replications, say 5%, even optimal

solution cannot achieve high success ratio, say more than 90%, if the user arrival

rate is more than 60. However, Rigs is achieving close to optimal performance all

the time with the difference less than 10%. But when we have 10% replications,

Rigs is achieving more than 90% success ratio and very close to the optimal so-

lution. Valley-WalkLM also performs well with almost 90% success ratio even

with the highest user arrival rate. Note that with both replication ratio 5% and

10%, Valley-WalkLM performs similar which also matches the result of other

simulations, e.g., Figure 5.3-(a).

108

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 1.5 2 2.5 3

S
ea

rc
h

H
op

 C
ou

nt
 (

A
LE

N
)

Node Density

node=100, replication=1

RANDOM
CHORD
SOZER

LMS
VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

 0

 2

 4

 6

 8

 10

 12

 1 1.5 2 2.5 3

S
ea

rc
h

H
op

 C
ou

nt
 (

A
LE

N
)

Node Density

node=100, replication=10
RANDOM

CHORD
SOZER

LMS
VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

(a) Search Hop Count (b) Search Hop Count

 300

 250

 200

 150

 100

 50

 20
 10

 1 1.5 2 2.5 3

M
ax

im
um

 S
ea

rc
h

H
op

 C
ou

nt

Node Density

node=100, replication=1
RANDOM

CHORD
SOZER

LMS
VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

 0

 10

 20

 30

 40

 50

 1 1.5 2 2.5 3

M
ax

im
um

 S
ea

rc
h

H
op

 C
ou

nt

Node Density

node=100, replication=10
RANDOM

CHORD
SOZER

LMS
VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

(c) Maximum Search Hop Count (d) Maximum Search Hop Count

Figure 5.12: Search performance by node density - (4)

Figure 5.17-(c) and (d) shows the authentication rate (or authentication

throughput) of each scheme. The authentication rate is defined as the average

number of successful authentications per second. The diagonal line shows the max-

imum achievable authentication rate, which equals to the user arrival rate. The

closer to the maximum achievable rate, the better the scheme performs. Note

that, with 10% replications, optimal solutions as well as proposed solutions (except

Valley-WalkKD) performs close to the maximum achievable rates. The differ-

109

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 80 60 40 20 10

T
ai

l P
ro

ba
bi

lit
y

Minimum Search Hop Count

node=100, density=1.0
replication=1

RANDOM
SOZER

LMS
VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 40 20 10 7 5

T
ai

l P
ro

ba
bi

lit
y

Minimum Search Hop Count

node=100, density=2.0
replication=1

RANDOM
SOZER

LMS
VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

(a) Tail probability (b) Tail probability
n=100, d=1.0, r=1 n=100, d=2.0, r=1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

T
ai

l P
ro

ba
bi

lit
y

Minimum Search Hop Count

node=100, density=1.0
replication=5

RANDOM
SOZER

LMS
VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20

T
ai

l P
ro

ba
bi

lit
y

Minimum Search Hop Count

node=100, density=2.0
replication=5

RANDOM
SOZER

LMS
VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

(c) Tail probability (d) Tail probability
n=100, d=1.0, r=5 n=100, d=2.0, r=5

Figure 5.13: Tail probability-(1)

ence between Optimal and the maximum achievable rate is due to interference and

packet drops, which is inevitable with limited bandwidth of wireless links.

Now we look at the delay of the authentication process and the key discovery.

In Figure 5.18-(a) and (b), with 5% replications, Rigs and Valley-WalkLM can

finish the authentication protocol in one second for up to 60 user per seconds, but

with 10% replications, they finish below 0.5 seconds even for the highest user arrival

rate. We observe a dropping delay of Chord with high user arrival rates and this is

110

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14

T
ai

l P
ro

ba
bi

lit
y

Minimum Search Hop Count

node=100, density=1.0
replication=10

RANDOM
SOZER

LMS
VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

95%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 9 8 7 6 5 4 3 2 1

T
ai

l P
ro

ba
bi

lit
y

Minimum Search Hop Count

node=100, density=2.0
replication=10

RANDOM
SOZER

LMS
VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

(a) Tail probability (b) Tail probability
n=100, d=1.0, r=10 n=100, d=2.0, r=10

Figure 5.14: Tail probability-(2)

because the Chord is failing to finish authentications more than 80% of the total

requests and so the authentication with long delay cannot even finish the protocol.

Figure 5.18-(c),(d) confirms this explanation showing that the search delay, which

is the first message in the series of protocol messages, continuously increases unlike

the authentication delay. Comparing with RandomWalk, although Chord and

RandomWalk achieves similar delay for the key discovery (figure (c)), Chord

fails with more authentication requests because it chooses farther destinations than

RandomWalk(see Figure 5.3-(c)). Note that, with 10% replications, even with the

highest user arrival rates, Rigs and Valley-WalkLM can finish the authentication

in less than 0.5 seconds and finds the destination in less than 0.2 seconds.

