
Computing Securely with Untrusted Resources

by

Seny Kamara

A dissertation submitted to The Johns Hopkins University in conformity with the

requirements for the degree of Doctor of Philosophy.

Baltimore, Maryland

April, 2008

© Seny Kamara 2008

All rights reserved

Abstract

When designing and analyzing cryptosystems, it is usually assumed that the com-

putational devices used by the honest parties have access to resources that are outside

of the malicious parties’ control. In such a model, it is known, under standard cryp-

tographic assumptions, that essentially any operation can be performed securely as

long as a majority of the parties are honest.

In many practical settings, however, the assumption that computational resources

can be protected from an adversary does not hold. This dissertation explores various

security problems in settings where honest parties wish to make use of computa-

tional resources that are under adversarial control. We focus on resources that are

fundamental to cryptography, such as randomness and storage.

We first consider the problem of encrypting with a malicious random number

generator. We introduce the notions of security against chosen-randomness attacks

(CRA) and security against chosen-ciphertext and randomness attacks (CCRA),

which formally capture the security of private-key encryption when used with sources

of randomness that are under adversarial control. We study the relationships be-

ii

tween these notions and the traditional notions of security for encryption. We also

show how to design efficient schemes that are CRA-secure, and how to transform

any CPA-secure scheme into a CRA-secure one, and any CRA-secure scheme into a

CCRA-secure one.

We then turn to the task of authenticating data stored in unreliable memory. We

propose a general framework for designing efficient “proofs of data possession”, which

are proof systems that enable one to convince a verifier that it stores a particular piece

of data. We give a compiler that transforms any sigma-protocol (i.e., a three-round

public-coin zero-knowledge proof of knowledge) into a proof of data possession.

Finally, we consider the problem of storing private data in untrusted memory.

We show how to design private-key encryption schemes that allow one to search over

encrypted content. Our constructions are optimal in terms of search time. We also

introduce searchable encryption in the multi-user setting, where search privileges can

be delegated to a set of authorized users.

Thesis Readers:

Fabian Monrose Giuseppe Ateniese
Associate Professor & Advisor Associate Professor
Department of Computer Science Department of Computer Science
The Johns Hopkins University The Johns Hopkins University

Juan Garay Jonathan Katz
Member of Technical Staff Associate Professor
Bell Labs - Alcatel-Lucent Department of Computer Science

Univeristy of Maryland

iii

Acknowledgements

I would like to thank my advisor Fabian Monrose for his guidance, advice, and

generous support. I first met Fabian during a summer internship at Bell Labs, and

since then he has taken on numerous roles, inclduing supervisor, mentor, advisor,

collaborator and, most importantly, friend. Fabian has taught me how to do research,

how to communicate my ideas effectively, and how to be critical of my own work. He

has always given me the freedom to pursue my own ideas, all the while making sure

I stayed productive. As anyone at Hopkins can attest to, his support and dedication

to students are an inspiration.

Over the past three years, I have learned a great deal about cryptography from

Jonathan Katz. Jonathan patiently listened to all my ideas, read all my emails

and corrected all my mistakes. Though I don’t always keep up, I have benefited

tremendously by working with Jonathan and observing him.

I am also grateful to Juan Garay and Rafail Ostrovsky. I always had a great

time during our collaborations and invariably learned something new and interesting

from our interactions. I am particularly thankful to Rafi for inviting me to spend a

iv

semester at the UCLA Institute for Pure and Applied Mathematics. This was a great

program where I learned a tremendous amount and met great people.

The Hopkins Information Security Institute was a wonderful place to work, and I

am indebted to Gerry Masson, Avi Rubin and Fabian for offering me the possibility to

stay at ISI a bit longer, allowing me to focus on my family during difficult times. Avi’s

continuous optimism about my research and career was always helpful when I was

less confident about what lied ahead. I am also very grateful to Susan Hohenberger

from whom I’ve learned a considerable amount in a short period of time. Her belief

in me, professional guidance and overall enthusiasm was invaluable.

Over the years, I have benefited greatly from discussions with various people.

My conversations with Lucas Ballard often lead to new and intriguing questions.

Breno de Medeiros has consistently and patiently answered all my questions about

mathematics and cryptography, and Susanne Wetzel has always went out of her way

to support me in my growth as a researcher.

I have also learned a great deal from my other collaborators, including Giuseppe

Ateniese, Ryan Caudy, Reza Curtmola, Darren Davis, Kevin Fu, Yoshi Kohno, and

Mike Reiter. I am especially thankful to Mike Reiter and the members of the Cylab

for hosting me during a summer at Carnegie Mellon.

My time at Hopkins would not have been the same without the students in the

SPAR lab and its many visitors: Lucas Ballard, Steve Bono, Scott Coull, Reza

Curtmola, Darren Davis, Anna Lisa Ferrara, Kevin Fu, Sujata Garera, Yong Ho

v

Hwang, Paolo Gasti, Ryan Gardner, Matt Green, Yoshi Kohno, Josh Mason, Breno

de Medeiros, Moheeb Abu Rajab, Sam Small, Chris Soghoian, Aniello del Sorbo,

Sophie Qiu, Charles Wright, and Jay Zarfoss.

I decided to pursue a Ph.D. while I was an undergraduate at Purdue University

after Gene Spafford and Steve Hare gave me my first opportunity to do research. I am

grateful to them, as well as to Wojciech Szpankowski, Sonia Fahmy, Pascal Meunier

and the Center for Education and Research in Information Assurance and Security

for the opportunity.

Throughout the years, I was generously supported by a Bell Labs Graduate Re-

search Fellowship, a Phillips and Camille Bradford fellowship, the UCLA Institute

for Pure and Applied Mathematics, and the Johns Hopkins Information Security

Institute.

Graduate school is not the easiest of times, but my wife Mariam’s unending sup-

port and belief in me always made it easier for me to work through difficult times.

I cannot imagine how I could have accomplished this, or much else, without her.

Though I did not realize it at the time, moving to Indiana was the best decision I

ever made. Thanks also to Sani, who consistenly reminds us not to take ourselves too

seriously. Finally, I would like to thank my mother for the sacrifices she made, the

unconditional support she gave, and the example she set. She showed me the world

and inspired me to pursue my dreams. Though my own research will never inspire as

many people as hers, everything I have accomplished is a direct result of her teaching.

vi

vii

This thesis is dedicated to my mother, Sylviane Diouf.

viii

Contents

Abstract ii

Acknowledgements iv

List of Figures xi

1 Introduction 1
1.1 Encrypting with a malicious random number generator 3
1.2 Authenticating data stored on an unreliable server 6
1.3 Storing private data on an untrusted server 8

2 Notation and Preliminaries 10
2.1 Basic Cryptographic Primitives . 13

3 Encrypting with a Malicious Random Number Generator 22
3.1 Introduction . 22

3.1.1 Previous Work . 24
3.1.2 Summary of Contributions . 26

3.2 Defining Security Against Chosen-Randomness Attacks 27
3.2.1 Comparison to Traditional Definitions 29
3.2.2 Comparison to Nonce-Based Security 30

3.3 Achieving Security Against Chosen-Randomness Attacks 35
3.3.1 A Fixed-Length CRA-Secure Construction 36
3.3.2 A Variable-Length CRA-secure Construction 38
3.3.3 A CPA-to-CRA Transformation 41

3.4 Achieving Security against Chosen-Ciphertext and Randomness Attacks 44
3.5 Conclusions . 48

4 Authenticating Data Stored on an Unreliable Server 50
4.1 Introduction . 50

4.1.1 Previous Work . 53

ix

4.1.2 Summary of Contributions . 55
4.2 Definitions . 55

4.2.1 Proofs of Data Possession . 55
4.2.2 Sigma-Protocols . 61
4.2.3 Unforgeable Sigma-Protocols 65
4.2.4 Homomorphically Verifiable Sigma-Protocols 67

4.3 Compiling Sigma-Protocols into PDP Systems 69
4.4 Concrete Instantiations Based on the Schnorr Protocol 73

4.4.1 A Compact Privately Verifiable PDP System 76
4.5 Conclusions . 77

5 Storing Private Data on an Untrusted Server 82
5.1 Introduction . 82

5.1.1 Previous work . 83
5.1.2 Summary of Contributions . 88

5.2 Preliminaries . 89
5.3 Defining Security for Searchable Symmetric Encryption 90

5.3.1 Our Definitions . 95
5.4 Our Constructions . 97

5.4.1 An Efficient Non-Adaptively Secure Construction 98
5.4.2 An Adaptively Secure Construction 105
5.4.3 Secure updates . 110

5.5 Multi-User Searchable Encryption . 112
5.6 Conclusions . 118

6 Conclusion 123

Bibliography 126

Curriculum Vitae 137

x

List of Figures

3.1 A fixed-length CRA-secure private-key encryptions scheme. 36
3.2 A variable-length CRA-secure private-key encryption scheme. 38
3.3 A CPA-to-CRA transformation. 41
3.4 A CRA-to-CCRA transformation. 45

4.1 A proof of data possession system . 56
4.2 Compiling a sigma-protocol into a PDP system 79
4.3 The Schnorr protocol . 80
4.4 A Schnorr-based protocol . 80
4.5 A privately verifiable compact PDP system 81

5.1 A non-adaptively secure SSE scheme 120
5.2 An adaptively secure SSE scheme . 121
5.3 A multi-user SSE scheme . 122

xi

Chapter 1

Introduction

The advent of information technology has profoundly transformed our society.

Almost everything, from our financial transactions to our elections are conducted

electronically, and today most of our communications are carried out over the Internet.

While the benefits of electronic communication, such as decreased costs and increased

speed and reliability, are clear, it has also given rise to new challenges. So far, one of

the most difficult of these challenges seems to be that of striking a balance between

the utility and the security of information systems.

Indeed, while — prior to the advent of information technology — society had put

legal and physical mechanisms in place to achieve such a balance, our transition to an

electronic society has required us to develop new tools for this purpose. From a tech-

nical perspective, one of the most important developments to come out of this motive

is perhaps the “modernization” of cryptography. In popular culture, cryptography

1

is understood to be “encryption”. In other words, the study of techniques used to

make communication unintelligible so as to hide its meaning from anyone other than

its intended recipient. And indeed, this correctly characterizes most of the work done

in cryptography until the late 20th century. In the late 70’s and early 80’s, however,

cryptography underwent a revolution of sorts, both in terms of its scope and its ap-

proach. Today it is concerned not only with protecting communications, but, among

other things, with authenticating it, with identifying users, and with securing dis-

tributed computations, such as electronic auctions and elections. And while prior to

the 50’s the methodology used to design cryptographic primitives was mostly ad-hoc

and rested on experience and intuition, cryptography now makes use of general and

principled design paradigms that are supported by a well-established mathematical

foundation.

Traditionally, the settings considered in cryptography include a set of honest par-

ties that wish to perform some operation and a set of malicious parties that wish

to either learn information related to the operation (e.g., its inputs or outputs) or

influence it in some way (e.g., by changing its output). In particular, it is usually

assumed that the honest parties have access to certain resources, such as randomness

or storage, which are outside of the malicious parties’ control. In such an adversarial

model it is known that, under standard cryptographic assumptions, essentially any

operation can be performed securely as long as the majority of participants are honest

[65, 38, 37].

2

In many practical settings, however, this assumption does not hold. In fact, more

often than not honest parties have access to resources which they only partially trust.

This can occur, for example, when the honest parties wish to make use of resources

that are controlled by an untrusted party; or because they are unwittingly using

resources that have been compromised. In this thesis we explore various security

problems in settings such as the one described above, where honest parties wish to

make use of resources which are under adversarial control. We focus on randomness

and storage, and we consider the problems of encrypting data with a malicious random

number generator; of authenticating data stored on an unreliable storage server; and

of storing private data on an untrusted storage server.

1.1 Encrypting with a malicious random number

generator

Though today the scope of modern cryptography is wide and includes a multitude

of applications beyond that of secure communication, the most widely used crypto-

graphic primitive is still encryption. An encryption scheme is an algorithm that takes

a message, also referred to as a plaintext, and uses a key to transform it into a cipher-

text. In a private-key encryption scheme, this is done in such a way that the plaintext

can be recovered from the ciphertext if and only if the key used during encryption is

known. Traditionally, private-key encryption has been used to secure communication

3

between two parties that share a key. If a sender, Alice, wishes to send a private

message to a recipient, Bob, then Alice uses their shared-key to encrypt her message

before sending it. Since Bob knows the key that Alice used to encrypt the message,

he can decrypt the ciphertext and recover the plaintext.

We begin by exploring how private-key encryption can be made secure in set-

tings where encryption is carried out using a potentially untrusted pseudo-random

generators (PRG). Today, it is well known how to construct “secure” 1 private-key

encryption schemes under the assumption that the sender has access to a source of

randomness that has a high amount of entropy. In fact, most private-key encryption

scheme assume such a source is available during the key generation step and for each

call to the encryption algorithm. In practice, however, such an assumption does not

always hold. Consider, for example, the case where encryption is carried out on a

smartcard. In this setting an adversary with physical access to the card might be

able to tamper with its source of randomness and force the encryption scheme to be

used with “weak” randomness, i.e., randomness that is partly predictable. Another

example is when encryption is performed on a multi-user system, such as a Unix

server, where the entropy pool is generated from user actions, such as user typing

patterns, mouse movements or packet inter-arrival times. In systems such as these,

where an adversary can affect the entropy pool directly, it is not always clear whether

the system has “enough” entropy or not. Finally, the system could simply be using

1In chapter 2 we make precise what we mean by a secure encryption scheme.

4

a defective PRG that outputs biased bits.

Contributions. In Chapter 3, we show how to design private-key encryption schemes

that guarantee the security of data, even when they are used with “weak” random-

ness. More precisely, our encryption schemes guarantee that if a message is encrypted

using a truly random key and a truly random source of bits, the message will be pro-

tected even against an adversary that will control the source of randomness in the

future, or one that controlled it in the past. So while we assume that a high en-

tropy source is available during the key generation and encryption steps 2, we are still

able to guarantee security even if the source of randomness is completely under the

adversary’s control at any other point in time. We begin by proposing two formal

definitions that capture security against the kind of attacks previously described: se-

curity against chosen-randomness attacks (CRA) and the stronger security against

chosen-ciphertext and randomness attacks (CCRA). We then show how to construct

efficient private-key encryption schemes that are provably CRA-secure, and propose

two general and efficient transformations that turn any CPA-secure encryption scheme

into a CRA-secure scheme, and any CRA-secure scheme into a CCRA-secure scheme.

2We show in Chapter 3 that these assumptions are necessary.

5

1.2 Authenticating data stored on an unreliable

server

Advances in networking technology and the rapid accumulation of information

have fueled a trend toward outsourcing data management to external service providers.

By outsourcing, organizations and individuals can concentrate on their core tasks

rather than incurring the substantial hardware, software and personnel costs involved

in maintaining data “in house”.

Storage outsourcing prompts a number of interesting challenges. In the context of

large outsourced archival storage, it is important to consider the issues surrounding

potential misbehaving service providers. The main problem is in verifying that the

server continually and faithfully stores the entire and authentic content entrusted to

it by the client. The server is untrusted in terms of both security and reliability:

it might maliciously or accidentally erase the data or place it onto slow or off-line

storage media. This could occur for numerous reasons, including to save storage or

to comply with external pressures (e.g., government censure). Also, the server could

accidentally erase some data and choose not to notify the owner. Exacerbating the

problem (and precluding näıve approaches) are factors such as: limited real-time

bandwidth between owners and servers, as well as the owner’s limited computing and

storage resources. We note that traditional approaches to verify integrity, such as

message authentication codes or digital signatures, cannot be applied since the client

6

presumably does not store the data

To address this, the notion of a proof of data possession (PDP) system was recently

put forth [4]. A PDP system is a proof system based on public-key techniques that

enables the server to efficiently prove to the client — or anyone in possession of the

client’s public-key — that it possesses the client’s data. PDP systems are similar to

proofs of knowledge (POK) [41, 31], which are proof systems that enable a prover to

convince a verifier that it knows a secret in “zero-knowledge”, i.e., without leaking

any partial information about the secret to the verifier. The main differences between

POKs and PDP systems are that (1) PDP systems do not require the interaction to

be zero-knowledge; and (2) since the intended use of PDPs is for proving possession

of very large amounts of data, the communication complexity must be less than the

size of the data.

Contributions. In Chapter 4, we begin by establishing an explicit connection be-

tween POKs and PDP systems. Specifically, we show how to compile 3-round POKs

for NP languages into PDP systems. We note that our transformation is not a

straightforward application of a POK where the data is committed to and the server

proves knowledge. For most known constructions (e.g., [58, 43]), the previous ap-

proach would have communication and storage complexity that is linear in the size

of the data. On the contrary, we make use of the protocols in a non-standard way,

and show that if it possesses certain homomorphic properties, then the resulting

PDP system can achieve communication and storage complexity at the client that is

7

independent of the size of the data.