5.4 Summary

Simulation results show that Rigs performs very close to optimal and Valley-Walk

achieves the reasonable performance. With simple heuristic key store and oppor-

111

 15

 10

 7

 6

 5

 4

 3

 2

 1
 30 25 20 15 10 7 5 3 1

S
ea

rc
h

H
op

 S
tr

et
ch

 (
A

LE
N

/O
LE

N
)

Replication Factor (%)

node=100, density=2.0
Random Graph

RANDOM
CHORD

VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20 25 30

S
ho

rt
es

t H
op

 S
tr

et
ch

Replication Factor (%)

node=100, density=2.0
Random Graph

RANDOM
CHORD

VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

(a) Search Hop Stretch (b) Locality Stretch

 5

 4

 3

 2

 1.5

 1

30252015107531

D
et

ou
r

S
tr

et
ch

 (
A

LE
N

/S
LE

N
)

Replication Factor (%)

node=100, density=2.0
Random Geometric Graph

RANDOM
CHORD

VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

(c) Detour Stretch

Figure 5.15: Random geometric graph : by replication factors - (1)

tunistic walk allows Valley-Walk for drastic improvement from random walk.

112

 70

 30

 20

 12

 8

 5
 4

 3

 2

 1

 0.5
30252015107531

S
ea

rc
h

H
op

 C
ou

nt
 (

A
LE

N
)

Replication Factor (%)

node=100, density=2.0
Random Geometric Graph

RANDOM
CHORD

VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

 0

 10

 20

 30

 40

 50

 60

30252015107531

M
ax

im
um

 S
ea

rc
h

H
op

 C
ou

nt

Replication Factor (%)

Random Geometric Graph

RANDOM
CHORD

VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

(a) Search Hop Count (b) Maximum Search Hop Count

 3

 2.5

 2

 1.5

 1

30252015107531

S
ho

rt
es

t H
op

 C
ou

nt
 (

S
LE

N
)

Replication Factor (%)

node=100, density=2.0
Random Geometric Graph

RANDOM
CHORD

VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

(c) Shortest Hop Count

Figure 5.16: Random geometric graph : by replication factors - (2)

113

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20 40 60 80 100

A
ut

he
nt

ic
at

io
n

S
uc

ce
ss

 R
at

io

User Arrival Rate (user/sec)

node=100, density=1.0 replication=5%

OPTIMAL
RIG

VALLEYWALK-LM
VALLEYWALK-KD

SOZER
LMS

RANDOM
CHORD

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20 40 60 80 100

A
ut

he
nt

ic
at

io
n

S
uc

ce
ss

 R
at

io

User Arrival Rate (user/sec)

node=100, density=1.0 replication=10%

OPTIMAL
RIGS

VALLEYWALK-LM
VALLEYWALK-KD

SOZER
LMS

RANDOM
CHORD

(a) Success Ratio (b) Success Ratio
when r=5% when r=10%

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 20 30 40 50 60 70 80 90 100

A
ut

he
nt

ic
ai

to
n

T
hr

ou
gh

pu
t (

of

 a
ut

h/
se

c)

User Arrival Rate (user/sec)

node=100, density=1.0 replication=5%Arrival Rate
OPTIMAL

RIGS
SOZER

LMS
VALLEYWALK-LM
VALLEYWALK-KD

RANDOM
CHORD

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 20 40 60 80 100

A
ut

he
nt

ic
ai

to
n

T
hr

ou
gh

pu
t (

of

 a
ut

h/
se

c)

User Arrival Rate (user/sec)

node=100, density=1.0 replication=10%Arrival Rate
OPTIMAL

RIGS
SOZER

LMS
VALLEYWALK-LM
VALLEYWALK-KD

RANDOM
CHORD

(c) Authentication Rate (d) Authentication Rate
when r=5% when r=10%

Figure 5.17: Authentication performance

114

 0

 1

 2

 3

 4

 5

 6

 7

 20 40 60 80 100

A
ut

he
nt

ic
at

io
n

D
el

ay
 (

se
c)

User Arrival Rate (user/sec)

node=100, density=1.0 replication=5%
CHORD

RANDOM
SOZER

LMS
VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

 0

 1

 2

 3

 4

 5

 20 40 60 80 100

A
ut

he
nt

ic
at

io
n

D
el

ay
 (

se
c)

User Arrival Rate (user/sec)

node=100, density=1.0 replication=10%
RANDOM

SOZER
LMS

VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

CHORD

(a) Authentication delay (b) Authentication delay
when r=5% when r=10%

 0

 1

 2

 3

 4

 5

 20 30 40 50 60 70 80 90 100

S
ea

rc
h

D
el

ay
 (

se
c)

User Arrival Rate (user/sec)

node=100, density=1.0 replication=5%CHORD
RANDOM

SOZER
LMS

VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 20 30 40 50 60 70 80 90 100

S
ea

rc
h

D
el

ay
 (

se
c)

User Arrival Rate (user/sec)

node=100, density=1.0 replication=10%CHORD
RANDOM

SOZER
LMS

VALLEYWALK-KD
VALLEYWALK-LM

RIGS
OPTIMAL

(c) Search Delay (d) Search Delay
when r=5% when r=10%

Figure 5.18: Authentication delay

115

Chapter 6

Conclusion And Future Work

6.1 Conclusion

In this dissertation work, I identified the key-discovery problem in wireless

mesh networks and explored the possibilities for providing reliable, efficient, and

scalable object lookup service in multi-hop wireless networks. Despite the promis-

ing characteristics of the existing DHT schemes in P2P networks, I identified that

existing DHT schemes cannot scale in multi-hop wireless environments because of

their independence of underlying topology. Therefore, I proposed a novel concept of

topology-dependent DHT and designed a loosely-structured solution Valley-Walk,

and a tightly-structured TD-DHT solution Rigs.