1.3 Storing private data on an untrusted server

Recently, we have seen private-key encryption being increasingly used to secure

stored data. This is mainly due to the fact that, as corporate storage needs are

increasing, many companies find it easier and more cost effective to outsource the

storage and management of their data to a third party. Another reason, however,

is the passing of legislation such as the Gramm-Leach-Bliley Act [2] and the Health

Insurance Portability and Accountability Act (HIPAA) [1], which mandate that finan-

cial and medical institutions protect customer information by implementing proper

safeguards.

While it is clear that encrypting this sensitive data with a private-key encryption

scheme before storage will guarantee its security, such a simple approach can be very

inefficient. Indeed, consider the case of a hospital which stores all its patient records

encrypted using a private-key encryption scheme. Note that in such a setting, even

the existence of a record for a given patient should be kept private (i.e., the untrusted

server should not even learn that a given person is a patient at the hospital). In

this case, in order to recover a single record from the server a staff member will

have to download the entire encrypted data collection, decrypt it, and search for the

appropriate record. Clearly, this solution is inefficient both in terms of communication

complexity and in terms of the computation performed by the server and the client.

8

Contributions. In Chapter 5, we show how to design private-key encryption schemes

that preserve the security of data while allowing its owner to selectively retrieve cer-

tain segments of it. We refer to such primitives as searchable symmetric encryption

(SSE) schemes, and begin our treatment of SSE by considering the problem of for-

mally defining security for such schemes. While there has been some previous work

that proposes formal security notions for SSE, we point out that all previous at-

tempts have limitations. To address this, we propose two new notions of security:

security against non-adaptive adversaries, and the stronger security against adaptive

adversaries. In addition to our new definitions, we also propose two provably secure

non-interactive constructions which achieve optimal (asymptotic) efficiency in terms

of communication complexity and computation at both the server and the client.

9

Chapter 2

Notation and Preliminaries

Notation. The set of all binary strings of length n is denoted as {0, 1}n, and the set

of all finite binary strings as {0, 1}∗. We write x← χ to represent an element x being

sampled from a distribution χ, and x
$← X to represent an element x being sampled

uniformly at random from a set X. The output x of an algorithm A is denoted by

x ← A. We write either 〈a, b〉 or a||b to refer to the concatenation of strings a and

b. The set of all functions from {0, 1}n to {0, 1}m is denoted as Func[n,m], and the

set of all permutations from {0, 1}n to {0, 1}n as Perm[n, n]. The set of all primes of

length k is denoted as primes(k). Given a vector v in some arbitrary vector space we

denote its ith component as v[i].

Throughout this thesis k ∈ N will refer to the security parameter. A function

ν : N → N is negligible in k if for every polynomial p(·) and sufficiently large k,

ν(k) < 1/p(k). Let poly(k) and negl(k) denote unspecified polynomial and negligible

10

functions in k. We write f(k) = poly(k) to mean that there exists a polynomial p(·)

such that for all sufficiently large k, f(k) ≤ p(k); and f(k) = negl(k) to mean that

there exists a negligible function ν(·) such that for all sufficiently large k, f(k) ≤ ν(k).

A function f : N→ N is noticeable in k if f(k) ≥ 1/poly(k). We say that a function f :

{0, 1}∗ → {0, 1}∗ is efficiently computable if there exists a polynomial-time algorithm

that computes f .

Probabilistic algorithms. A probabilistic algorithm is a Turing Machine with an

input tape, a work tape and a random tape. If A is a probabilistic algorithm, then

A(x) denotes an execution of A on input x with uniformly chosen random coins,

and A(x; r) denotes an execution of A on input x with random tape r. Given a

probabilistic algorithm A, we will consider oracle Turing machines that are given

access to an oracle A(·; ·) that on input 〈x, r〉 outputs A(x; r). Note that this is

different from the usual case where the oracle Turing machine is given access to an

oracle A(·) that on input x returns A(x; r) for uniformly chosen random coins r.

A probabilistic polynomial-time (ppt) algorithm A is a Turing machine for which

there exists a polynomial p(·) such that for all x ∈ {0, 1}∗ and all random tapes

r ∈ {0, 1}∗, the running time of A(x; r) is at most p(|x|).

Experiments. Our security definitions will be formalized using various probabilis-

tic experiments. So if A1 through An are probabilistic algorithms and π is a predicate,

11

then

Pr [π(x1, . . . , xn) : x1 ← A1; . . . ;xn ← An]

is the probability that π(x1, . . . , xn) = 1 after executingA1 throughAn. Alternatively,

we may write this as

Pr [Exp(k) = 1],

where Exp(k) is defined as the probabilistic experiment that consists of executing A1

through An and outputting π(x1, . . . , xn).

Computational Indistinguishability. A probability ensemble is a collection of

distributions X = {Xk}k∈N indexed by a parameter k. Two probability ensembles

X = {Xk}k∈N and Y = {Yk}k∈N are computationally indistinguishable if for all ppt

A,

|Pr [A(x) = 1 : x← Xk]− Pr [A(y) = 1 : y ← Yk]| ≤ negl(k)

where the probabilities are over the choices of x and y and the coins of A.

Relations. A binary relation R ⊆ {0, 1}∗ × {0, 1}∗ is polynomially-bounded if for

all (x,w) ∈ R, |w| = poly(|x|). Let WR(x) = {w : (x,w) ∈ R} be the witness set of

x. We refer to the language induced by a relation R, as LR = {x : |WR(x)| > 0}. If

LR ∈ NP, then we say that R is an NP-relation. We say that a relation R is hard

on average if there exists a ppt algorithm GenR that takes a security parameter k as

input and outputs a pair (x,w) ∈ R such that |x| = k, and if for all ppt adversaries

12

A,

Pr
[

(x,w′) ∈ R : (x,w)← Gen(1k);w′ ← A(x)
]
≤ negl(k).

2.1 Basic Cryptographic Primitives

Private-key encryption. Private-key encryption allows two parties that share a

common and secret key to communicate privately. Intuitively, such a scheme should

guarantee that, given a ciphertext, no adversary is able to learn any information

about the message. Before formalizing this security intuition, however, we begin by

defining private-key encryption schemes.

Definition 2.1.1 (Private-key encryption). A private-key encryption scheme Σ =

(Gen,Enc,Dec) consists of three polynomial-time algorithms such that,

K← Gen(1k): takes as input a security parameter 1k and outputs a key K.

c ← Enc(K,m): is a probabilistic algorithm that takes as input the key K and a

message m from some associated message space, and outputs a ciphertext c.

We sometimes write this as c← EncK(m).

m ← Dec(K, c): takes as input the key K and a ciphertext c, and outputs either a

message m in the message space or a special failure symbol ⊥. We sometimes

write this as m ← DecK(c). We assume without loss of generality that Dec is

deterministic.

13

For ease of exposition we will make certain simplifying assumptions about private-

key encryption schemes, but we note that all the results in this thesis hold for any

scheme. In most private-key encryption schemes, Gen(1k) simply outputs a random

key of length k. When this is the case, we will write Σ = (Enc,Dec). Also, when

considering schemes that work over fixed-length messages, we will always assume

that the message space is the set of strings of length k and that Enc uses k random

coins. Finally, we will always assume that a private-key encryption scheme is perfectly

correct in the sense that for all k ∈ N, all K output by Gen(1k), and all messages m

in the message space, DecK(EncK(m)) = m.

Today, there are two commonly accepted notions of security for encryption: CPA-

security and the stronger CCA-security. Roughly speaking, CPA-security guarantees

that, given a ciphertext generated using an unknown key K, a computationally-

bounded adversary cannot recover any partial information about the underlying plain-

text, even if it is given access to an encryption oracle that returns encryptions (using

the same key K) of any message m provided by the adversary. This “encryption

oracle” is meant, in part, to model potential real-world actions of an adversary that

might influence the honest sender to encrypt certain messages that are, either par-

tially or entirely, under the adversary’s control. CPA-security was first introduced for

public-key encryption by Goldwasser and Micali in [40]. In that work the previous

intuition was formally defined in two different ways. The first, which we recall in Def-

inition 2.1.2, is “game-based” and is formulated in terms an experiment between an

14

adversary and a (honest) challenger. The second definition is “simulation-based” and

is formulated in terms of two experiments: one in which the adversary interacts with

the scheme under consideration and one where it interacts with an ideal version of

the scheme. CPA-security for private-key encryption was later considered by Bellare,

Desai, Jokipii and Rogaway [8].

Definition 2.1.2 (CPA-security for private-key encryption [40, 8]). Let Σ = (Gen,Enc,

Dec) be a private-key encryption scheme, k ∈ N be its security parameter, and

A = (A1,A2) be an adversary. We define CPAΣ,A(k) as the following probabilis-

tic experiment.

CPAΣ,A(k)

K← Gen(1k)

(m0,m1,St)← AEncK(·)
1 (1k)

b
$← {0, 1}

c← EncK(mb)

b′ ← AEncK(·)
2 (St, c)

if b′ = b, output 1

otherwise output 0

with the restriction that the messages m0 and m1 be such that |m0| = |m1|. We

say that Σ is secure against chosen-plaintext attacks if for all ppt adversaries A =

(A1,A2),

Pr [CPAΣ,A(k) = 1] ≤ 1

2
+ negl(k)

where the probability is taken over the coins of Gen, Enc and A.

While CPA-security is appropriate for many uses of encryption, it was soon real-

ized that some applications required schemes with stronger security properties. This

15

motivated researchers to consider new attacks such as non-adaptive chosen-ciphertext

attacks [52], where the adversary has access to a decryption oracle before the challenge

message is encrypted; and adaptive chosen-ciphertext attacks [56] (CCA), where it

has access to the decryption oracle before and after the target message is encrypted.

Definition 2.1.3 (CCA-security for private-key encryption). Let Σ = (Gen,Enc,Dec)

be a private-key encryption scheme, k ∈ N be the security parameter, and A =

(A1,A2) be an adversary. We define CCAΣ,A(k) as the following probabilistic ex-

periment:

CCAA,Σ(k)

K← Gen(1k)

(m0,m1,St)← AEncK(·),DecK(·)
1 (1k)

b
$← {0, 1}

c← EncK(mb)

b′ ← AEncK(·),DecK(·)
2 (St, c)

if b′ = b, output 1

otherwise output 0

with the restriction that the messages m0 and m1 be such that |m0| = |m1|, and that

A2 never query its decryption oracle on its challenge ciphertext c. We say that Σ is

secure against chosen-ciphertext attacks if for all ppt adversaries A = (A1,A2),

Pr [CCAA,Σ(k) = 1] ≤ 1

2
+ negl(k),

where the probability is over the coins of Gen, Enc and A.

Public-key encryption. Public-key encryption allows two parties who do not

share a secret key to communicate privately. To use a public-key encryption scheme

16

a receiver begins by generating a public and private key pair. It then publishes the

public key while keeping the private key secret. The sender uses the receiver’s public

key to encrypt messages, while the receiver uses the private key to decrypt.

Definition 2.1.4 (Public-key encryption). A public-key encryption scheme Π =

(Gen,Enc,Dec) consists of three polynomial-time algorithms such that,

(pk, sk)← Gen(1k): takes as input a security parameter 1k and outputs a secret key

sk and a public key pk.

c ← Enc(pk,m): is a probabilistic algorithm that takes as input the public key pk

and a message m from some associated message space, and outputs a ciphertext

c. We sometimes write this as c← Encpk(m).

m ← Dec(sk, c): takes as input the secret key sk and a ciphertext c, and outputs

either a message m in the message space or a special failure symbol ⊥. We

sometimes write this as m ← Decsk(c). We assume without loss of generality

that Dec is deterministic.

Similarly to the case of private-key encryption, we will always assume that public-key

encryption schemes are perfectly correct in the sense that for all k ∈ N, all (pk, sk)

output by Gen(1k), and all messages m in the message space, Decsk(Encpk(m)) = m.

We now define the analogues of CPA and CCA-security for public-key encryption.

Definition 2.1.5 (CPA-security for public-key encryption [40]). Let Π = (Gen,Enc,Dec)

17

be a public-key encryption scheme, k ∈ N be the security parameter, and A = (A1,A2)

be an adversary. We define CPAΠ,A(k) as the following probabilistic experiment:

CPAΠ,A(k)

(sk,pk)← Gen(1k)

(m0,m1,St)← A1(pk)

b
$← {0, 1}

c← Encpk(mb)

b′ ← A2(St, c)

if b′ = b, output 1

otherwise output 0

with the restriction that the messages m0 and m1 be such that |m0| = |m1|. We

say that Π is secure against chosen-plaintext attacks if for all ppt adversaries A =

(A1,A2),

Pr [CPAΠ,A(k) = 1] ≤ 1

2
+ negl(k),

where the probability is over the coins of Gen, Enc and A.

Definition 2.1.6 (CCA-security for public-key encryption [56]). Let Π = (Gen,Enc,Dec)

be a public-key encryption scheme, k ∈ N be the security parameter, and A = (A1,A2)

be an adversary. We define CCAΠ,A(k) as the following probabilistic experiment:

CCAΠ,A(k)

(sk,pk)← Gen(1k)

(m0,m1,St)← ADecsk(·)
1 (pk)

b
$← {0, 1}

c← Encpk(mb)

b′ ← ADecsk(·)
2 (St, c)

if b′ = b, output 1

otherwise output 0

18

with the restriction that the messages m0 and m1 be such that |m0| = |m1|, and that

A2 not query its decryption oracle on its challenge ciphertext c. We say that Π is

secure against chosen-ciphertext attacks if for all ppt adversaries A = (A1,A2),

Pr [CCAΠ,A(k) = 1] ≤ 1

2
+ negl(k),

where the probability is over the coins of Gen, Enc and A.

Pseudo-random functions. A pseudo-random function (PRF) is an efficiently

computable function family that is computationally indistinguishable from a random

function. More intuitively, a PRF can be seen as a function that when evaluated on an

input for the first time, returns a value that appears random (to a computationally-

bounded adversary); but when evaluated on an input for a second time, returns

the same value that was output the first time. PRFs were introduced by Goldreich,

Goldwasser and Micali [36] and are known to exist under the assumption that one-way

functions exist [44].

Definition 2.1.7 (Pseudo-random functions and permutations). Let F be an efficiently-

computable keyed function, where for a fixed key K of length k we have FK : {0, 1}`in(k) →

{0, 1}`out(k) with `in, `out polynomial in k. We say that F is a pseudo-random function

if for all ppt adversaries A,

∣∣∣Pr
[
AFK(·)(1k) = 1 : K

$← {0, 1}k
]
− Pr

[
Af(·)(1k) = 1 : f

$← Func[`in(k), `out(k)]
]∣∣∣

is negligible in k, and where the probabilities are over the coins of A and the choices

19

of K and f . If F is a PRF and for each choice of K, FK is an efficiently-invertible

permutation, then we call F a pseudo-random permutation (PRP).

Message authentication codes. A message authentication code (MAC) allows

two parties that share a secret key to authenticate their communication. To authen-

ticate a message, the sender uses the MAC keyed with the secret key to generate a

tag that is associated and sent with the message. The receiver then uses the secret

key to run a verification algorithm on the tag and message pair. Intuitively, a secure

MAC guarantees that no adversary (that does not know the secret key) can generate

message and tag pairs that verify.

Definition 2.1.8 (Message authentication code). A message authentication code

MAC = (Gen,Mac,Ver) consists of three polynomial-time algorithms such that,

K← Gen(1k): takes as input a security parameter 1k and outputs a key K.

t ← Mac(K,m): takes as input a key K and a message m ∈ {0, 1}∗ and outputs a

tag t. We sometimes write this as t ← MacK(m). We assume, without loss of

generality, that Mac is deterministic

b← Ver(K,m, t): is a deterministic algorithm that takes as input a key K, a message

m ∈ {0, 1}∗ , and a tag t; and outputs a bit b where a ‘1’ indicates acceptance

and a ‘0’ indicates rejection. We sometimes write this as b← VerK(m, t).

Notice that we define MACs to work for arbitrary-length messages. This is not

20

essential, but simplifies the presentation. Similarly to the case of private-key encryp-

tion, the key generation algorithm of most MACs simply output a random key of

length k. When this is the case, we write MAC = (Mac,Ver). We assume perfect cor-

rectness in the sense that for all k ∈ N, all K output by Gen(1k), and all m ∈ {0, 1}∗,

it holds that VerK(m,MacK(m)) = 1.

The standard notion of security for MACs, namely existential unforgeability under

an adaptive chosen message attack, was adapted to the private-key setting by Bellare,

Kilian and Rogaway [10] from Goldwasser, Micali and Rivest’s security definition for

digital signatures [41].