Valley-Walk is minimally structured and the node states are independent

of each other. Therefore, this scheme is low-cost and robust against network dy-

namics. Valley-Walk, however, performs well only with reasonable fraction of

replications because of its blindness for the global state. The differences between

Valley-WalkLM and Valley-WalkKD comes from how to distribute objects:

pre-distribution or post-distribution, respectively. Valley-WalkLM is specially

designed for the case when the objects should be stored before the deployment

in which the deploying entity is unaware of the actual topology of the network.

Valley-WalkKD can achieve better performance because it can optimize the ob-

116

ject locations to maximize the search performance, knowing the network topology.

The limitation of Valley-WalkKD is the performance degrade if the number of

replications differ from the number of natural local minima. I also provide in depth

analysis of Valley-Walk which provide much more tight bound on the perfor-

mance of LMS than that of [12].

On the contrary, Rigs features a global structure which is constructed in a

distributed manner by each node. The construction requires only a global param-

eter, the network size. Rigs utilizes a novel lookup structure RIG to store and

lookup objects of interest. Rigs can have different characteristics depending on the

spanning tree upon which Rigs builds the RIG structure. I experimented with two

easy-to-build spanning trees, BFS and DFS. Due to the balanced property of BFS,

Rigs-Bfs performed better than Rigs-Dfs all the time. Moreover, Rigs-Bfs is

achieving close to optimal performance in the most scenarios.

Experiments with authentication problems in wireless mesh networks shows

that the proposed lookup services can successfully deliver a reliable and scalable

key-discovery service as much as the optimal solution can provide.

6.2 Future Work

I plan to continue with the exploration of TD-DHT scheme because I believe

it has many potential applications in multi-hop wireless networks.

The network dynamics become more and more important and I want to inves-

tigate how proposed schemes can handle such situations, especially when the nodes

117

arrive and leave. Valley-Walk schemes need to address following issues. First,

how to detect such dynamics and update node states. This will be easily done by

periodic updates or request-of-leave if it is a planned leave. The change of neigh-

borhood can change the location of local minima, so the object will be relocated

accordingly to maximize the probability of successful search.

Rigs has more challenging tasks to maintain its global structure in face of

network dynamics. I plan to start with the incremental node join where each node

joining the network first make a contact to a neighbor node and become a child

node of the existing node by choosing its node id properly. We can keep the RIG

property while adding one more node at any place of the existing RIG graph. In the

perspective of consistent hashing, the uniform property of node id converts to the

uniform property of node locations. Leave of a node is more challenging. A removal

of node makes a graph partitioned and the isolated group of nodes will actively find

through which link, that was not in the RIG before, they can attach to the other

part of the graph with minimal state updates and key relocations.

Probabilistic analysis on the performance of Rigs is of interest to provide

analytic guarantee of the scheme. Especially the tail probability, as given for

Valley-Walk in this dissertation, will be closely investigated.

As a long term plan, I want to implement TD-DHT in a real environment and

explore with various applications. For example, a sensor network requires various

lookup services such as data query and data repository discovery. Also content-

based routing will be one of its applications including sensor networks. In wireless

mesh networks, not only the key-discovery problem, but also other applications are

118

of useful, such as user profile lookup system or even the P2P-like information-sharing

system in a metropolitan area.

119

Appendix A

Proofs For Theorems In Chapter 3

A.1 Proof Of Theorem 3.5.2

Theorem 3.5.2 (Valley-WalkLM -iid). If X0, X1, . . . follow identical independent

distribution, then, the tail probability of the search length L is

Pr(L ≥ k) =
1

(k + 1)!
(A.1)

and

E[L] = e− 2 (A.2)

where e is the base of natural logarithm.

Proof Note that

Pr(L ≥ k) = Pr(X0 > X1 > . . . > Xk).

Suppose we sample k + 1 numbers and denote the ith largest value by Yi where

i = 0, 1, . . . , k. Since Xi can equally take any value of Yj , i.e., Pr[Xi = Yj] =

Pr[Xi = Yk] where j 6= k, any one-to-one matching between {X0, X1, . . . , Xk} and

120

{Y0, Y1, . . . , Yk} are equally possible. Since there are (k+1)! possible matchings, the

probability that Xi’s have decreasing order is

Pr(X0 > X1 > . . . > Xk) =
1

(k + 1)!
.

Therefore, the probability that search length equals to k is

Pr(L = k) = Pr(L ≥ k)− Pr(L ≥ k + 1)

=
1

(k + 1)!
−

1

(k + 2)!

=
k + 1

(k + 2)!

and the expected number of length is

E[L] =
∞
∑

k=1

Pr(L ≥ k) (A.3)

=
∞
∑

k=1

1

(k + 1)!
(A.4)

=
∞
∑

k=0

1

k!
− 2 (A.5)

= e− 2, (A.6)

where we get Equation A.5 by the Taylor expansion of e.