Definition 2.1.9 (Existential unforgeability under chosen-message attack [10]). A

message authentication code MAC = (Gen,Mac,Ver) is existentially unforgeable under

an adaptive chosen-message attack if for all ppt adversaries A,

Pr

[
VerK(m, t) = 1 : K← Gen(1k); (m, t)← AMacK(·),VerK(·)(1k)

]
≤ negl(k),

with the restriction that A cannot query its Mac oracle on m, and where the probability

is taken over the coins of Gen and A.

We say that a message authentication code has unique tags if for all k ∈ N, for all

K output by Gen(1k), and all m ∈ {0, 1}∗, there is a unique t such that VerK(m, t) = 1.

21

Chapter 3

Encrypting with a Malicious

Random Number Generator

3.1 Introduction

Today, security against chosen-plaintext attacks (CPA-security) [40, 8, 47] is con-

sidered a minimal notion of security that any private-key encryption scheme deployed

in practice should satisfy. It is not hard to see from Definitions 2.1.2 and 2.1.5 that

any scheme secure with respect to chosen-plaintext attacks must be probabilistic. In-

deed, if the encryption scheme were deterministic, then the adversary could succeed

in its experiment by querying its encryption oracle on m0 and checking whether the

result is equal to its challenge.

Furthermore, it is by now well-understood how to construct CPA-secure schemes

22

under the assumption that the sender is able to generate a fresh set of uniformly

random coins each time a message is encrypted. In practice, such coins might be gen-

erated by using a combination of randomness extractors and pseudo-random number

generators (PRGs) to distill pseudo-random coins from a high-entropy source avail-

able to the sender.

The above, however, neglects the possibility that the random coins used to encrypt

may sometimes be “less than perfect”. For example, the sender may be using a faulty

PRG that produces biased or partially predictable outputs. Or, the random source

used to seed the PRG may have less entropy than originally thought. More malicious

scenarios include the possibilities that an adversary may have tampered with the PRG

used by the sender, or may be able to effect some control over the random source used

to seed the PRG. In the most extreme case, the adversary may have physical access

to the device performing the encryption (as might be the case if, e.g., encryption is

carried out on a lightweight device captured by the adversary), and may then have

complete control over the “random coins” that will actually be used to encrypt. We

refer to such attacks as chosen-randomness attacks.

In this chapter, we introduce new definitions of security that offer protection

against the attacks just described. Our definitions assume the worst possible case:

that the randomness used by the encryption oracle is under the complete control of

the adversary. In fact, the only random coins that are not under the adversary’s

control (other than those used to generate the key) are those that are used to encrypt

23

the challenge ciphertext. We note, however, that some assumption regarding these

coins is necessary in our setting. Otherwise, if the adversary has complete control over

all coins, then the scheme degenerates to a deterministic one that cannot be secure.

In addition, our assumption that the coins used to generate the challenge ciphertext

are truly random is made for simplicity, and can be relaxed by using randomness

extractors and assuming only access to a high-entropy source during encryption. Our

definition, then, can be viewed as offering semantic security for any messages that

are encrypted using “good” random coins, even if the adversary is able to cause the

sender to use “poor” random coins when encrypting other messages.

3.1.1 Previous Work

The most relevant prior work to ours is perhaps Rogaway’s notion of nonce-based

private-key encryption [57], which treats the encryption algorithm as a deterministic

function of the message and a user-provided nonce. With respect to this viewpoint, it

is the responsibility of the user – not the encryption algorithm – to ensure, e.g., that

nonces are chosen at random. In this context, Rogaway defines a notion of security

that, roughly speaking, guarantees semantic security as long as nonces never repeat.

While this definition is somewhat similar to our own, we show in Section 3.2.1 that

the notion considered by Rogaway is incomparable to the notion of CRA-security

considered here; i.e., there are schemes satisfying his definition and not ours, and vice

versa. We remark further that the motivations for our work and Rogaway’s work are

24

very different: as argued by Rogaway [57], nonce-based security is best understood

as a usability requirement, whereas we are interested in examining a stronger attack

model.

Adversarial manipulation of a PRG was mentioned as motivation for our work.

While there has been prior work developing forward and backward-secure PRGs

[12, 6, 34], simply composing such generators with a standard CPA or CCA-secure

encryption scheme does not defend against the attacks considered here. The reason

is that these prior works consider only adversaries that learn the internal state of the

PRG, whereas our notions consider stronger adversaries that may control the state of

the PRG. One can therefore view our notion of CRA-security as achieving a strong

variant of backward and forward-security with respect to the underlying source of

randomness. In other words, our definitions guarantee that a plaintext encrypted

using high-quality randomness is protected even against adversaries that can control

the source after the present plaintext is encrypted (i.e., strong forward-security), or

that have controlled it in the past (i.e., strong backward-security).

Work of McInnes and Pinkas [50] and Dodis et al. [27, 21] has also considered

the security of encryption when truly random coins are not available to the sender.

Although these works are superficially related to our own, the problems being con-

sidered — as well as the motivation — are very different. The work of [50, 27, 21]

is unwilling to assume any truly random coins, even during generation of the secret

key, and is interested in exploring what can be achieved in such an extreme setting.

25

For this reason, they are primarily concerned with information-theoretic security (al-

though later work [26, 21] treats computational security) and do not consider security

against chosen-plaintext attacks at all. In this work, in contrast, we are willing to

assume that truly random coins exist (e.g., during key generation and, at least once,

when encrypting), but are concerned that the adversary may otherwise be able to

tamper with the honest user’s ability to generate true random coins. We are then

interested in the question of whether the analogue of CPA-security is achievable.

3.1.2 Summary of Contributions

We formally define security against chosen-randomness attacks (CRA-security),

both with and without the additional presence of a decryption oracle. We refer to the

latter as security against chosen-ciphertext and randomness attacks (CCRA-security).

We then show two secure constructions that can be based on any block cipher. The

first is a relatively simple fixed-length construction, while the second is a scheme

that can encrypt arbitrary-length messages. We also show a generic transformation

converting any CPA-secure scheme into a CRA-secure scheme. Finally, we propose a

simple way to extend any CRA-secure scheme so as to also achieve security against

chosen-ciphertext attacks.

The contents of this Chapter appear in [46].

26

3.2 Defining Security Against Chosen-Randomness

Attacks

We now present our definitions of CRA and CCRA-security. Intuitively, CRA-

security guarantees that, given a ciphertext, no polynomially-bounded adversary can

recover any partial information about the plaintext, even if it has access to an en-

cryption oracle and complete control over its source of randomness.

Notice that in both experiments the adversary is able to set the encryption oracle’s

random tape, but that the randomness used to generate the challenge ciphertext on

the other hand is outside of the adversary’s control.

Definition 3.2.1 (CRA-security). Let Σ = (Gen,Enc,Dec) be a private-key encryp-

tion scheme, k ∈ N be the security parameter, and A = (A1,A2) be an adversary.

We define CRAΣ,A(k) as the following probabilistic experiment:

CRAΣ,A(k)

K← Gen(1k)

(m0,m1,St)← AEncK(·;·)
1 (1k)

b
$← {0, 1}

r
$← {0, 1}k

c← EncK(mb; r)

b′ ← AEncK(·;·)
2 (St, c)

if b′ = b, output 1

otherwise output 0

with the restriction that the messages m0 and m1 be such that |m0| = |m1|. We

say that Σ is secure against chosen-randomness attacks if for all ppt adversaries

27

A = (A1,A2),

Pr [CRAΣ,A(k) = 1] ≤ 1

2
+ negl(k),

where the probability is over the coins of Gen, Enc and A.

Notice that since A can choose r uniformly at random, CRA-security is at least

as strong as CPA-security.

The stronger notion of CCRA-security guarantees that, given a ciphertext, no

polynomially-bounded adversary can recover any partial information about the plain-

text, even if it has access to both an encryption and a decryption oracle and complete

control over the encryption oracle’s source of randomness.

Definition 3.2.2 (CCRA-Security). Let Σ = (Gen,Enc,Dec) be a private-key encryp-

tion scheme, k ∈ N be the security parameter, and A = (A1,A2) be an adversary.

We define CCRAΣ,A(k) as the following probabilistic experiment:

CCRAΣ,A(k)

K← Gen(1k)

(m0,m1,St)← AEncK(·;·),DecK(·)
1 (1k)

b
$← {0, 1}

r
$← {0, 1}k

c← EncK(mb; r)

b′ ← AEncK(·;·),DecK(·)
2 (St, c)

if b′ = b, output 1

otherwise output 0

with the restriction that the messages m0 and m1 be such that |m0| = |m1|, and that

A2 not query its decryption oracle on its challenge ciphertext c. We say that Σ is

28

secure against chosen-ciphertext and randomness attacks if for all ppt adversaries

A = (A1,A2),

Pr [CCRAΣ,A(k) = 1] ≤ 1

2
+ negl(k),

where the probability is over the coins of Gen, Enc and A.

Notice that since A can ignore its Dec oracle, CCRA-security is at least as strong

as CRA-security. Also, since A can choose r uniformly at random, CCRA-security is

at least as strong as CCA-security.

3.2.1 Comparison to Traditional Definitions

In this Section we compare our new definitions to previous security notions for

private-key encryption. We first show that CRA and CCRA-security are strictly

stronger than the traditional notions of CPA and CCA-security. We then show that

they are incomparable to the related notions of nonce-based CPA and CCA-security

from [57].

Theorem 3.2.3. CRA-security is strictly stronger than CPA-security.

Proof. Since we already noted that CRA-security implies CPA-security, we only show

that the converse is not true. Let F be a PRF, and consider the standard CPA-secure

private-key encryption scheme with encryption algorithm EncK(m; r) = 〈c1, c2〉 =

〈r, FK(r) ⊕ m〉; and decryption algorithm DecK(c) = FK(r) ⊕ c2. We claim that

this scheme is not CRA-secure. To see why, note that an adversary that is given a

29

challenge ciphertext c∗ = 〈c∗1, c∗2〉 = 〈r, FK(r) ⊕ mb〉 can query its oracle on 〈0k, r〉,

receiving 〈r, FK(r)〉, and compute mb ← FK(r)⊕ c∗2.

Theorem 3.2.4. CCRA-security is strictly stronger than CCA-security.

Proof. Since it is easy to see that CCRA-security implies CCA-security, we only

show that the converse is not true. Let MAC = (Gen,Mac,Ver) be a secure mes-

sage authentication code with unique tags, and consider the standard CCA-secure

scheme with key generation algorithm Gen(1k) that outputs K = 〈K1,K2〉 such that

K1,K2
$← {0, 1}k; encryption algorithm EncK(m; r) = 〈c1, c2, c3〉 = 〈r, FK1(r) ⊕

m,MacK2(c1‖c2)〉; and decryption algorithm DecK(c) which outputs FK1(c1) ⊕ c2 if

VerK2(c1‖c2, c3) = 1 and ⊥ otherwise.

To see why this scheme is not CCRA-secure, note that an adversary that is given

a challenge ciphertext c∗ = 〈c∗1, c∗2, c∗3〉 = 〈r, FK1(r)⊕mb,MacK2(c1‖c2)〉 can query its

encryption oracle with 〈0k, r〉 in order to receive 〈r, FK1(r), t〉. It can then compute

mb ← FK1(r)⊕ c∗2.

3.2.2 Comparison to Nonce-Based Security

Nonce-based encryption [57] is a formalization of private-key encryption where the

encryption algorithm is a deterministic function of a message and a nonce, and the

30

user is responsible for providing the nonce. In the case of CBC-mode encryption, for

example, the IV would be an additional input provided to the encryption algorithm

as opposed to being generated “internally”. This formulation gives more flexibility

with respect to how the nonce is chosen: by assuming the nonce is chosen uniformly

each time the encryption algorithm is called, the standard notion of probabilistic

encryption is recovered, but another option is to assume only that nonces never

repeat (but are not necessarily random).

Rogaway [57] considers definitions of security for nonce-based schemes in which

the adversary is given some control over the nonce that is used to encrypt at all times,

i.e., both when interacting with an encryption oracle as well as when the challenge

ciphertext is computed. We offer a definition in the spirit of nonce-based security

[57], but we do not require that ciphertexts be indistinguishable from random strings.

We note, however, that this extra requirement is irrelevant as far as the results of this

thesis.

Definition 3.2.5 (NCPA-security [57]). Let Σ = (Gen,Enc,Dec) be a private-key en-

cryption scheme, k ∈ N be the security parameter, and A = (A1,A2) be an adversary.

We define NCPAΣ,A(k) as the following probabilistic experiment:

31

NCPAΣ,A(k)

K← Gen(1k)

(m0,m1, r,St)← AEncK(·;·)
1 (1k)

b
$← {0, 1}

c← Enc(mb; r)

b′ ← AEncK(·;·)
2 (St, c)

if b′ = b, output 1

otherwise output 0

with the restriction that m0 and m1 be such that |m0| = |m1|, and that A never reuse

the same randomness for its oracle queries and its choice of r. We say that Σ is secure

against nonce-based chosen-plaintext attacks if for all ppt adversaries A = (A1,A2),

Pr [NCPAΣ,A(k) = 1] ≤ 1

2
+ negl(k),

where the probability is over the coins of Gen, Enc and A.

Definition 3.2.6 (NCCA-security [57]). Let Σ = (Gen,Enc,Dec) be a private-key en-

cryption scheme, k ∈ N be the security parameter, and A = (A1,A2) be an adversary.

We define NCCAΣ,A(k) as the following probabilistic experiment:

NCCAΣ,A(k)

K← Gen(1k)

(m0,m1, r,St)← AEncK(·;·),DecK(·)
1 (1k)

b
$← {0, 1}

c← Enc(mb; r)

b′ ← AEncK(·;·),DecK(·)
2 (St, c)

if b′ = b, output 1

otherwise output 0

with the restriction that the messages m0 and m1 must be such that |m0| = |m1|, that

A never reuse the same randomness for its oracle queries and its choice of r, and

32

that A2 not query its decryption oracle on its challenge ciphertext c. We say that

Σ is secure against nonce-based chosen-ciphertext attacks if for all ppt adversaries

A = (A1,A2),

Pr [NCCAA,Σ(k) = 1] ≤ 1

2
+ negl(k),

where the probability is over the coins of Gen, Enc and A.

Intuitively, these definitions are incomparable to our own because:

• on one hand, we assume the adversary has no control over the randomness used

to encrypt the challenge ciphertext, whereas Rogaway allows the adversary to

have some control over the randomness even in this case.

• on the other hand, we give the adversary full control over the randomness used

by the encryption oracle, whereas Rogaway restricts the adversary to never

using the same nonce twice.

We now formally prove that the notions are incomparable.

Theorem 3.2.7. Nonce-based CPA-security and CRA-security are incomparable.

The theorem is a consequence of the following two lemmas.

Lemma 3.2.8. Assuming the existence of one-way functions, there exists a private-

key encryption scheme that is nonce-based CPA-secure but not CRA-secure.

Proof. We take the standard encryption scheme used in the proof of Theorem 3.2.3.

Recall that F is a pseudo-random function, which may be constructed from any one-

33

way function. Encryption is given by EncK(m; r) = 〈c1, c2〉 = 〈r, FK(r) ⊕m〉, where

we treat r as a nonce, and decryption is given by DecK(c) = FK(r)⊕ c2.

We have already shown in the proof of Theorem 3.2.3 that this scheme is not

CRA-secure. On the other hand, it is not hard to see that it is nonce-based CPA-

secure: since the adversary is not allowed to use the same nonce twice, it holds that

the nonce r used when encrypting the challenge ciphertext is distinct from any nonce

used in answering any queries to the encryption oracle. It then follows from the

pseudo-randomness of F that the scheme is nonce-based CPA-secure.

Lemma 3.2.9. Assuming the existence of one-way functions, there is a CRA-secure

scheme that is not nonce-based CPA-secure.

The proof of the lemma rests on the assumption that CRA-secure encryption

scheme exist, but, as we show in Section 3.3, such schemes can be built out of any

one-way function.

Proof. Let Σ = (Enc,Dec) be a CRA-secure private-key encryption scheme. We again

treat the random coins used by Enc as a nonce. Define a modified encryption scheme

Σ′ = (Enc′,Dec) (decryption remains unchanged) as follows:

Enc′K(m; r‖b) = EncK(m; r),

where b is a bit and r ∈ {0, 1}k. It is easy to see that Σ′ is not nonce-based CPA

secure: an adversary can simply request to have the challenge ciphertext encrypted

34

using the nonce r‖0 and then query its encryption oracle using the (distinct) nonce

r‖1. It is similarly easy to see that Σ′ remains CRA-secure: oracle queries with

respect to the modified scheme Σ′ are no more powerful than oracle queries with

respect to the original scheme Σ; when the challenge ciphertext is encrypted, it will

be encrypted using algorithm Enc with uniform random coins.