121

A.2 Proof Of Theorem 3.5.3

Theorem 3.5.3 (Valley-WalkLM). For the search length L of Valley-WalkLM ,

Pr(L ≥ k) ≤
1

k!

k
∑

i=0

(

k

i

)

(−1)i

∆i + 1
(A.7)

≤
1

k!
(A.8)

Proof Let f̂(x0, x1, . . . , xk) be the joint pdf of X0, . . . , Xk, and, because of the

independence,

f̂(x0, x1, . . . , xk) = f0(x0)f1(x1) · · ·fk(xk).

Therefore, we have that

Pr(L ≥ k) = Pr(X0 ≥ X1 ≥ . . . ≥ Xk) (A.9)

=
∫ 1

0

∫ x0

0
. . .
∫ xk−1

0
f̂(x0, x1, . . . , xk) dxk . . . dx1dx0 (A.10)

=
∫ 1

0

∫ x0

0
. . .
∫ xk−1

0
f0(x0)f1(x1) · · · fk(xk) dxk . . . dx1dx0 (A.11)

Since we get an upper-bound if we increase the number of candidate nodes from d̂i

to ∆, so do we if fi(x)’s are replaced by f(x) for i > 0, thus

Pr(L ≥ k) ≤
∫ 1

0

∫ x0

0
. . .
∫ xk−1

0
f0(x0)f(x1) · · ·f(xk) dxk . . . dx1dx0 (A.12)

=
∫ 1

0
f0(x0)

∫ x0

0
f(x1) · · ·

∫ xk−1

0
f(xk) dxk . . . dx1dx0 (A.13)

122

=
∫ 1

0
f0(x0)

∫ x0

0
f(x1) . . .

∫ xk−2

0
f(xk−1)F (xk−1) dxk−1 . . . dx0

=
∫ 1

0
f0(x0)

∫ x0

0
f(x1) . . .

∫ xk−3

0
f(xk−2)

(F (xk−2))
2

2
dxk−2 . . . dx1dx0

...

=
∫ 1

0
f0(x0)

(F (x0))
k

k!
dx0 (A.14)

=
∫ 1

0

(1− (1− x0)
∆)k

k!
dx0 (A.15)

We get Equation A.15 from 3.7 with d−1 = 1 and because F (x) = 1− (1− x)∆. If

we use Binomial expansion,

(1− (1− x0)
∆)k =

k
∑

i=0

(

k

i

)

(−1)i(1− x)∆i, (A.16)

therefore, we have

Pr(L ≥ k) ≤
1

k!

k
∑

i=0

(

k

i

)

(−1)i
∫ 1

0
(1− x)∆idx (A.17)

=
1

k!

k
∑

i=0

(

k

i

)

(−1)i

∆i + 1
(A.18)

Now we prove that

1

k!

k
∑

i=0

(

k

i

)

(−1)i

∆i + 1
≤

1

k!

Given f(x), let Df(x) denote the finite difference [79] such that Df(x) = f(x +

1)− f(x). Then,

D2f(x) = Df(x + 1)−Df(x) (A.19)

123

= f(x + 2)− 2f(x + 1) + f(x) (A.20)

D3f(x) = f(x + 3)− 3f(x + 2) + 3f(x + 1)− f(x) (A.21)

... (A.22)

Dkf(x) =
k
∑

i=0

(

k

i

)

(−1)k−if(x + i). (A.23)

Let f(x) = 1/x, then

Df(x) =
1

x + 1
−

1

x
= (−1)

1

x(x + 1)
(A.24)

D2f(x) = (−1)
{

1

(x + 1)(x + 2)
−

1

x(x + 1)

}

(A.25)

= (−1)2 2

x(x + 1)(x + 2)
(A.26)

D3f(x) = (−1)3 3!

x(x + 1)(x + 2)(x + 3)
(A.27)

... (A.28)

Dkf(x) = (−1)k k!

x(x + 1)(x + 2) · · · (x + k)
(A.29)

Therefore, by Equations A.23 and A.29, if we rule out (−1)k,

k
∑

i=0

(

k

i

)

(−1)i

x + i
=

k!

x(x + 1)(x + 2) · · · (x + k)
(A.30)

k
∑

i=0

(

k

i

)

(−1)i

∆x + ∆i
=

k!

∆x(x + 1)(x + 2) · · · (x + k)
. (A.31)

Letting x = 1
∆

and dividing by 1
k!

, we have

1

k!

k
∑

i=0

(

k

i

)

(−1)i

∆i + 1
=

1

(1
∆

+ 1)(1
∆

+ 2) · · · (1
∆

+ k)
(A.32)

124

≤
1

k!
(A.33)

A.3 Proof Of Lemma 3.5.4

Lemma 3.5.4. For i, k ≥ 0,

∫ 1

0
xi(1− x)k dx =

1

(i + k + 1)
(

i+k

i

) (A.34)

Proof Let A(i, k) = xi(1− x)k then

A(i, k)|x=1
x=0 = 0 if i > 0 and k > 0 (A.35)

and

∫ 1

0
A(0, k) dx =

∫ 1

0
(1− x)k =

1

k + 1
. (A.36)

By partial integration, we get

∫ 1

0
A(i, k) dx =

∫ 1

0
xi(1− x)k (A.37)

= −
1

k + 1
xi(1− x)k+1|x=1

x=0 +
i

k + 1

∫ 1

0
xi−1(1− x)k+1 dx(A.38)

125

=
i

k + 1

∫ 1

0
A(i− 1, k + 1) dx (A.39)

We get Equation A.39 because of Equation A.35. Therefore, for i > 0, k > 0,

∫ 1

0
A(i, k) dx =

i

k + 1

∫ 1

0
A(i− 1, k + 1) dx (A.40)

=
i(i− 1)

(k + 1)(k + 2)

∫ 1

0
A(i− 2, k + 2) dx (A.41)

... (A.42)

=
i!