We note that, similarly to the case of CRA-security and nonce-based CPA-security,

there is a separation between CCRA-security and nonce-based CCA-security. The

proofs are similar to those of Lemmas 3.2.8 and 3.2.9, except that Σ is replaced with

a nonce-based CCA-secure scheme and a CCRA-secure scheme, respectively.

3.3 Achieving Security Against Chosen-Randomness

Attacks

In this Section we propose two CRA-secure private-key encryption schemes based

on PRPs. Our first construction handles only fixed-length messages, while our sec-

ond construction handles messages of variable length. We then describe general a

transformation from any CPA-secure scheme to a CRA-secure one.

35

Gen(1k): sample K1,K2
$← {0, 1}k, and output K = 〈K1,K2〉.

EncK(m; r): output c = 〈c1, c2〉 = 〈PK1(r), FK2(r)⊕m〉.

DecK(c): compute r ← P−1
K1

(c1) and recover m← c2 ⊕ FK2(r).

Figure 3.1: A fixed-length CRA-secure private-key encryptions scheme.

3.3.1 A Fixed-Length CRA-Secure Construction

Our first construction is a modification of the standard CPA-secure encryption

scheme based on pseudo-random functions which we described in the proof of Theorem

3.2.3. Let P be a PRP on k-bit strings and F be a PRF mapping k-bit inputs to

k-bit outputs. Our scheme is described in Figure 3.1.

Theorem 3.3.1. If P is a pseudo-random permutation and F is a pseudo-random

function, then the scheme described above is CRA-secure.

Proof. Consider the encryption scheme Σ̃ = (G̃en, Ẽnc, D̃ec) in which G̃en samples p
$←

Perm[k, k] and f
$← Func[k, k], and Ẽnc(m; r) outputs the ciphertext 〈p(r), f(r)⊕m〉.

We analyze the security of Σ̃ in an information theoretic sense and note that the

CRA-security of our construction against polynomially-bounded adversaries can be

derived by a standard argument.

Let A = (A1,A2) be an adversary making at most q(k) queries to its oracle in

experiment CRAeΣ,A(k). Also, let r be the randomness used to generate its challenge

ciphertext during this experiment, and let query be the event that at least one of A’s

36

oracle queries uses randomness r. Clearly,

Pr
[

CRAeΣ,A(k) = 1
]

= Pr [b′ = b]

= Pr [b′ = b ∧ query] + Pr [b′ = b ∧ query]

≤ Pr [query] + Pr [b′ = b | query] .

The following two claims complete the proof of the theorem.

Claim. Pr [query] ≤ q(k)/2k.

Let query1 and query2 be the events that A1 and A2 submit at least one query that

includes r, respectively. Then,

Pr [query] = Pr [query1] + Pr [query2 ∧ query1]

≤ Pr [query1] + Pr [query2 | query1] .

Let q(k) = q1(k)+q2(k), where q1(k) and q2(k) are the number of queries submitted by

A1 and A2, respectively. Since r has not been chosen when A1 submits its queries, the

best it can do is guess, which means that Pr [query1] ≤ q1(k)/2k. Since p and f are

random functions, it follows that if A1 did not submit any queries with r, then from

A2’s point of view p(r) and f(r) are uniformly distributed. This implies that it cannot

learn any information about r from its challenge ciphertext c = 〈p(r), f(r) ⊕ mb〉.

Therefore, the best A2 can do (with respect to querying its oracle with r) is to guess.

From this we have that Pr [query2 | query1] ≤ q2(k)/2k, from which the claim follows.

2

37

Gen(1k): sample K1,K2
$← {0, 1}k and output K = 〈K1,K2〉.

EncK(m; r): parse m into n blocks m = 〈m1, . . . ,mn〉 each of length k. For 1 ≤
i ≤ n compute ci ← FK1(r + i) ⊕mi, where we view r as a k-bit integer and

addition is modulo 2k. Output c = 〈PK2(r), c1, . . . , cn〉.

DecK(c): compute r ← P−1
K2

(c0), and for 1 ≤ i ≤ n compute mi ← FK1(r + i)⊕ ci.
Output m = 〈m1, . . . ,mn〉.

Figure 3.2: A variable-length CRA-secure private-key encryption scheme.

Claim. Pr [b′ = b | query] ≤ 1/2.

Notice that if query does not occur then p(r) and f(r) are both uniformly dis-

tributed so A cannot learn any information about b from its challenge ciphertext

c = 〈p(r), f(r)⊕mb〉. Therefore, the best A can do (with respect to outputting b) is

to output a bit at random.

2

3.3.2 A Variable-Length CRA-secure Construction

Our second construction applies a similar modification as in the previous section

to the counter-mode (CTR) mode of encryption [8]. Let P be a PRP and F be a

PRF as in the previous section. Our construction is described in Figure 3.2.

Theorem 3.3.2. If P is a pseudo-random permutation and F is a pseudo-random

38

function, then the scheme described above is CRA-secure.

Proof. Consider the encryption scheme Σ̃ = (G̃en, Ẽnc, D̃ec) in which G̃en samples

p
$← Perm[k, k] and f

$← Func[k, k], and Ẽnc(m; r) is defined in the natural way

according to the scheme described above. We analyze the security of Σ̃ in an infor-

mation theoretic sense and note that the CRA-security of our construction against

polynomially-bounded adversaries can be derived by a standard argument.

Let A = (A1,A2) be an adversary making at most q(k) queries to its oracle in

experiment CRAeΣ,A(k), where the messages in these queries are at most n = q(k)

blocks long. Also, let q(k) be an upper bound on the block-length of the messages

m0 and m1 output by A1. Let r be the randomness used to generate the challenge

ciphertext during this experiment, and let query be the event that at least one of A’s

oracle queries uses randomness r′ ∈ Γ
def
= {r − q + 1, . . . , r + q − 1}. Clearly,

Pr
[

CRAeΣ,A(k) = 1
]
≤ Pr [query] + Pr [b′ = b | query] .

The following two claims complete the proof of the theorem.

Claim. Pr [query] ≤ (2q(k)2 − q(k))/2k

Let query1 and query2 be the events that A1 and A2 submit at least one query with

randomness in Γ, respectively. Then,

Pr [query] = Pr [query1] + Pr [query2 ∧ query1]

≤ Pr [query1] + Pr [query2 | query1] .

Let q(k) = q1(k) + q2(k), where q1(k) and q2(k) are the number of queries submitted

39

by A1 and A2, respectively. Since r has not been chosen when A1 submits its queries,

the best it can do (with respect to querying its oracle with a value in Γ) is guess.

Applying a union bound to the q1(k) queries made by A1, we have

Pr [query1] ≤ 2 · q(k) · q1(k)− q1(k)

2k
.

Now recall that the challenge ciphertext given to A2 during the experiment is

of the form 〈p(r), c∗1, . . . , c∗n〉 = 〈p(r), f(r + 1) ⊕ mb,1, . . . , f(r + n) ⊕ mb,n〉 where

〈mb,1, . . . ,mb,n〉 = mb. Since f is a random function it follows that if A1 did not

submit any queries with r′ ∈ Γ, then from A2’s point of view 〈c∗1, . . . , c∗n〉 is uniformly

distributed. This means that A2 cannot learn any information about any value in Γ

from 〈c∗1, . . . , c∗n〉. Similarly, A2 will not learn any information about r from p(r). It

follows then that the best A2 can do (with respect to querying its oracle on a value

in Γ) is to guess. Applying a union bound to the q2(k) queries made by A2, we have

Pr [query2 | query1] ≤ 2 · q(k) · q2(k)− q2(k)

2k
,

from which the claim follows.

2

Claim. Pr [b′ = b | query] ≤ 1/2.

Notice that if query does not occur then p(r) and f(r + 1) through f(r + n) are

uniformly distributed. This means that A cannot learn any information about mb

from its challenge ciphertext 〈p(r), f(r + 1) ⊕mb,1, . . . , f(r + n) ⊕mb,n〉. Therefore,

the best A can do (with respect to outputting b) is to guess.

40

Gen(1k): compute K1 ← Gen′(1k) and sample K2
$← {0, 1}k. Output K = 〈K1,K2〉.

EncK(m; r): compute r′ ← FK2(m‖r), and output c← Enc′K1
(m; r′).

DecK(c): output m← Dec′K1
(c)

Figure 3.3: A CPA-to-CRA transformation.

2

3.3.3 A CPA-to-CRA Transformation

Finally, we present a transformation that turns any CPA-secure private-key en-

cryption scheme into a CRA-secure scheme. Our transformation assumes the exis-

tence of PRFs for arbitrary-length inputs. Note that these may be constructed from

any one-way function, whose existence is implied by the existence of a CPA-secure

encryption scheme.

Let F be a PRF mapping 2k-bit inputs to k-bit outputs, and let Σ′ = (Gen′,Enc′,

Dec′) be a CPA-secure private-key encryption scheme. Our transformation is defined

in Figure 3.3.

Theorem 3.3.3. If F is a pseudo-random function and Σ′ is CPA-secure then the

scheme described above is CRA-secure.

Proof. Consider the private-key encryption scheme Σ̃ = (G̃en, Ẽnc,Dec) in which G̃en

41

samples f
$← Func[2k, k], and ẼncK(m; r) is defined in the natural way according to

Σ. Similarly to the previous proofs, we analyze the security of Σ̃ and note that the

CRA-security of our construction against polynomially-bounded adversaries can be

derived by a standard argument.

Let Σ = (Gen,Enc,Dec) be the encryption scheme described above, and let A =

(A1,A2) be a ppt adversary that makes at most q(k) queries to its oracle during a

CRAeΣ,A(k) experiment. Also, let r be the randomness used to generate the challenge

ciphertext during the experiment, and let query be the event that at least one of A’s

oracle queries uses randomness r. Clearly,

Pr
[

CRAeΣ,A(k) = 1
]
≤ Pr [query] + Pr [b′ = b ∧ query]

The following two claims complete the proof of the theorem.

Claim. Pr [query] ≤ q(k)/2k

Let query1 and query2 be the events that A1 and A2 submit at least one query that

includes r, respectively. It follows that

Pr [query] = Pr [query1] + Pr [query2 ∧ query1]

≤ Pr [query1] + Pr [query2 | query1]

Let q(k) = q1(k) + q2(k), where q1(k) and q2(k) are the number of queries submitted

by A1 and A2, respectively. Since r has not been chosen when A1 submits its queries,

the best it can do is guess, from which we have Pr [query1] ≤ q1(k)/2k.

If query does not occur, then because f is a random function it follows that

42

r′ = f(m||r) is uniformly distributed from A2’s point of view. This means that it

cannot learn any information about r from its challenge ciphertext c∗ = Enc′K1
(mb; r

′),

and, therefore, the best it can do (in terms of querying its oracle with r) is guess.

From this we have Pr [query2 | query1] ≤ q2(k)/2k.

2

Claim. Pr [b′ = b ∧ query] ≤ 1/2 + negl(k)

Let repeat be the event that at least two of A’s queries during the experiment result

in the encryption of two different plaintexts under the same randomness r′. In other

words, repeat is the event that A receives ciphertexts of the form c1 = Enc′K1
(m1; r′)

and c2 = Enc′K1
(m2, r

′) where m1 6= m2. Clearly,

Pr [b′ = b ∧ query] = Pr [b′ = b ∧ query ∧ repeat] + Pr [b′ = b ∧ query ∧ repeat]

≤ Pr [repeat] + Pr [b′ = b | query ∧ repeat] .

We now bound each term of the previous inequality. First notice that

Pr [repeat] = Pr
[
f(m1‖r′) = f(m2‖r′) : f

$← Func[2k, k]
]

≤ 1

2k
,

where the inequality follows from the fact that m1 6= m2.

To bound the second term, we argue that if neither query nor repeat occur, then

A’s view during the CRAeΣ,A(k) experiment is identical to the view it would have

43

during a CPAeΣ,A(k) experiment. Indeed, if query does not occur then from A’s point

of view r, and therefore r′ = f(m‖r), is uniformly distributed. In other words, the

randomness used to generate the challenge ciphertext is uniformly distributed. In ad-

dition, if repeat does not occur then it follows that for every (distinct) query that A

makes, the ciphertext it receives will be generated using a new uniformly distributed

string. It follows then that

Pr [b′ = b | query ∧ repeat] = Pr
[

CPAeΣ,A(k) = 1
]

≤ 1

2
+ negl(k)

where the inequality follows from the fact that Σ̃ is CPA-secure.

2

3.4 Achieving Security against Chosen-Ciphertext

and Randomness Attacks

We now show that the standard “encrypt-then-MAC” transformation [11] from

CPA-secure schemes to CCA-secure ones also works in our setting. Let MAC =

(Mac,Ver) be a secure unique MAC, and let Σ′ = (Gen′,Enc′,Dec′) be a CRA-secure

encryption scheme. Our transformation is described in Figure 3.4.

44

Gen(1k): compute K1 ← Gen′(1k) and sample K2 ← {0, 1}k. Output K = 〈K1,K2〉.

EncK(m; r): compute c1 ← Enc′K1
(m; r) and c2 ← MacK2(c1). Output c = 〈c1, c2〉.

DecK(c): if VerK2(c1, c2) = 1 then output m← Dec′K1
(c1). Otherwise output ⊥.

Figure 3.4: A CRA-to-CCRA transformation.

Theorem 3.4.1. If MAC is a secure message authentication code with unique tags

and if Σ′ is CRA-secure, then the scheme described above is CCRA-secure.

Proof. Let Σ be the scheme described above, and let A be a ppt adversary attacking

Σ in a CCRAΣ,A experiment. Let query be the event that A submits a decryption

query 〈c, t〉 to its decryption oracle such that DecK(c, t) 6= ⊥ and such that 〈c, t〉 was

not the result of a previous encryption query. Clearly,

Pr [CCRAΣ,A(k) = 1] ≤ Pr [query] + Pr [b′ = b | query] .

The following two claims complete the proof.

Claim. Pr [query] ≤ negl(k).

We show that if there exists a ppt adversary A = (A1,A2) such that Pr [query] is

non-negligible in k, then there exists a ppt adversary B that can win the existential

unforgeability experiment against MAC with non-negligible probability.

Consider the adversary B that, given 1k and oracle access to MacK(·) and VerK(·, ·)

begins by generating an encryption key K1 ← Gen′(1k) and runs A1(1k) as follows:

45

Given an encryption query e = 〈m, r〉, B computes c← Enc′K1
(m; r) and queries

its own Mac oracle with c, receiving t. Finally, it returns the ciphertext 〈c, t〉 to

A1.

Given a decryption query d = 〈c, t〉, B queries its VerK oracle with c and t.

If the oracle returns 1 then it computes and returns m ← Dec′K1
(c) to A1;

otherwise it returns ⊥. Adversary B stores all of A1’s decryption queries. After

polynomially many queries, A1 outputs (m0,m1,St).

B samples b
$← {0, 1} and computes c∗ ← Enc′K1

(mb), and queries its oracle to receive

t∗ ← MacK(c∗). It then runs A2(St, 〈c∗, t∗〉), and answers its queries as before. After

polynomially many queries, A2 outputs a bit b′ and halts. Let q(k) be the number of

decryption queries made by A. If query has occurred by the end of the experiment

(note that B can determine if this happens), then B outputs the decryption query for

which this occurred.

It remains to analyze B’s success probability. Notice that B will succeed in its un-

forgeability experiment if query occurs. Since A’s view is identical to the view it would

have in a CCRAΣ,A(k) experiment, the claim follows from our original assumption

about A.

2

Claim. Pr [b′ = b | query] ≤ 1/2 + negl(k)

46

We show that if there exists a ppt adversary A = (A1,A2) such that

Pr [b′ = b | query] ≥ 1/2 + ε(k)

where ε(k) is non-negligible, then there exists a ppt adversary B = (B1,B2) that

succeeds in a CRAΣ′,B(k) experiment also with non-negligible probability.

Consider B1 that, given 1k, and oracle access to Enc′K(·; ·) begins by generating a

key K2 ← {0, 1}k and runs A1(1k) as follows:

Given an encryption query e = 〈m, r〉, B1 queries its oracle with 〈m, r〉 in order

to receive c. It then computes t ← MacK2(c), and returns the ciphertext 〈c, t〉

to A1. It stores the tuple 〈c, t,m〉 in a table T .

Given a decryption query d = 〈c, t〉, B1 looks up the pair 〈c, t〉 in its table and

returns the corresponding plaintext m. If the pair 〈c, t〉 is not in T , then it

returns ⊥. After polynomially many queries, A1 outputs (m0,m1,St), which

B1 also outputs.

Given a challenge ciphertext c∗ ← Enc′K(mb) and St, B2 computes t∗ ← MacK2(c
∗)

and runs A2(St, 〈c∗, t∗〉) answering its oracle queries as before. After polynomially-

many more queries, A2 outputs a bit b′ which B outputs as well.

It remains to analyze B’s success probability. First, notice that B1 can answer

A1’s encryption queries perfectly. Furthermore, if query does not occur, then the only

valid decryption queries A makes are for ciphertexts that were the result of previous

47

encryption queries. In this case (i.e., conditioned on query), B will also correctly

answer all of A’s decryption queries (using its table). It follows then that conditioned

on query, the view ofA will be identical to its view during a CCRAΣ,A(k) experiment.

It follows then from the description of B that,

Pr [CRAΣ′,B(k) = 1] ≥ Pr [b′ = b | query]

≥ 1

2
+ ε(k),

where the second inequality follows from our original assumption about A.

2

3.5 Conclusions

In this chapter, we introduced and formally defined two notions of security for

private-key encryption. The first, CRA-security guarantees that if a message is en-

crypted using a truly random key and a truly random source of bits, the message will

be protected even against an adversary that will control the source in the future, and

one that controlled it in the past. The second, CCRA-security, provides the same

guarantee even if the adversary has access to a decryption oracle.

In addition, we also show how to construct CRA-secure schemes for fixed-length

and for arbitrary-length messages from any one-way function, and give two generic

48

transformations converting any CPA-secure scheme into a CRA-secure scheme, and

any CRA-secure scheme into a CCRA-secure scheme.

While our constructions are computationally efficient, they do require roughly

twice as much randomness as the CPA-secure constructions they are based on. One

interesting question is whether this increase in randomness complexity is necessary

or whether CRA and CCRA-secure schemes can be built with the same amount of

randomness as CPA and CCA-secure schemes. Other interesting directions for future

work include whether a similar type of security can be achieved for other cryptographic

primitives such as zero-knowledge proofs or oblivious transfer.

49

Chapter 4

Authenticating Data Stored on an

Unreliable Server

4.1 Introduction

At first glance, proving possession of data might seem like a simple problem which

can be solved using known cryptographic primitives like collision-resistant hash func-

tions. As an example, the owner could store the hash of the data and ask the server

to return a copy of the data so that it can verify its integrity. Unfortunately, there are

many practical settings in which such a simple approach will not work. If the band-

width available between the client and the server is limited, then transferring large

amounts of data might be infeasible. Also, if the client is computationally limited

(e.g., in the case of a PDA or a smart-phone) then it might not be able to process

50

the entire data collection. Finally, if the owner has limited storage – which, after all,

is the motivation for outsourcing storage to begin with – then it might be impossible

for it to maintain a copy of the data for verification purposes.

Recently, two approaches to the problem of proving possession of data were put

forth [4, 45]. While these works address the same problem, the approaches and

techniques used are very different. The first approach, referred to as a proof of

retrievability (POR), is based on symmetric-key techniques and enables a server to

prove to an owner that it possesses enough of the original data to allow for its efficient

retrievability (i.e., in polynomial-time). On the other hand, the second approach,

referred to as a proof of data possession (PDP), is based on public-key techniques

and allows a server to prove to anyone with the owner’s public-key that it possesses

the original file.

Both PORs and PDPs are proof systems executed between a prover and a verifier

that enables the prover to convince the verifier that he is in possession of a file F .

They are generally composed of two phases: a setup phase where the owner of the

file encodes the file and sends it to the prover; and a challenge phase where a verifier

engages in an interactive protocol with the prover to determine if it indeed possesses

the file. If only the owner is allowed to verify possession, then the system is privately

verifiable. If, on the other hand, the verifier can be any party that possesses the

owner’s public-key then the system is publicly verifiable.

Clearly, as previously mentioned, if we allow O(|F |) communication complexity,

51

then the verifier can store a hash of the file and the prover can simply send F as a

proof. Alternatively, if the verifier is willing to store a commitment of F , then the

prover can execute a zero-knowledge proof of knowledge (PoK) for F . A PoK allows a

prover to convince a verifier that is in possession of a commitment, that it knows the

secret under the commitment. In addition, this is done while guaranteeing that the

verifier does not learn any information about the secret. For our purposes, however,

where files can be very large we are interested in proof systems with communication

complexity and storage at the verifier that is O(1). Such systems are referred to as

compact.

In this chapter, we present an explicit connection between proofs of knowledge

and PDP systems. Concretely, we show how to compile certain 3-round public-coin

PoK into PDP systems with O(1) size proofs. Due to their round-efficiency these

protocols are widely used in practice and many efficient constructions are known.

We use our compiler on a variation of Schnorr’s protocol for proving knowledge of

discrete logarithms [58] to generate a privately verifiable compact PDP system. The

resulting construction is the first construction based on the hardness of computing

discrete logarithms, is efficient, supports an unlimited number of proofs, and works

on public data.

52

4.1.1 Previous Work

The problem of proving data possession has been considered in the past, but

previous techniques based on RSA [25, 32], erasure-codes [59, 48], or homomorphic

hash functions [48, 60, 64] all incur communication complexity or client storage that

is linear in the size of the data.

As mentioned, recent work on proofs of data possession include Juels and Kaliski’s

POR systems and Ateniese et al. ’s PDP systems. The scheme presented in [4] is

based on public-key techniques that allow any verifier in possession of the public-key

to interact with the server in order to verify data possession. The interaction can be

repeated any number of times, each time resulting in a fresh proof. The construction

in [4] requires little extra storage for the owner and O(1) communication complexity

for each verification.

The POR scheme presented in [45] uses special blocks (called sentinels) hidden

among other blocks in the data. During the verification phase, the client asks for

random blocks and checks whether the sentinels are intact. If the server modifies or

deletes parts of the data, then sentinels should be affected with a certain probabil-

ity. This approach, however, requires that sentinels are indistinguishable from other

regular blocks, which requires that the data be encrypted ahead of time (i.e., before

outsourcing). Thus, unlike the PDP scheme proposed in [4] and the constructions

we provide in this work, the constructions in [45] cannot be used for public data. In

addition, the number of queries is limited and fixed a-priori. This is because sentinels,

53

and their position within the database, are revealed to the server after each query.

Recently, and concurrent with our work, Shacham and Waters [61] presented new

POR constructions that are compact. The first is based on pseudo-random functions

and is privately verifiable, whereas the second is publicly verifiable and is based on

BLS signatures [20] in bilinear groups.

Related to PORs are sub-linear authenticators considered by Naor and Rothblum

[51], and based on earlier work on memory checking [16, 17]. A sub-linear authenti-

cator encodes a file in such a way that its integrity can be verified without reading

the entire encoding. To achieve this a small amount of secret storage is necessary. In

addition, each verification requires the client to re-encode the file.

Proofs of knowledge were introduced by Goldwasser, Micali and Rackoff [41] and

later formalized in a series of works [28, 63, 29] culminating with the now standard

definition of Bellare and Goldreich [9]. There are a many classes of PoKs, but here we

focus on so-called sigma-protocols, which were formalized by Cramer et al. [23]. These

are 3-round public-coin PoKs where the prover sends the first and third messages and

the verifier sends a random challenge. The most well-known examples of sigma-

protocols are Schnorr’s protocol for proving knowledge of a discrete logarithm [58],

and the Guillou-Quisquater protocol for proving knowledge of RSA roots [43].

54

4.1.2 Summary of Contributions

We propose a compiler that transforms any homomorphically verifiable sigma-

protocol into PDP system with constant-size proofs. Intuitively, a protocol is homo-

morphically verifiable if it has a verification algorithm for which verifying a “sum” of

interactions (in section 4.2 we make precise what we mean by a sum) is equivalent to

verifying each interaction separately. We show that if the protocol is partially statis-

tical honest-verifier zero-knowledge (SHVZK) – which only guarantees that part of

the transcript of an interaction not leak any partial information about the secret –

then it yields a privately verifiable PDP system.

Finally, we propose a simple partial SHVZK protocol based on the Schnorr pro-

tocol which compiles into a privately verifiable compact PDP system.

The contents of this Chapter constitute preliminary work, joint with G. Ateniese

and G. Tsudik.

4.2 Definitions

4.2.1 Proofs of Data Possession

Figure 4.1 describes how a PDP system works at a high-level. First, the verifier

generates a public and private-key pair. It then encodes the file and hands the

encoding, together with the public-key, to the prover. The encoding process also

produces some state information. If the system is privately verifiable then the state is

55

P(pk, F̃) V(St,pk)

c← Chall(pk)
c

←−−−−−−−−−−−−
π ← Proof(pk, F̃ , c)

π

−−−−−−−−−−−−→
b← Ver(pk,St, c, π)

Figure 4.1: A proof of data possession system

kept private, but if the system is publicly verifiable then it is made public. At a later

time when a verifier wishes to check for the availability of the file, it generates and

sends a challenge to the prover who responds with a proof of data possession. The

verifier then uses the public-key and the state information to verify that the proof is

correct.

In the following, we provide a more formal definition of a PDP system. Although

introduced by Ateniese et al. in [4], we follow the definitional approach of Juels and

Kaliski from [45]. In particular, while the original definition of a PDP system was

split into two components: a PDP scheme and a PDP system, here we collapse these

into a single definition. Also, we choose to formulate the Tag algorithm from [4] as

an Encode algorithm.

Definition 4.2.1 (Proof of data possession system). A PDP system between a ppt

prover P and a ppt verifier V is a tuple of five polynomial-time algorithms Π =

(Gen,Encode,Chall,Proof,Ver) such that,

56

(pk, sk) ← Gen(1k): is a probabilistic algorithm that is run by the client to set up

the scheme. It takes as input a security parameter k, and outputs a public and

private key pair (pk, sk).

(St, F̃) ← Encode(pk, sk, F): is a probabilistic algorithm that is run by the client

in order to encode the file. It takes as input the public and secret keys pk and

sk, and a poly(k)-length file F ; and outputs an encoded file F̃ , and a string St.

In a publicly verifiable system, St can be made public, whereas in a privately

verifiable system it must be kept private.

c ← Chall(pk): is a probabilistic algorithm that is run by the client to generate a

verification challenge for the server. It takes as input the public key pk , and

outputs a challenge c.

π ← Proof(pk, F̃ , c): is a deterministic algorithm that takes as input the public key

pk, an encoded file F̃ and a challenge c, and outputs a proof π.

b← Ver(pk,St, c, π): is a deterministic algorithm that takes as input the public key

pk, the state St, a challenge c, and a proof π. It outputs a bit b, where ‘1’

indicates acceptance and ‘0’ indicates rejection. If Ver outputs ‘1’ on proof π,

then we say that π is valid.

To be useful, a PDP system must satisfy two requirements: completeness and

soundness. Intuitively, completeness requires that if a prover possesses the file F and

57

follows the protocol, then the verifier will accept with certainty. This intuition is

formalized in the following definition.

Definition 4.2.2 (Completeness). Let Π = (Gen,Encode,Chall,Proof,Ver) be a PDP

system, k ∈ N be the security parameter and F be a file. We define CompΠ,F (k) as

the following probabilistic experiment:

CompΠ,F (k)

(pk, sk)← Gen(1k)

(St, F̃)← Encode(pk, sk, F)

c← Chall(pk)

π ← Proof(pk, F̃ , c)

b← Ver(pk,St, c, π)

output b

We say that Π is complete if for all polynomial-length strings F ,

Pr
[
CompΠ,F (k) = 1

]
= 1,

where the probability is over the coins of Gen, Encode, Chall, and Proof.

The main security notion for a PDP system is soundness which, informally, guar-

antees that if the verifier accepts then the prover indeed “possesses” the entire file F .

As discussed in [4, 45] this intuition can be formalized using the notion of a knowl-

edge extractor which was introduced in the context of proofs of knowledge [31, 28, 9].

Here, we follow the definitional approaches of Juels and Kaliski [45] and Bellare and

Goldreich [9], though our definition seems weaker than the one in [45]. The following

definition is for privately verifiable systems. In particular, notice that the adversary

is not given the state St as input.

58

Definition 4.2.3 (Soundness for privately verifiable PDPs). Let Π = (Gen,Encode,Chall,

Proof,Ver) be a privately verifiable PDP system, k ∈ N be the security parame-

ter, r be a string, and A = (A1,A2) be an adversary. We define SetupA1,Π(k),

ProveA2,Π[r](k) and ExtΠ,A2,K[r](k) as the following probabilistic experiments:

SetupΠ,A1
(k)

(pk, sk)← Gen(1k)

(F,StA)← AEncode(pk,sk,·)
1 (pk)

(St, F̃)← Encode(pk, sk, F)

let e = (pk, F, F̃ ,St,StA)

output e

ProveΠ,A2 [r](k)

e← SetupΠ,A1
(k)

c← Chall(pk)

π ← A2(StA, F̃ , c; r)

b← Ver(pk,St, c, π)

output b

ExtΠ,A2,K[r](k)

e← SetupΠ,A1
(k)

F ′ ← KA2(StA, eF ,·;r)(pk,St)

if F ′ = F output 1

otherwise output 0

We say that Π is sound if there exists a probabilistic expected polynomial-time knowl-

edge extractor K such that for all ppt A = (A1,A2), for all r ∈ {0, 1}∗, if A2 outputs

a valid proof with noticeable probability in k over the challenge space, then

Pr [ExtΠ,A2,K[r](k) = 1] ≥ Pr [ProveΠ,A2 [r](k) = 1]− negl(k).

Soundness for publicly verifiable systems can be defined analogously, except that

the adversary A2 is provided with St in the ProveΠ,A2 [r](k) and ExtΠ,K,A2 [r](k)

experiments.

59

A few words about this definition are in order. We refer to the values e =

(pk, F, F̃ ,St,StA) output by the SetupΠ,A1
(k) experiment as the “environment”.

Intuitively, what the definition guarantees is that for most adversarially generated

environments, if the adversary A2 is able to output a valid proof for a noticeable

fraction of the possible challenges, then A2 indeed “knew” the file F . We formalize

the intuitive notion of A2 “knowing” F by describing a knowledge extractor K that

has the ability to recover F from oracle access to A2 in polynomial-time.

Notice, however, that K is given the state information St. This makes the in-

terpretation of Definition 4.2.3 slightly more complex than the intuition given above.

Indeed, if St is a private value, as it is when Π is privately verifiable, then access to

St gives the extractor an advantage over the adversary (i.e., the server). This means

that the existence of a knowledge extractor implies that A2 possesses enough knowl-

edge about F so that one could recover it if one knows St. In particular, this does

not necessarily imply that A2 “knows” F explicitly. More intuitively, this guarantees

that if a server is able to generate a valid proof, then anyone with knowledge of St

can retrieve F from the server even though the server itself might not be able to.

On the other hand, if St is public the extractor does not have any advantage

over the adversary. Therefore, the existence of a knowledge extractor implies that A2

knows F explicitly. In other words if the server is able to generate a valid proof then

anyone can retrieve F from the server, even the server itself.

60

4.2.2 Sigma-Protocols

A proof of knowledge for a binary NP-relation R ⊆ {0, 1}∗ × {0, 1}∗ enables a

prover that is given (x,w) ∈ R to prove his knowledge of w to a verifier that knows x.

A sigma-protocol is a 3-round public-coin PoK that has the following structure: the

prover sends the first message to commit to some randomness; the second message

is sent by the verifier and constitutes a random challenge for the prover; the third

message is sent by the prover and is a response to the challenge. Finally, given the

transcript of the protocol, the verifier decides whether to accept or not.

Definition 4.2.4 (Sigma-protocol). A sigma-protocol for a binary NP-relation R is

a three move protocol between a ppt prover P and a ppt verifier V. The protocol

consists of a tuple of four polynomial-time algorithms Σ = (Comm,Chall,Resp,Ver)

such that,

(cmt, r) ← Comm(x): is a probabilistic algorithm that is run by the prover P to

generate the first message. It takes as input the common input x ∈ {0, 1}∗, and

outputs a random string r and a commitment to r, cmt.

ch← Chall(1|x|): is a probabilistic algorithm that is run by the verifier V to generate

the second message. It takes as input the common input x, and outputs a random

challenge ch from some associated challenge space.

rsp← Resp(x,w,cmt,ch): is a probabilistic algorithm that is run by the prover P

to generate the third message. It takes as input the common input x, a witness

61

w, a commitment cmt and a challenge ch, and outputs a response rsp from

some associated response space.

b← Ver(x,cmt,ch,rsp): is a deterministic algorithm that is run by the verifier V

to decide whether to accept the interaction. It takes as input the common input

x, a commitment cmt, a challenge ch, and a response rsp. It outputs a bit b,

where ‘1’ indicates acceptance and ‘0’ indicates rejection.

Like any proof system a sigma-protocol is only useful if it satisfies a notion of com-

pleteness and soundness. Completeness, described in Definition 4.2.5 below, guaran-

tees that if an honest prover (i.e., one that follows the protocol) indeed “knows” a

witness w such that (x,w) ∈ R, then an honest verifier will be convinced.