(k + 1)(k + 2) · · · (k + i)

∫ 1

0
A(0, k + i) dx (A.43)

=
1

(

i+k

i

)

∫ 1

0
A(0, i + k) dx (A.44)

=
1

(

i+k

i

)

(i + k + 1)
. (A.45)

We get Equation A.44 by the definition of combinations and we use Equation A.39

to get A.45.

A.4 Proof Of Theorem 3.5.5

Theorem 3.5.5 (Distribution of Yk). Let D1, D2, . . . , Dn be a set of continuous ran-

dom variables which independently follow the uniform distribution on [0, 1). Denote

the kth smallest value among them by a random variable Yk. Then, for y ∈ [0, 1)

and 1 ≤ k ≤ n, the cdf of Yk is FYk
(y) = Pr(Yk ≤ y) = 1− Pr(Yk > y) where

Pr(Yk > y) = 1−
k−1
∑

i=0

(

n

i

)

yi(1− y)n−i (A.46)

126

with

E[Yk] =
k

n + 1
.

Proof Note that Y1 < Y2 < . . . < Yk−1 < Yk < Yk+1 < . . . < Yn. Since Yj is

uniformly distributed on [0, 1),

Pr(y < Yj) = y,

P r(y < Yj) = 1− y,

and Pr(y < Y1) = (1−y)n because y should be less than all the Yj ’s. The probability

that y lies between Yk and Yk+1 equals to the probability that k of Yj’s are less than

y and the rest (n− k) of Yj’s are greater than y, thus we get

Pr(Yk < y < Yk+1) =

(

n

k

)

yk(1− y)n−k.

Yk > y if (y < Y1) or (Y1 < y < Y2) or . . . or (Yk−1 < y < Yk), where all cases are

disjoint events. Therefore, the probability that the kth smallest value is larger than

y is

Pr(Yk > y) = Pr(y < Y1) + Pr(Y1 < y < Y2) + . . . + Pr(Yk−1 < y < Yk))

=
k−1
∑

i=0

(

n

i

)

yi(1− y)n−i

127

and the expected value of Yk is

E[Yk] =
∫ 1

0
Pr(Yk > y) dy (A.47)

=
∫ 1

0

k−1
∑

i=0

(

n

i

)

yi(1− y)n−i dy (A.48)

=
k−1
∑

i=0

(

n

i

)

∫ 1

0
yi(1− y)n−i dy (A.49)

=
k−1
∑

i=0

(

n

i

)

1

(n + 1)
(

n

i

) (A.50)

=
k

n + 1
(A.51)

We derive Equation A.50 by Lemma 3.5.4.

A.5 Proof Of Lemma 3.5.6

Lemma 3.5.6. The probability that the first node v0 becomes an object-holder is

Pr(v0 becomes an object-holder) =
r

n + 1
(A.52)

and the probability that ith node in the search path vi (i > 0) becomes an object-

holder is

Pr(vi becomes an object-holder) = d
r−1
∑

i=0

(

n

i

)

(n + d)
(

n+d−1
i

) (A.53)

where d is the degree of vi−1.

128

Proof Denote the random variables for distk(v0) and distk(vi) by X0 and X, re-

spectively. Since X0 follows the uniform distribution on [0, 1), X0 has cdf F0(x) = x

and pdf f0(x) = 1. If vi−1 has degree d, X has cdf FX(x) = 1 − (1 − x)d and pdf

fX(x) = d(1− x)d−1. Let fYr
(y) be pdf of the random variable Yr. Let fX0,Yr

(x, y)

be the joint pdf of X0 and Yr and fX,Yr
(x, y) be the joint pdf of X and Yr. Since Yr

is independent with X0 and X, we have

fX0,Yr
(x, y) = fX0(x) · fYr

(y) (A.54)

fX,Yr
(x, y) = fX(x) · fYr

(y) (A.55)

Then, the probability that the first node becomes an object-holder is

Pr(X0 ≤ Yr) =
∫ 1

0

∫ 1

x
fX0,Yr

(x, y)dydx (A.56)

=
∫ 1

0
fX0(x)

∫ 1

x
fYr

(y)dydx (A.57)

=
∫ 1

0
fX0(x)Pr(Yr > x)dx (A.58)

=
∫ 1

0
fX0(x)

r−1
∑

i=0

(

n

i

)

xi(1− x)n−idx (A.59)

=
∫ 1

0

r−1
∑

i=0

(

n

i

)

xi(1− x)n−idx (A.60)

=
r−1
∑

i=0

(

n

i

)

∫ 1

0
xi(1− x)n−idx (A.61)

=
r−1
∑

i=0

(

n

i

)

(n + 1)
(

n

i

) (A.62)

=
r

n + 1
(A.63)

129

and the probability that a node vi(i > 0) becomes an object-holder is

Pr(X ≤ Yr) =
∫ 1

0

∫ 1

x
fX,Yr

(x, y)dydx (A.64)