Definition 4.2.5 (Completeness). Let Σ = (Comm,Chall,Resp,Dec) be a sigma-

protocol for a binary NP-relation R that is hard on average, and k ∈ N be the security

parameter. We define CompΣ(k) as the following probabilistic experiment:

CompΣ(k)

(x,w)← GenR(1k)

(cmt, r)← Comm(x)

ch← Chall(1k)

rsp← Resp(x,w,cmt,ch)

b← Dec(x,cmt,ch,rsp)

output b

We say that Σ is complete if,

Pr [CompΣ(k) = 1] = 1,

62

where the probability is over the coins of GenR, Comm and Chall.

Soundness, on the other hand, guarantees that if the verifier accepts an interac-

tion with a prover, then the prover indeed “knows” a witness w such that (x,w) ∈ R.

The soundness of a sigma-protocol can be defined in a variety of ways (see [9] for a

discussion), but is typically formalized using the notion of special soundness [23]. In-

formally, special soundness requires that one be able to efficiently “extract” a witness

from the transcripts of two instances of the protocol that use the same commitment

but different challenges.

In the next definition we introduce a slightly stronger variant of special sound-

ness which requires that the witness be extractable from only the challenges and the

responses of the interactions (i.e., without seeing the commitment). We refer to this

as strong special soundness, and note that it implies special soundness. Also, most

known sigma-protocols, such as the Schnorr and Guillou-Quisquater protocols, satisfy

it.

Definition 4.2.6 (Strong special soundness). A sigma-protocol Σ = (Comm,Chall,

Resp,Dec) for a binary NP-relation satisfies the strong special soundness property

if for all x ∈ {0, 1}∗, and all pairs of accepting transcripts (cmt,ch,rsp) and

(cmt,ch′,rsp′) on x, where ch 6= ch′, there exists a ppt knowledge extractor K

such that

Pr [(x,w′) ∈ R : w′ ← K(x,ch,ch′,rsp,rsp′)] ≥ 1− negl(|x|)

63

where the probability is over the coins of K.

Unlike PDPs, sigma-protocols must also be “zero-knowledge” in the sense that

the verifier must not learn any partial information about the witness [41]. Of course

there are many ways of formalizing this intuition, but in many instances the notion of

special honest-verifier zero-knowledge (SHVZK) is sufficient. SHVZK is a relaxation

of zero-knowledge that only requires the protocol to protect the witness from verifiers

that do not deviate from it.

For the purpose of building privately verifiable PDP systems, however, we will

see that a weaker notion than SHVZK is sufficient. We refer to this notion as partial

special honest-verifier zero-knowledge, since it only requires that the last two messages

of the interaction be “secure”.

Definition 4.2.7 (Partial special honest-verifier zero-knowledge). A sigma-protocol

Σ = (Comm,Chall,Resp,Dec) for a binary NP-relation R is partial SHVZK if there

exists a ppt simulator S which on input x ∈ LR and a random challenge ch, outputs

part of an accepting transcript (ch′,rsp′) with the same distribution as an honest

prover given (x,w), where w ∈ WR(x), and a verifier given x.

Clearly, SHVZK implies partial SHVZK. Also, it is easy to show that both strong

special soundness and partial SHVZK are preserved under sequential composition.

64

4.2.3 Unforgeable Sigma-Protocols

We now formalize the notion of security we need from a sigma-protocol in order to

build a PDP system. Intuitively we will require that, given several accepting partial

transcripts of the protocol, no adversary can generate a new challenge/response pair

that is accepting. We refer to this notion as unforgeability and we show in Theorem

4.2.9 that it is implied by partial SHVZK and strong special soundness.

Definition 4.2.8 (Unforgeability). Let Σ = (Comm,Chall,Resp,Dec) be sigma-protocol

for a binary NP-relation R that is hard on average, k ∈ N be the security parameter,

n ∈ N, and A be an adversary. We define UnfΣ,A,n(k) as the following probabilistic

experiment:

UnfΣ,A,n(k)

(x,w)← GenR(1k)

for 1 ≤ i ≤ n,

(cmti, r)← Comm(x)

chi ← Chall(1k)

rspi ← Resp(x,w,cmti,chi)

(i,ch′i,rsp′i)← A(x, {(chi,rspi)}i)
b← Dec(x,cmti,ch′i,rsp′i)

output b

with the restriction that ch′i 6= chi. We say that Σ is unforgeable if for all ppt A,

for all n = poly(k),

Pr [UnfΣ,A(k) = 1] ≤ negl(k),

where the probability is over the coins of GenR, Comm, Chall and A.

65

Theorem 4.2.9. If Σ is partial SHVZK and satisfies the strong special soundness

property, then it is unforgeable.

Proof. We show that if Σ satisfies strong special soundness and if there exists an

n = poly(k) and a ppt adversary A that succeeds in an UnfΣ,A,n(k) experiment

with non-negligible probability, then there exists a ppt honest verifier V that can

recover the witness w from n accepting partial transcript of Σ, also with non-negligible

probability. The theorem then follows from the observation that partial SHVZK is

preserved under sequential composition.

Let n be as above, and let {(cmti,chi,rspi)}i, where 1 ≤ i ≤ n, be a set of

n accepting transcripts of Σ executed on common input x and witness w, where

(x,w) ∈ R. Let K be the knowledge extractor whose existence is guaranteed by

the strong special soundness of Σ. Consider the verifier V that, given the common

input x and the partial transcripts {(chi,rspi)}i, works as follows. It begins by

running A(x, {chi,rspi)}i), receiving a value 1 ≤ i ≤ n and a challenge/response

pair (ch′,rsp′). It then runs K(x,chi,ch′,rspi,rsp′), receiving a witness w′ which

it outputs.

Since A’s simulated view is identical to its view in an UnfΣ,A,n(k) experiment,

by our assumption, it will output with non-negligible probability a tuple (i,ch′,rsp′)

such that ch′ 6= chi and such that (cmti,ch′,rsp′) is accepting. It follows then that

K will output a witness w′ such that (x,w′) ∈ R also with non-negligible probability.

66

4.2.4 Homomorphically Verifiable Sigma-Protocols

In addition to unforgeability, we will also require the underlying sigma-protocol

to be homomorphically verifiable. Roughly, this means that one should be able to

verify the validity of multiple interactions by verifying their “sum”. We provide a

more formal description in Definition 4.2.10 below.

Definition 4.2.10 (Homomorphic verifier). Let F be a field and Σ be a sigma-protocol

for a binary NP-relation R with challenge and response space F. A homomorphic

verifier for Σ is a deterministic polynomial-time algorithm VerH such that,

b ← VerH(x, a,cmt1, . . . ,cmtn, c, r): takes as input a value x ∈ {0, 1}∗, a vector

a ∈ Fn, where n = poly(|x|), n commitments, and two elements c, r ∈ F. It

outputs a bit b, where ‘1’ indicates acceptance and ‘0’ indicates rejection.

We will require that a homomorphic verifier be both complete and sound. Intu-

itively, we will say that VerH is complete if it always accepts when the elements c and

r are generated using challenges and responses from n accepting transcripts.

Definition 4.2.11 (Completeness). Let Σ = (Comm,Chall,Resp,Dec) be a sigma-

protocol, VerH be a homomorphic verifier for Σ, k ∈ N be the security parameter, and

n ∈ N. We define CompVerH,n
(k) as the following probabilistic experiment:

67

CompVerH,n
(k)

(x,w)← GenR(1k)

for 1 ≤ i ≤ n

(cmti, r)← Comm(x)

chi ← Chall(1k)

rspi ← Resp(x,w,cmti,chi)

a
$← Fn

c←
∑n

i=1 a[i] · chi

r←
∑n

i=1 a[i] · rspi

b← VerH(x, a,cmt1, . . . ,cmtn, c, r)

output b

We say that VerH complete if for all n = poly(|x|),

Pr
[
CompVerH,n

(k) = 1
]

= 1,

where the probability is over the coins of GenR, Comm and Chall, and the choice of a.

Soundness, on the other hand, will guarantee that no efficient adversary is able

to generate values c and r such that VerH will accept, unless c and r are generated

using the challenges and responses of n accepting transcripts.

Definition 4.2.12 (Soundness). Let Σ = (Comm,Chall,Resp,Dec) be a sigma-protocol,

VerH be a homomorphic verifier for Σ, k ∈ N be the security parameter, A be an

adversary, and n ∈ N. We define SoundVerH,A,n(k) as the following probabilistic

experiment:

68

SoundVerH,A,n(k)

(x,w)← GenR(1k)

for 1 ≤ i ≤ n

(cmti, r)← Comm(x)

chi ← Chall(1k)

rspi ← Resp(x,w,cmti,chi)

a
$← Fn

(c, r)← A (x, a, {(chi,rspi)}i)
b← VerH(x, a,cmt1, . . . ,cmtn, c, r)

output b

with the restriction that either c 6=
∑n

i=1 a[i] · chi or that r 6=
∑n

i=1 a[i] · rspi. We

say that VerH is sound if for all n = poly(|x|), for all ppt A,

Pr [SoundVerH,A,n(k) = 1] ≤ negl(k),

where the probability is over the coins of GenR, Comm, Chall and A, and the choice

of a.

We say that Σ is homomorphically verifiable if it has a homomorphic verifier that

is both complete and sound.

4.3 Compiling Sigma-Protocols into PDP Systems

In this section we show how to compile any unforgeable and homomorphically

verifiable sigma-protocol into a PDP system with constant size proofs. We provide a

high-level description of our compiler which is described in detail in Figure 4.2.

69

Let Σ be a sigma-protocol as above, let R be the hard on average NP-relation

on which Σ is defined, and let Fq, for q prime, be its challenge and response space.

We run the GenR algorithm to generate a pair (x,w) and set the public-key pk to

be x and the secret-key sk to be the witness w. Given a file F we first parse it into

n blocks (f1, . . . , fn). For every block fi, we then run the Comm algorithm in order

to generate a randomness/commitment pair (ri,cmti). Next, for each file block we

generate a tag in the following manner. We run the Resp algorithm using cmti and

fi as the commitment and challenge, respectively. This results in a response rspi,

which is the tag for the block fi. The encoded file is composed of all the file blocks

together with their tags, and the state is the set of commitments.

As a challenge, the client sends the key to a pseudo-random function with range

Fq. This is only to save bandwidth, however, and is equivalent to sending a vector

of n randomly chosen values in Fq. To prove possession of a file, the honest server

returns as proof the dot products of the challenge vector with the file blocks, and

with the tags. Finally, the client verifies the proof using the homomorphic verifier.

Theorem 4.3.1. Let Σ be a sigma-protocol for a binary NP-relation that is hard

on average. If Φ is a pseudo-random function, if Σ is unforgeable and homomorphi-

cally verifiable, then Π as described in Figure 4.2 is a sound privately verifiable PDP

system.

Proof Sketch: Consider the PDP system Π̃ = (Gen,Encode, C̃hall, P̃roof, Ṽer) in which

C̃hall samples a vector a
$← Fnq as the challenge, and P̃roof and Ṽer are defined in the

70

natural way according to the scheme described above. We analyze the security of Π̃

and note that the security of Π can be derived by a standard argument.

We describe a probabilistic expected polynomial-time knowledge extractor K that

satisfies Definition 4.2.3. Let A = (A1,A2) be a ppt adversary, r ∈ {0, 1}∗, and

e = (pk, F, F̃ ,St,StA) be an environment output by SetupΠ,A1
(k), such that

δ(k)
def
= Pr

[
Ver(pk,St, a, π) = 1 : a

$← Fnq ; π ← A2(StA, F̃ , a; r)
]
≥ 1/poly(k).

Consider the extractor K that works as follows during an ExteΠ,A2,K[r](k) experiment.

Given inputs (pk,St) and oracle access to A2(StA,St, ·; r), K does the following:

1. it queries A2 on a vector a1 selected uniformly at random from Fnq , receiving a

proof π′1 = (f ′1, t
′
1). It then computes VerH(pk, a1,cmt1, . . . ,cmtn, f

′
1, t
′
1) which

outputs a bit b. If b = 1, we say that the proof π1 is valid. If π1 is valid it

continues, otherwise it halts.

2. for 2 ≤ i ≤ n, it queries A2 on a vector selected uniformly at random from

the set indep(a1, . . . , ai−1) until it receives a valid proof π′i = (f ′i , t
′
i), where

indep(a1, . . . , ai−1) is the set of vectors in Fnq that are linearly independent from

the vectors (a1, . . . , ai−1). We denote by ai be the vector that leads to the valid

proof π′i.

3. it sets up the following sets of linear congruences:{
n∑
j=1

ai[j] · f ∗j ≡ f ′i mod p

}
i

and

{
n∑
j=1

ai[j] · t∗j ≡ t′i mod p

}
i

,

71

and solves for (f ∗1 , . . . , f
∗
n) and (t∗1, . . . , t

∗
n).

4. it outputs F ∗ = 〈f ∗1 , . . . , f ∗n〉

Claim. K runs in expected polynomial-time.

Let N be the number of vectors in Fnq on which A2(StA,St, F̃ , ·; r) outputs a valid

proof. We have two cases: (1) π1 is invalid and K halts; and (2) π1 is valid and K

executes steps 2 and 3. Since step 3 can be done in deterministic polynomial-time we

restrict our attention to step 2. For each 2 ≤ i ≤ n, notice that

|indep(a1, . . . , ai−1)| = N − qi−1

qn − qi−1
.

Therefore, for 2 ≤ i ≤ n, the expected number of iterations until A2 outputs πi is,

qn − qi−1

N − qi−1
.

It follows then that the expected number of iterations until A2 outputs (π2, . . . , πn)

is

n∑
i=2

(
qn − qi−1

N − qi−1

)
≤ n

(
qn − qn−1

N − qn−1

)
,

which is polynomial in k since q and n are constant, and

N = qn · δ(k)

≥ 1/poly(k).

2

72

In the following, we only provide a high level intuition as to the correctness of our

extractor. Clearly, the probability that K succeeds is at least the probability that all

the recovered blocks (f ∗1 , . . . , f
∗
n) are equal to original blocks (f1, . . . , fn). If f ∗i = fi,

where 1 ≤ i ≤ n, we say that f ∗i is correct.

Since the only probabilistic step K takes is Step 1, it follows that its success

probability is the probability that all the recovered blocks are correct conditioned

on π1 being valid. In addition, conditioned on the latter occurring, all the proofs

(π1, . . . , πn) are valid with certainty. But if the proofs are valid, then the soundness

of the homomorphic verifier implies that the proofs were generated by summing ac-

cepting transcripts of Σ, which, by the unforgeability of Σ, implies that the recovered

blocks will be correct.

4.4 Concrete Instantiations Based on the Schnorr

Protocol

We now focus on concrete instantiations of PDP systems based on our compiler.

In particular on constructions that are based on the Schnorr protocol for proving

knowledge of discrete logarithms [58]. The Schnorr protocol is known to be SHVZK

and specially sound [23]. We now show that it is also homomorphically verifiable.

Theorem 4.4.1. The Schnorr protocol is homomorphically verifiable.

73

Proof. Let (Comm,Chall,Resp,Ver) be the Schnorr protocol as defined in Figure 4.3.

We describe a homomorphic verifier for Schnorr, VerH, that satisfies Definition 4.2.10.

Note that in the Schnorr protocol the challenge and response space is the field Zq.

VerH(x, a, R1, . . . , Rn, c, t): if gt =
(
R

a[1]
1 × · · · ×Ra[n]

n

)
·xc mod p then output

1 otherwise 0.

In the following claims we show that VerH is both complete and sound.

Claim. VerH is complete.

Let a ∈ Zn
q , and let {(Ri, ci, ti)}1≤i≤n be a set of n accepting transcripts. Suppose

c =
n∑
i=1

a[i] · ci mod p and t =
n∑
i=1

a[i] · ti mod p.

It follows then that,

gt = Πn
i=1

(
gti
)a[i]

= Πn
i=1 (Ri · xci)a[i]

=
(
R

a[1]
1 × · · · ×Ra[n]

n

)
· xa[1]·c1+···+a[n]·cn

=
(
R

a[1]
1 × · · · ×Ra[n]

n

)
· xc.

2

Claim. VerH is sound.

We show that if there exists an n = poly(k) and a ppt adversary A that succeeds in a

SoundVerH,A,n(k) experiment with non-negligible probability, then there exists a ppt

74

adversary B that succeeds in a UnfΣ,B(k) experiment also with non-negligible prob-

ability. Since the Schnorr protocol is SHVZK and satisfies strong special soundness,

by Theorem 4.2.9 it is unforgeable and the claim will follow.

Consider the adversary B that, given x and a set of n partial transcripts {(ci, ti)}1≤i≤n,

works as follows:

1. it samples a
$← Zn

q and computes (c, t)← A(x, a, {(ci, ti)}i)

2. it computes t′ =
∑n

i=1 a[i] ·ti mod q and w′ = (t−t′)/(c−
∑n

i=1 a[i] ·ci) mod q

3. it chooses an arbitrary 1 ≤ i ≤ n, and computes r′i = ti − ci · w′ mod q.

It then chooses an arbitrary value c′ different than all (c1, . . . , cn), computes

t′ = r′i + c′ · w′ mod q and outputs the pair (c′, t′)

It remains to analyze B’s success probability. Let valid be the event that

VerH(x, a, R1, . . . , Rn, c, t) outputs 1. Conditioned on valid occurring, it follows that

t = w · c +
n∑
i=1

ri · a[i] mod q,

and that

t′ − t = w · c +
n∑
i=1

ri · a[i]− w ·
n∑
i=1

a[i] · ci −
n∑
i=1

a[i] · ri mod q

= w ·

(
c−

n∑
i=1

a[i] · ci

)
mod q.

However, recall that c 6=
∑n

i=1 ai · ci mod q so w′ in Step 2 will be equal to the

witness w. It follows then that (c′, t′) will be such that Σ.Ver(x,Ri, c
′, t′) outputs 1.

75

Since valid occurs with non-negligible probability, it follows that B will succeed in its

UnfΣ,B(k) experiment also with non-negligible probability.

2

Since the Schnorr protocol is SHVZK, satisfies special soundness and has a homo-

morphic verifier, by Theorem 4.3.1, our compiler will yield a privately verifiable PDP

system with short proofs. Unfortunately, the resulting system has the limitation that

the size of the state St is linear in n, the number of blocks.

4.4.1 A Compact Privately Verifiable PDP System

In this section we describe a protocol that, when compiled, yields a privately

verifiable compact PDP system. The protocol is a simple modification of the Schnorr

protocol so it inherits some of its properties including its homomorphic verifier. The

protocol, ΓS, is described in detail in Figure 4.4.

We observe that ΓS is partial SHVZK, satisfies strong special soundness and is

homomorphically verifiable. This follows directly from the facts that (1) the Schnorr

protocol satisfies these properties; and that (2) the challenge and response algorithms

of both protocols are identical.

By Theorem 4.3.1, it then follows that the PDP system that results from compiling

ΓS will be privately verifiable and will have constant-size proofs. We observe, however,

76

that ΓS can be made compact as follows. Notice that it’s Comm algorithm outputs a

single fixed commitment K. Therefore, the state information will be composed of n

copies of K which can obviously be compressed to a single K. For completeness, we

include the description of ΠS in figure 4.5.

4.5 Conclusions

In this chapter we showed how to compile sigma-protocols into PDP systems,

establishing an explicit connection between the two. In particular, we showed that if

the protocol possesses certain homomorphic properties, then it can be compiled into

a PDP system with O(1)-size proofs. We also identified sufficient security properties

for a sigma-protocol to yield a privately verifiable PDP system under our compiler.

Finally, we describe a simple protocol based on the Schnorr protocol for proving

knowledge of discrete logarithms [58] which, when compiled, generates a privately

verifiable compact PDP system, i.e., it has communication and storage complexity at

the verifier that is O(1). In addition to being efficient, our construction allows for an

unlimited number of proofs and supports public data.

An interesting open problem resulting from this work is to identify a sufficient set

of properties for sigma-protocol to yield a publicly verifiable compact PDP system

under our compiler. Also, since partial SHVZK is sufficient but does not seem neces-

sary to construct PDPs, a precise formulation of the minimal security requirements

needed for our compiler to achieve private and public-verifiability would be useful. In

77

addition, this might lead to more efficient PDP constructions. Another interesting di-

rection is to establish an explicit connection between PDP systems and identification

schemes.

78

Let R be an NP-relation that is hard on average. Let Σ = (Comm,Chall,Resp,Ver)

be a sigma-protocol for R that is homomorphically verifiable over a finite field

Fq. Let Φ : {0, 1}k × Zn → Fq be a pseudo-random function. Π =

(Gen,Encode,Chall,Proof,Ver) is the PDP system defined as follows.

Gen(1k): compute (x,w)← GenR(1k), and output pk = x and sk = w.

Encode(pk, sk, F):

1. parse the file F into n blocks F = 〈f1, . . . , fn〉 such that each fi is in

the challenge space.

2. for 1 ≤ i ≤ n

a. (cmti, ri)← Σ.Comm(x)

b. ti ← Σ.Resp(x,w, ri, fi)

3. output F̃ = 〈f1, . . . , fn, t1, . . . , tn〉 and St = 〈cmt1, . . . ,cmtn〉.

Chall(pk): sample and output K
$← {0, 1}k

Proof(pk, F̃ , c):

1. for 1 ≤ i ≤ n, compute ai ← ΦK(i)

2. compute f = a1 · f1 + · · ·+ an · fn

3. compute t = a1 · t1 + · · ·+ an · tn

4. output 〈f , t〉

Ver(pk,St, c, π):

1. for 1 ≤ i ≤ n, compute ai ← ΦK(i)

2. compute and output b← Σ.VerH(pk, a1, . . . , an,cmt1, . . . ,cmtn, f , t)

Figure 4.2: Compiling a sigma-protocol into a PDP system

79

Let p, q ∈ primes(k) such that p = 2q + 1. Choose g ∈ Z∗p such that g has order q.

Sample w
$← Z∗q and compute x = gw mod p. Make (p, q, g) public.

Comm(x): sample r
$← Zq. Compute R← gr mod p; and output (R, r).

Chall(1k): sample and output c
$← Zq

Resp(x,w,R, c): compute and output t← r + c · w mod q

Ver(x,R, c, t): if gt ≡ R · xc mod p output 1, otherwise output 0

Figure 4.3: The Schnorr protocol

Let p, q ∈ primes(k) such that p = 2q + 1. Choose g ∈ Z∗p such that g has order

q. Sample w
$← Z∗q and compute x = gw mod p. Make (p, q, g) public. Let Φ :

{0, 1}k × {0, 1}k → Zq be a pseudo-random function and let K
$← {0, 1}k. ΓS =

(Comm,Chall,Resp,Ver) is the protocol defined as follows.

Comm(x): let i be a counter initialized to 0 and K be “hardwired”. Compute

r ← ΦK(i) and output (K, r).

Chall(1k): sample and output c
$← Zq

Resp(x,w,K, c): let i be a counter initialized to 0 and K be “hardwired”. Compute

and output t← ΦK(i) + c · w mod q

Ver(x,K, c, t): let i be a counter initialized to 0. Compute r ← ΦK(i) and R← gr

mod p. If gt ≡ R · xc mod p output 1, otherwise output 0

Figure 4.4: A Schnorr-based protocol

80

Gen(1k): Choose p
$← primes(k) and q such that p = 2q + 1, g ∈ Z∗p such that

g has order q, and w
$← Zq. Let Φ : {0, 1}k × Zn → Zq be a pseudo-random

function. Compute x = gw mod p, and set sk = w and pk = (p, q, g, x).

Encode(pk, sk, F):

1. parse the file F into n blocks F = 〈f1, . . . , fn〉 such that f1+· · ·+fn < q.

2. sample K1
$← {0, 1}k

3. for 1 ≤ i ≤ n

a. compute ri ← ΦK1(i), and let Ri = gri mod p

b. compute ti = ri + fi · w mod q

4. output F̃ = 〈f1, . . . , fn, t1, . . . , tn〉 and St = K1.

Chall(pk): sample and output K2
$← {0, 1}k

Proof(pk, F̃ , c):

1. for 1 ≤ i ≤ n, compute ai ← ΦK2(i)

2. compute f = a1 · f1 + · · ·+ an · fn mod q

3. compute t = a1 · t1 + · · ·+ an · tn mod q

4. output π = 〈f , t〉

Ver(pk,St, c, π):

1. for 1 ≤ i ≤ n,

a. compute ri ← ΦK1(i)

b. compute ai ← ΦK2(i)

2. output 1 if and only if gt = (Ra1
1 × · · · ×Ran

n) · xf mod p.

Figure 4.5: A privately verifiable compact PDP system

81

Chapter 5

Storing Private Data on an

Untrusted Server

5.1 Introduction

As discussed in the Introduction, the motivations for storage outsourcing are nu-

merous. By outsourcing, organizations and individuals can concentrate on their core

tasks rather than incurring the substantial hardware, software and personnel costs

involved in maintaining data “in house”. However, when the data to be outsourced

is sensitive, such as hospital records or even emails, outsourcing raises many privacy

concerns.

To address this, private-key encryption can be used to encrypt the data before stor-

age. This approach, however, can be very inefficient when applied to large amounts

82

of data. Indeed, consider the case of a hospital which stores all its patient records

encrypted using a private-key encryption scheme. Note that in such a setting, even

the existence of a record for a given patient should be kept private (i.e., the untrusted

server should not even learn that a given person is a patient at the hospital). In this

case, in order to recover a single record from the server, a staff member will have

to download the entire encrypted data collection, decrypt it and search for the ap-

propriate record. Clearly, this solution is inefficient both in terms of communication

complexity and in terms of the computation performed by the server and the client.

Motivated by this problem, several techniques have been proposed for provisioning

private-key encryption with search capabilities [62, 35, 13, 18, 22]. The resulting

primitive is typically called searchable encryption.

5.1.1 Previous work

Before providing a comparison to existing work, we put our work in context by

providing a classification of the various models for privacy-preserving searches, in-

cluding searching on public-key encrypted data; single-database private information

retrieval (PIR); and searching on private-key encrypted data (which is the subject of

this work). Common to all three models is a server (sometimes called the “database”)

that stores data, and a user that wishes to access, search, or modify the data while

revealing as little as possible to the server. There are, however, important differences

between these three settings.

83

Searching on public-key encrypted data. In the setting of searching on public-

key encrypted data, users who encrypt the data can be different from the owner of the

decryption key. In a typical application, a user publishes a public key while multiple

senders send e-mails to the mail server [18, 3]. Anyone with access to the public key

can encrypt emails, but only the owner of the private key can generate “trapdoors”

to test for the occurrence of a keyword. Although the original work on public-key

encryption with keyword search (PEKS) by Boneh et al. [18] reveals the user’s access

pattern, Boneh, Kushilevitz, Ostrovsky and Skeith [19] have shown how to build a

public-key encryption scheme that hides even the access pattern. This construction,

however, has an overhead in search time that is proportional to the square root of

the database size, which is far less efficient then the best private-key solutions.

Bellare, Boldyreva and O’Neill introduced the notion of asymmetric efficiently

searchable encryption (ESE) and proposed three constructions in the random oracle

model [7]. Similarly to PEKS, asymmetric ESE schemes allow anyone with access to a

user’s public-key to encrypt messages. On the other hand, unlike PEKS it allows any-

one in possession of the public-key to generate trapdoors in order to search. Like our

own constructions, asymmetric ESE schemes achieve optimal search time. We note,

however, that in order to achieve this level of efficiency asymmetric ESE is inherently

deterministic, and therefore provides security guarantees that are significantly weaker

than the ones considered in our work.

84

Searching on public data. In single-database private information retrieval (PIR),

introduced by Kushilevitz and Ostrovsky [49], they show how a user can retrieve data

from a server containing unencrypted data without revealing the access pattern and

with total communication less then the data size. This was extended to keyword

searching, including searching on streaming data by Ostrovsky and Skeith [54]. We

note, however, that since the data in PIR is always unencrypted, any scheme that

tries to hide the access pattern must touch all data items. Otherwise, the server

learns information: namely, that the untouched item was not of interest to the user.

Thus, PIR schemes require work which is linear in the database size.

Searching on private-key encrypted data. In the setting of searching on private-

key-encrypted data the user himself encrypts the data so he can organize it in an

arbitrary way before encryption and include additional data structures to allow for

efficient access. The data and the additional data structures can then be encrypted

and stored on the server so that only someone with the private key can access it. In

this setting, the initial work for the user (i.e., for preprocessing the data) is at least

as large as the data, but subsequent work (i.e., for accessing the data) is very small

relative to the size of the data for both the user and the server.

Searchable symmetric encryption can be achieved securely in its full generality

using the work of Ostrovsky and Goldreich on oblivious RAMs [53, 39]. While obliv-

ious RAMs hide all information (including the access pattern) from a remote and

potentially malicious server, this comes at the cost of a logarithmic (in the of number

85

of documents) amount of rounds of interaction for each read and write. The authors

also give a 2-round solution, but it incurs a considerably larger storage overhead.

Therefore, the recent work on searchable encryption can be viewed as achieving more

efficient solutions (typically in one or two rounds) by weakening the privacy guaran-

tees.

In [62], Song, Wagner and Perrig showed that a solution for searchable encryption

was possible for a weaker security model. Specifically, they achieve SSE by crafting,

for each keyword, a special two-layered encryption construct. Given a trapdoor, the

server can strip the outer layer and assert whether the inner layer is of the correct

form. This construction, however, has some limitations: while it is proven to be a

secure encryption scheme, it is not proven to be a secure searchable encryption scheme;

the distribution of the underlying plaintexts is vulnerable to statistical attacks; and

searching is linear in the length of the document collection.

Other than the current work, two definitions of security have been considered

for SSE: indistinguishability against chosen-keyword attacks (CKA2-security), intro-

duced by Goh [35]1, and a simulation-based definition introduced by Chang and

Mitzenmacher [22]. We note that, unlike the latter and our own definitions, CKA2-

security applies to indexes that are built for individual documents as opposed to

indexes built from entire document collections.

Intuitively, the security guarantee that CKA2-security achieves can be described

1 Goh also defines a weaker notion, CKA-security, that allows an index to leak the number of
keywords in the document.

86

as follows: given access to a set of indexes, the adversary (i.e., the server) is not

able to learn any partial information about the underlying document that he cannot

learn from using a trapdoor that was given to him by the client, and this holds even

against adversaries that can “trick” the client into generating indexes and trapdoors

for documents and keywords of its choice (i.e., chosen-keyword attacks). We remark

that Goh’s work addresses a larger problem than searchable encryption, namely that

of secure indexes, which are secure data structures that have many uses, only one

of which is searchable encryption. And as Goh remarks (cf. Note 1, p. 5 of [35]),

CKA2-security does not explicitly require that trapdoors be secure since this is not

a requirement for all applications of secure indexes.

Regarding existing simulation-based definitions, in [22] Chang and Mitzenmacher

provide a definition of security for SSE that is intended to be stronger than CKA2-

security in the sense that it requires a scheme to output secure trapdoors. Unfortu-

nately, as we point out, this definition can be trivially satisfied by any SSE scheme,

even one that is insecure. Moreover, this definition is inherently non-adaptive, in

the sense that it only guarantees security against adversaries that perform keyword

searches without seeing the outcome of previous searches.

Both works propose constructions that associate an “index” to each document in a

collection. As a result, the server has to search each of these indexes, and the amount

of work required for a query is linear in the number of documents in the collection.

Naturally, SSE can also be viewed as an instance of secure two/multi-party compu-

87

tation [65, 38, 14]. However, the weakening and refinement of the privacy requirement

as well as efficiency considerations mandate a specialized treatment of the problem,

both at the definitional and construction levels.

5.1.2 Summary of Contributions

We start by revisiting previous security definitions for SSE and pointing out several

of their limitations. Additionally, we show that the current definitions only achieve

what we call non-adaptive security, while the more natural usage of searchable en-

cryption calls for adaptive security (a notion we make precise in Section 5.3). We

propose new security definitions for both the non-adaptive and adaptive cases, and

present efficient constructions for both based on any one-way function.

Our first construction is the most efficient non-adaptive SSE scheme to date in

terms of computation on the server, and incurs a minimal (i.e., constant) cost for the

user. Our second construction achieves adaptive security, which was not previously

achieved by any constant-round solution.

We also extend the problem of SSE to the multi-user setting, where a client wishes

to allow an authorized group of users to search through its document collection.

The contents of this Chapter appear in [24].

88

5.2 Preliminaries

Document collections. Let ∆ = {w1, . . . , wd} be a dictionary of d words, and 2∆

be the set of all possible documents. If k ∈ N is the security parameter, we assume

d = poly(k) and that all words w ∈ ∆ are of length polynomial in k. Furthermore, let

D ⊆ 2∆ be a collection of n = poly(k) documents D = (D1, . . . , Dn), each containing

poly(k) words. Let id(D) be the identifier of document D, where the identifier can

be any string that uniquely identifies a document, such as a memory location. We

denote by D(w) the lexicographically ordered list consisting of the identifiers of all

documents in D that contain the word w.

Model. The participants in a single-user searchable encryption scheme include a

user that wishes to store an encrypted document collection D on an honest-but-

curious server S, while preserving the ability to search through them. We note that

while we choose, for ease of exposition, to limit searches to be over documents, any

SSE scheme can be trivially extended to search over lists of arbitrary keywords asso-

ciated with the documents.