=
∫ 1

0
fX(x)

∫ 1

x
fYr

(y)dydx (A.65)

=
∫ 1

0
fX(x)Pr(Yr > x)dx (A.66)

=
∫ 1

0
fX(x)

r−1
∑

i=0

(

n

i

)

xi(1− x)n−idx (A.67)

=
∫ 1

0
d(1− x)d−1

r−1
∑

i=0

(

n

i

)

xi(1− x)n−idx (A.68)

= d
r−1
∑

i=0

(

n

i

)

∫ 1

0
xi(1− x)n+d−i−1dx (A.69)

= d
r−1
∑

i=0

(

n

i

)

(n + d)
(

n+d−1
i

) (A.70)

Equation A.59 and A.67 are by Equation A.46 and Equation A.62 and A.70 are by

Equation A.34.

130

Bibliography

[1] [Online]. Available: http://www.emnwifi.net

[2] [Online]. Available: http://www.waztempe.com

[3] [Online]. Available: http://www.belairnetworks.com

[4] [Online]. Available: http://research.microsoft.com/mesh

[5] [Online]. Available: http://www.motorola.com

[6] [Online]. Available: http://www.meshdynamics.com

[7] [Online]. Available: http://www.tropos.com

[8] [Online]. Available: http://www.strixsys.com

[9] C. E. Perkins and E. M. Belding-Royer, “Ad hoc on-demand distance vector
(AODV) routing,” in IEEE Workshop on Mobile Computing Systems and Ap-
plications, Feb. 1999.

[10] V. Park and M. Corson, “A highly adaptive distributed routing algorithm for
mobile wireless networks,” in IEEE Infocom, Apr. 1997.

[11] S.-J. Lee and M. Gerla, “Dynamic load-aware routing in ad hoc networks,” in
Proceedings of IEEE ICC 2001, Helsinki, Finland, 2001, pp. 3206–3210.

[12] R. Morselli, B. Bhattacharjee, A. Srinivasan, and M. A. Marsh, “Efficient
lookup on unstructured topologies,” in PODC ’05: Proceedings of the twenty-
fourth annual ACM SIGACT-SIGOPS symposium on Principles of distributed
computing. New York, NY, USA: ACM Press, 2005, pp. 77–86.

[13] P. Ganesan, Q. Sun, and H. Garcia-Molina, “Yappers: A peer-to-peer lookup
service over arbitrary topology,” in Proceedings of IEEE INFOCOM, San Fran-
cisco, California, USA (2003), 2003.

[14] R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan, “Chord: A Scalable
Peer-to-Peer Lookup Service for Internet Applications,” in ACM SIGCOMM
2001, San Diego, CA, September 2001.

[15] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker, “A scalable
content-addressable network,” in SIGCOMM 2001, vol. 31, no. 4. ACM Press,
October 2001, pp. 161–172.

[16] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object location
and routing for large-scale peer-to-peer systems,” in IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware), Nov. 2001, pp.
329–350.

131

[17] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph, “Tapestry: An infrastructure
for fault-tolerant wide-area location and,” Berkeley, CA, USA, Tech. Rep., 2001.

[18] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica, “Wide-area
cooperative storage with cfs,” in SOSP ’01: Proceedings of the eighteenth ACM
symposium on Operating systems principles. New York, NY, USA: ACM Press,
2001, pp. 202–215.

[19] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao, “Oceanstore: An archi-
tecture for global-scale persistent storage,” in Proceedings of ACM ASPLOS.
ACM, November 2000.

[20] A. I. T. Rowstron and P. Druschel, “Storage management and caching in past, a
large-scale, persistent peer-to-peer storage utility,” in Symposium on Operating
Systems Principles, 2001, pp. 188–201.

[21] L. P. Cox, C. D. Murray, and B. D. Noble, “Pastiche: making backup cheap and
easy,” in OSDI ’02: Proceedings of the 5th symposium on Operating systems
design and implementation. New York, NY, USA: ACM Press, 2002, pp.
285–298.

[22] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron, “SCRIBE: A large-
scale and decentralized application-level multicast infrastructure,” IEEE Jour-
nal on Selected Areas in communications (JSAC), vol. 20, no. 8, pp. 1489–1499,
2002.

[23] S. Iyer, A. Rowstron, and P. Druschel, “Squirrel: a decentralized peer-to-peer
web cache,” in PODC ’02: Proceedings of the twenty-first annual symposium on
Principles of distributed computing. New York, NY, USA: ACM Press, 2002,
pp. 213–222.

[24] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and
A. Singh, “Splitstream: a bandwidth-intensive content streaming system,” in
3rd International Workshop on Peer-to-Peer Systems (IPTPS 03), Berkeley,
CA, February 2003.

[25] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. D. Kubiatow-
icz, “Bayeux: An architecture for scalable and fault-tolerant wide-area data
dissemination,” in Proceedings of NOSSDAV, June 2001.

[26] M. Castro, P. Druschel, Y. Hu, and A. Rowstron, “Topologyaware routing in
structured peer-to-peer overlay networks,” 2002.