The participants in a multi-user searchable encryption scheme include a trusted

owner O, an honest-but-curious server S, and a set of users N. O owns D and wants

to grant and revoke searching privileges to a subset of users in N. We let G ⊆ N be the

set of users allowed to search. We assume that non-revoked users behave honestly.

More formally, throughout this paper, authorized users are modeled as probabilis-

89

tic polynomial-time Turing machines, while adversaries are modeled as non-uniform

Turing machines.

5.3 Defining Security for Searchable Symmetric En-

cryption

We begin by reviewing the formal definition of a SSE scheme.

Definition 5.3.1 (Searchable symmetric encryption scheme). A SSE scheme is a

collection of four polynomial-time algorithms Σ = (Gen, Index,Trapdoor, Search) such

that,

K ← Gen(1k): is a probabilistic key generation algorithm that is run by the user to

setup the scheme. It takes as input a security parameter k, and outputs a secret

key K.

I ← Index(K,D): is a probabilistic algorithm run by the user to generate indexes.

It takes as input a secret key K and a document collection D, and outputs an

index I. We sometimes write this as I← IndexK(D).

Tw ← Trapdoor(K, w): is run by the user to generate a trapdoor for a given keyword.

It takes as input a secret key K and a keyword w, and outputs a trapdoor Tw.

We sometimes write this as Tw ← TrapdoorK(w).

90

X ← Search(I,Tw): is run by the server in order to search for the documents in D

that contain a keyword w. It takes as input an index I for a collection D and a

trapdoor Tw for keyword w, and outputs a set X of document identifiers.

Let D be a document collection and let w be a keyword. An SSE scheme is

complete if, given an index for D and a trapdoor for w (generated under the same

key used to generate the index), the search algorithm returns the identifiers of the

documents in D that contain w.

Definition 5.3.2 (Completeness). Let Σ = (Gen, Index,Trapdoor, Search) be a SSE

scheme, k ∈ N be the security parameter, D be a document collection and w ∈ D be

a keyword. We define CompΣ,D,w(k) as the following probabilistic experiment:

CompΣ,D,w(k)

K← Gen(1k)

I← IndexK(D)

Tw ← TrapdoorK(w)

X ← Search(I,Tw)

if X = D(w), output 1

otherwise output 0

We say that Σ is complete if for all dictionaries ∆, all document collections D ⊆ 2∆,

all keywords w ∈ ∆,

Pr
[
CompΣ,D,w(k) = 1

]
= 1,

where the probability is over the coins of Gen and Index.

So far, establishing correct security definitions for searchable encryption has been

elusive. Clearly, as we have discussed, one could use the general definitions from

91

oblivious RAMs , but subsequent work (including ours) examines if more efficient

schemes can be achieved by revealing some information. The first difficulty seems to

be in correctly capturing this intuition in a security definition. In the literature, this

has typically been characterized as the requirement that “nothing be leaked beyond

the access pattern” , i.e., the identifiers of the documents that contain a sequence

of queried keywords. However, we are not aware of any previous work on SSE that

satisfies this intuition. In fact, with the exception of oblivious RAMs, in addition to

the access pattern all the constructions in the literature leak what we refer to as the

search pattern. Informally, the search pattern is any information that can be derived

from knowing whether two searches were performed for the same keyword or not.

This is clearly the case for the schemes presented in [62, 35, 22] since their trapdoors

are deterministic. Therefore, a more accurate characterization of the security notion

achieved (or rather, sought) for SSE is that nothing should be leaked beyond the

access and the search patterns of a sequence of searches.

The second issue seems to be in appropriately capturing the adversary’s power.

In fact, while Song et al. prove their construction secure, the definition implicitly

used in their work is that of a classical encryption scheme, where the adversary is not

allowed to perform searches. This was partly rectified by Goh [35], whose security

definition for secure indexes gives the adversary access the to Index and Trapdoor

oracles. While much work on searchable encryption uses CKA2-security as a security

definition [42, 55, 5], we note that it was never intended as such. In fact, Goh notes

92

that CKA2-security does not explicitly require trapdoors to be secure, which we deem

is an important requirement for any searchable encryption scheme.

In [22], Chang and Mitzenmacher propose a simulation-based definition that aims

to guarantee privacy for indexes and trapdoors. Similarly to the classical definition

of semantic security for encryption [40], they require that anything that can be com-

puted from the index and the trapdoors for various queries, can be computed from

the outcome of those queries (i.e., the identifiers of the documents that contain the

keywords). However, while the intuition seems correct, in the case of searchable en-

cryption one must also take care in describing how the search queries are generated.

In particular, whether they can be made adaptively (i.e., after seeing the outcome of

previous queries) or non-adaptively (i.e., without seeing the outcome of any queries).

This distinction is important because it leads to security definitions that achieve

different privacy guarantees. Indeed, while non-adaptive definitions only guarantee

security to clients who generate all their queries at once, adaptive definitions guar-

antee privacy even to clients who generate queries as a function of previous search

outcomes.

We now address the above issues. Before stating our definitions for SSE, we

introduce three auxiliary notions which we will make use of. First, we note that

an interaction between the client and the server will be determined by a document

collection and a set of keywords that the client wishes to search for and that we wish

to hide from the adversary. We call an instantiation of such an interaction a history.

93

Definition 5.3.3 (History). Let ∆ be a dictionary and D ⊆ 2∆ be a document

collection over ∆. A q-query history over D is a tuple H = (D, w1, . . . , wq) that

includes the document collection D and q keywords (w1, . . . , wq).

Definition 5.3.4 (Access Pattern). Let ∆ be a dictionary and D ⊆ 2∆ be a doc-

ument collection over ∆. The access pattern induced by a q-query history H =

(D, w1, . . . , wq), is the tuple α(H) = (D(w1), . . . ,D(wq)).

Definition 5.3.5 (Search Pattern). Let ∆ be a dictionary and D ⊆ 2∆ be a doc-

ument collection over ∆. The search pattern induced by a q-query history H =

(D, w1, . . . , wq), is a symmetric binary matrix σ(H) such that for 1 ≤ i, j ≤ q, the

element in the ith row and jth column is 1 if wi = wj, and 0 otherwise.

The final notion is that of the trace of a history, which consists of exactly the

information we are willing to leak about the history and nothing else. More precisely,

this should include the identifiers of the documents that contain each keyword in

the history (i.e., the outcome of each search), and information that describes which

trapdoors in the view correspond to the same underlying keywords in the history (i.e.,

the pattern of the searches). According to our intuitive formulation of security, this

should be no more than the access and search patterns. However, since in practice

the encrypted documents will also be stored on the server, we can assume that the

document sizes and identifiers will also be leaked. Therefore we choose to include

these in the trace.2

2 On the other hand, if we wish not to disclose the size of the documents, this can be trivially

94

Definition 5.3.6 (Trace). Let ∆ be a dictionary and D ⊆ 2∆ be a document col-

lection over ∆. The trace induced by a q-query history H = (D, w1, . . . , wq) over

D, is a sequence τ(H) = (|D1|, . . . , |Dn|, α(H), σ(H)) comprised of the lengths of the

documents in D, and the access and search patterns induced by H.

5.3.1 Our Definitions

In this section we present our definitions of security for SSE. We are now ready

to state our first security definition for SSE. First, we assume that the adversary

generates its history “at once”. In other words, it is not allowed to see the index

of the document collection or the trapdoors of any keywords it chooses before it has

generated the entire history. We call such an adversary non-adaptive.

Definition 5.3.7 (Non-adaptive semantic security). Let Σ = (Gen, Index,Trapdoor,

Search) be a SSE scheme, k ∈ N be the security parameter, A be an adversary, S

be a simulator, and z be a string. We define RealΣ,A,z(k) and SimΣ,A,S,z(k) as the

following two probabilistic experiments:

achieved by “padding” each plaintext document such that all documents have a fixed size and
omitting the document sizes from the trace.

95

RealΣ,A,z(k)

K← Gen(1k)

(H,St)← A(1k, z)

parse H as H = (D, w1, . . . , wq)

I← IndexK(D)

for 1 ≤ i ≤ q,

Ti ← TrapdoorK(wi)

output v = (I,T1, . . . ,Tq) and St

SimΣ,A,S,z(k)

(H,St)← A(1k, z)

v← S(1k, τ(H), z)

output v and St

We say that Σ is semantically secure if for all non-uniform polynomial-time adver-

saries A, there exists a non-uniform polynomial-time simulator S such that, for all

polynomial-length strings z, and all non-uniform polynomial-time distinguishers D,

|Pr [D(v,St, z) = 1 : (v,St)← RealΣ,A,z(k)] −

Pr [D(v,St, z)) = 1 : (v,St)← SimΣ,A,S,z(k)]|

is negligible in k, where the probabilities are over the coins of Gen and Index.

We now turn to our adaptive security definition. It is similar to Definition 5.3.7

with the exception that we allow the adversary to choose its history adaptively and

we require the simulator to simulate the history as it is generated.

Definition 5.3.8 (Adaptive semantic security). Let Σ = (Gen, Index,Trapdoor, Search)

be a SSE scheme, k ∈ N be the security parameter, A = (A0, . . . ,Aq) be an adver-

sary such that q ∈ N, S = (S0, . . . ,Sq) be a simulator, and z be a string. We define

Real2Σ,A,z(k) and Sim2Σ,A,S,z(k) as the following probabilistic experiments:

96

Real2Σ,A,z(k)

K← Gen(1k)

(D,StA)← A0(1k)

I← IndexK(D)

(w1,StA)← A1(StA, I)

T1 ← TrapdoorK(w1)

for 2 ≤ i ≤ q,

(wi,StA)← Ai(StA, I,T1, . . . ,Ti−1)

Ti ← TrapdoorK(wi)

output v = (I,T1, . . . ,Tq) and StA

Sim2Σ,A,S,z(k)

(D,StA)← A0(1k)

(I,StS)← S0(1k, τ(D), z)

(w1,StA)← A1(StA, I)

(T1,StS)← S1(StS , τ(D, w1), z)

for 2 ≤ i ≤ q,

(wi,StA)← Ai(StA, I,T1, . . . ,Ti−1)

(Ti,StS)← Si(StS , τ(D, w1, . . . , wi), z)

output v = (I,T1, . . . ,Tq) and StA

We say that Σ is adaptively semantically secure if for all non-uniform polynomial-

time adversaries A = (A0, . . . ,Aq) such that q = poly(k), there exists a non-uniform

polynomial-time simulator S = (S0, . . . ,Sq), such that for all polynomial-length strings

z, and all non-uniform polynomial-time distinguishers D,

|Pr [D(v, z,StA) = 1 : (v,StA)← Real2Σ,A,z(k)] −

Pr [D(v, z,StA) = 1 : (v,StA)← Sim2Σ,S,z(k)]|

is negligible in k, where the probabilities are over the coins of Gen, and Index.

5.4 Our Constructions

We now present our SSE constructions, and state their security in terms of the

definitions presented in Section 5.3. We start by introducing some additional notation

and the data structures used by the constructions. Let δ(D) ⊆ ∆ be the set of distinct

keywords in the document collection D, and δ(D) ⊆ ∆ be the set of distinct keywords

97

in the document D ∈ D. We assume that keywords in ∆ can be represented using at

most ` bits. Also, recall that D(w) is the set of identifiers of documents in D that

contain keyword w ordered in lexicographic order.

We use several data structures, including arrays, linked lists and look-up tables.

Given an array A, we refer to the element at address i in A as A[i], and to the address

of element x relative to A as addrA(x). So if A[i] = x, then addrA(x) = i. In addition,

a linked list L of n nodes that is stored in an array A is a sequence of nodes Ni =

〈vi, addrA(Ni+1)〉, where 1 ≤ i ≤ n, and where vi is an arbitrary string and addrA(Ni+1)

is the memory address of the next node in the list. We denote by #L the number of

nodes in the list L.

5.4.1 An Efficient Non-Adaptively Secure Construction

We first give an overview of our one-round non-adaptively secure SSE construction.

We associate a single index I with a document collection D. The index I consists of

two data structures:

A: an array in which for all w ∈ δ(D), we store an encryption of the set D(w).

T: a look-up table in which which for all w ∈ δ(D), we store information that

enables one to locate and decrypt the appropriate element from A.

For each distinct keyword wi ∈ δ(D), we start by creating a linked list Li where

each node contains the identifier of a document in D(wi). We then store all the nodes

98

of all the lists in the array A “scrambled” in a random order and encrypted with

randomly generated keys. Before encryption, the j-th node of Li is augmented with

a pointer (with respect to A) to the (j + 1)-th node of Li, together with the key used

to encrypt it. In this way, given the location in A and the decryption key for the first

node of a list Li, the server will be able to locate and decrypt all the nodes in Li.

Note that by storing the nodes of all lists Li in a random order, the length of each

individual Li is hidden.

We then build a look-up table T that allows one to locate and decrypt the first

node of each list Li. Each entry in T corresponds to a keyword wi ∈ ∆ and consists

of a pair <address,value>. The field value contains the location in A and the

decryption key for the first node of Li. value is itself encrypted using the output of a

pseudo-random function. The other field, address, is simply used to locate an entry

in T. The look-up table T is managed using indirect addressing (described below).

The client generates both A and T based on the plaintext document collection D,

and stores them on the server together with the encrypted documents. When the user

wants to retrieve the documents that contain keyword wi, it computes the decryption

key and the address for the corresponding entry in T and sends them to the server.

The server locates and decrypts the given entry of T, and gets a pointer to and the

decryption key for the first node of Li. Since each node of Li contains a pointer to

the next node, the server can locate and decrypt all the nodes of Li, revealing the

identifiers in D(wi).

99

Efficient storage and access of sparse tables. We describe the indirect address-

ing method that we use to efficiently manage look-up tables. The entries of a look-up

table T are tuples <address,value> in which the address field is used as a virtual

address to locate the entry in T that contains some value field. Given a parameter

`, a virtual address is from a domain of exponential size, i.e., from {0, 1}`. However,

the maximum number of entries in a look-up table will be polynomial in `, so the

number of virtual addresses that are used is poly(k). If, for a table T, the address

field is from {0, 1}`, the value field is from {0, 1}v and there are at most s entries in

T, then we say T is a ({0, 1}` × {0, 1}v × s) look-up table.

Let Addr be the set of virtual addresses that are used for entries in a look-up

table T. We can efficiently store T such that, when given a virtual address, it returns

the associated value field. We achieve this by organizing Addr in a so-called FKS

dictionary [33], an efficient data structure for storage of sparse tables that requires

O(|Addr|) storage and O(1) look-up time. In other words, given some virtual address

a, we are able to tell if a ∈ Addr and if so, return the associated value in constant

look-up time. Addresses that are not in Addr are considered undefined.

Padding. Consistent with our security definitions, our construction reveals only the

access pattern, the search pattern, the total size of the encrypted document collection,

and the number of documents it contains. To achieve this, a certain amount of

padding to the array and the table are necessary. To see why, recall that the array A

stores a collection of linked lists (L1, . . . , L|δ(D)|), where each Li contains the identifiers

100

of all the documents that contain the keyword wi ∈ δ(D). Note that the number of

non-empty cells in A, denoted by #A, is equal to the total number of nodes contained

in all the lists. In other words,

#A =
∑

wi∈δ(D)

#Li.

Notice, however, that this is also equal to the sum (over all the documents) of the

number of distinct keywords found in each document. In other words,

#A =
∑

wi∈δ(D)

#Li =
n∑
i=1

|δ(Di)|.

Let #D be the number of (non-distinct) words in the document collection D. Clearly,

if
n∑
i=1

|δ(Di)| < #D,

then there exists at least one document in D that contains a certain word more than

once. Our goal, therefore, will be to pad A so that this leakage does not occur.

In practice, the adversary (i.e., the server) will not know #D explicitly, but it

can approximate it as follows using the encrypted documents it stores. Let s be the

total size of the encrypted document collection in “min-units”, where a min-unit is

the smallest possible size for a keyword (e.g., one byte). Also, let s′ be total size of

the encrypted document collection in “max-units”, where a max-unit is the largest

possible size for a keyword (e.g., ten bytes). It follows then that

s′ ≤ #D ≤ s.

101

From the previous argument, it follows that A must be padded so that #A is at least

s′. Note, however, that setting #A = s′ is not sufficient since an adversary will know

that in all likelihood #D > s′. We therefore pad A so that #A = s.

We follow the same line of reasoning for the look-up table T, which has at least

one entry for each distinct keyword in D. To avoid revealing the number of distinct

keywords in D, we add an additional |∆| − |δ(D)| entries in T filled with random

values so that the total number of entries is always equal to |∆|.

Our construction in detail. We are now ready to proceed to the details of the con-

struction. Let k be security parameters and let Σ = (Gen,