[27] J. Li, C. Blake, D. S. D. Couto, H. I. Lee, and R. Morris, “Capacity of ad hoc
wireless networks,” in MobiCom ’01: Proceedings of the 7th annual interna-
tional conference on Mobile computing and networking. New York, NY, USA:
ACM Press, 2001, pp. 61–69.

132

[28] J. Jun and M. Sichitiu, “The nominal capacity of wireless mesh networks.”
IEEE Wireless Communications, Oct 2003., 2003.

[29] A. Gamal, J. Mammen, B. Prabhakar, and D. Shah, “Throughput-
delay trade-off in wireless networks,” 2004. [Online]. Available: cite-
seer.ist.psu.edu/elgamal04throughputdelay.html

[30] Z. Cheng and W. B. Heinzelman, “Flooding strategy for target discovery in
wireless networks,” Wirel. Netw., vol. 11, no. 5, pp. 607–618, 2005.

[31] N. Chang and M. Liu, “Revisiting the ttl-based controlled flooding search: op-
timality and randomization,” in MobiCom ’04: Proceedings of the 10th annual
international conference on Mobile computing and networking. New York, NY,
USA: ACM Press, 2004, pp. 85–99.

[32] R. Bruno, M. Conti, , and E. Gregori, “Mesh networks: Commodity multihop
ad hoc networks,” vol. 43. IEEE Wireless Communications, Mar. 2005.

[33] M. Castro, P. Druschel, Y. Hu, and A. Rowstron, “Exploiting network proxim-
ity in distributed hash tables,” 2002.

[34] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “Topologically-aware
overlay construction and server selection,” in INFOCOM 2002. Twenty-First
Annual Joint Conference of the IEEE Computer and Communications Soci-
eties. Proceedings. IEEE, vol. 3, 2002, pp. 1190–1199 vol.3.

[35] K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Y. Zhao, “Distributed object
location in a dynamic network,” in SPAA ’02: Proceedings of the fourteenth
annual ACM symposium on Parallel algorithms and architectures. New York,
NY, USA: ACM Press, 2002, pp. 41–52.

[36] C. G. Plaxton, R. Rajaraman, and A. W. Richa, “Accessing nearby copies of
replicated objects in a distributed environment,” in SPAA ’97: Proceedings
of the ninth annual ACM symposium on Parallel algorithms and architectures.
New York, NY, USA: ACM Press, 1997, pp. 311–320.

[37] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and I. Sto-
ica, “The impact of dht routing geometry on resilience and proximity,” in SIG-
COMM ’03: Proceedings of the 2003 conference on Applications, technologies,
architectures, and protocols for computer communications. New York, NY,
USA: ACM Press, 2003, pp. 381–394.

[38] L. A. Adamic, R. M. Lukose, A. R. Puniyani, and B. A. Huberman, “Search in
power-law networks,” Physical Review E, vol. 64, no. 4, 2001.

[39] C. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and replication in
unstructured peer-to-peer networks,” in In Proceedings of the 16th annual ACM
International Conference on supercomputing, 2002.

133

[40] I. Clarke, S. G. Miller, T. W. Hong, O. Sandberg, and B. Wiley, “Protecting
free expression online with freenet,” IEEE Internet Computing, vol. 6, no. 1,
pp. 40–49, 2002.

[41] G. H. L. Fletcher, H. A. Sheth, and K. Brner, “Unstructured peer-to-peer net-
works : Topological properties and search performance,” vol. 3601. Springer,
Berlin, 2005, pp. 14–27.

[42] M. Penrose, Random Geometric Graphs (Oxford Studies in Probability). Ox-
ford University Press, USA, July 2003.

[43] E. Cohen and S. Shenker, “Replication strategies in unstructured peer-to-peer
networks,” in SIGCOMM ’02: Proceedings of the 2002 conference on Applica-
tions, technologies, architectures, and protocols for computer communications.
New York, NY, USA: ACM Press, 2002, pp. 177–190.

[44] A. Guttman, “R-trees: a dynamic index structure for spatial searching,” in
SIGMOD ’84: Proceedings of the 1984 ACM SIGMOD international conference
on Management of data. New York, NY, USA: ACM, 1984, pp. 47–57.

[45] I. Kamel and C. Faloutsos, “Parallel R-trees,” in SIGMOD92, 1992, pp. 195–
204.

[46] N. Koudas, C. Faloutsos, and I. Kamel, “Declustering spatial databases on a
multi-computer architecture,” in Proceedings of the 5th International Confer-
ence on Extending Databases Technology (EDBT), 1996.

[47] B. Schnitzer and S. T. Leutenegger, “Master-Client R-Trees: A new parallel
R-tree architecture,” in SSDBM99, 1999, pp. 68–77.

[48] A. Mondal, Yilifu, and M. Kitsuregawa, “P2PR-tree: An R-tree-based spatial
index for peer-to-peer environments,” in Proceedings of the 1st international
workshop on P2P Computing and Databases, 2004.

[49] B. Nam and A. Sussman, “Spatial indexing of distributed multidimensional
datasets,” in CCGRID05, May 2005.

[50] A. Crainiceanu, P. Linga, J. Gehrke, and J. Shanmugasundaram, “Querying
peer-to-peer networks using P-trees,” in Proceedings of the 7th International
Workshop on the Web and Databases (WebDB), 2004.

[51] [Online]. Available: http://www.napster.com

[52] [Online]. Available: http://www.morpheus.com

[53] [Online]. Available: http://www.gnutella..com

134

[54] B. Yang and H. Garcia-Molina, “Efficient search in peer-to-peer networks,” in
PODC ’05: Proceedings of the twenty-fourth annual ACM SIGACT-SIGOPS
symposium on Principles of distributed computing. New York, NY, USA: ACM
Press, 2005, pp. 77–86.

[55] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer information sys-
tem based on the xor metric,” in In Proceedings of IPTPS02, Cambridge, USA,
Mar. 2002.

[56] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D. Lewin,
“Consistent hashing and random trees: distributed caching protocols for re-
lieving hot spots on the world wide web,” in STOC ’97: Proceedings of the
twenty-ninth annual ACM symposium on Theory of computing. New York,
NY, USA: ACM Press, 1997, pp. 654–663.

[57] W. Pugh, “Skip lists: a probabilistic alternative to balanced trees,” Communi-
cations of the ACM, vol. 33, no. 6, pp. 668–676, June 1990.

[58] V. Gopalakrishnan, B. Silaghi, B. Bhattacharjee, and P. Keleher, “Adaptive
replication in peer-to-peer systems,” in The 24th International Conference on
Distributed Computing Systems, March 2004.

[59] M. Cai, A. Chervenak, and M. Frank, “A peer-to-peer replica location ser-
vice based on a distributed hash table,” in SC ’04: Proceedings of the 2004
ACM/IEEE conference on Supercomputing. Washington, DC, USA: IEEE
Computer Society, 2004, p. 56.

[60] M. Christodoulidou and P. Fatourou, “Simple and efficient replication in
chord.” Proceedings of the IASTED Parallel and Distributed Computing and
Systems (PDCS’06), Dallas, Texas, USA, 2006.

[61] D. J. Watts and S. H. Strogatz, “Collective dynamics of ’small-world’ net-
works.” Nature, vol. 393, no. 6684, pp. 440–442, June 1998.

[62] C. Avin and G. Ercal, “On the cover time and mixing time of random geometric
graphs,” Theoretical Computer Science, vol. 380, no. 1-2, pp. 2–22, 2007.

[63] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Mixing times for random
walks on geometric random graphs,” SIAM ANALCO (Workshop on Analytic
Algorithmics & Combinatorics), Vancouver, 2005.

[64] A. Klemm, C. Lindemann, and O. P. Waldhorst, “A special-purpose peer-to-
peer file sharing system for mobile ad hoc networks,” in Vehicular Technology
Conference (VTC), 2003.

[65] A. Duran and C.-C. Shen, “Mobile ad hoc p2p file sharing,” in Wireless Com-
munications and Networking Conference, 2004. WCNC. 2004 IEEE, vol. 1,
2004, pp. 114–119 Vol.1.

135

[66] Z. J. Haas, J. Y. Halpern, and L. Li, “Gossip-based ad hoc routing,”
IEEE/ACM Transactions on Networking, vol. 14, no. 3, pp. 479–491, 2006.

[67] C. Lindemann and O. P. Waldhorst, “A distributed search service for peer-to-
peer file sharing in mobile applications,” in P2P ’02: Proceedings of the Second
International Conference on Peer-to-Peer Computing. Washington, DC, USA:
IEEE Computer Society, 2002, p. 73.

[68] H. Sozer, M. Tekkalmaz, and I. Korpeoglu, “A peer-to-peer file sharing system
for wireless ad-hoc networks,” in The Third Annual Mediterranean Ad Hoc
Networking Workshop (Med-Hoc-Net 2004).

[69] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide to the
Theory of NP-Completeness. New York, NY, USA: W. H. Freeman & Co.,
1990.

[70] O. Ore, “Note on hamiltonian circuits,” American Mathematical Monthly, p. 55,
1960.

[71] [Online]. Available: http://www.isi.edu/nsnam/ns

[72] F. Bersani and H. Tschofenig, “The EAP-PSK Protocol: A Pre-Shared Key
Extensible Authentication Protocol (EAP) Method,” RFC4764, January 2007.

[73] B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson, and E. H. Levkowetz, “Extensible
Authentication Protocol (EAP),” RFC3748, June 2004.

[74] C. de Laat, G. Gross, L. Gommans, J. Vollbrecht, and D. Spence, “Generic
AAA Architecture,” RFC2903, August 2000.

[75] C. Rigney, S. Willens, A. Rubens, and W. Simpson, “The EAP-PSK Proto-
col: A Pre-Shared Key Extensible Authentication Protocol (EAP) Method,”
RFC2865, June 2000.

[76] P. Calhoun, J. Loughney, E. Guttman, G. Zorn, and J. Arkko, “Diameter Base
Protocol,” RFC3588, September 2003.

[77] IEEE, “Ieee standard for information technology telecommunications and infor-
mation exchange between systems local and metropolitan area networks specific
requirements part 11: Wireless lan medium access control (mac) and physical
layer (phy) specifications amendment 6: Medium access control (mac) security
enhancements,” IEEE Standards 802.11i-2004, July 2004.

[78] ——, “Standards for local and metropolitan area networks: Standard for port
based network access control,” IEEE Draft P802.1X/D11, March 2001.

[79] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics: A Foun-
dation for Computer Science. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1994.

136

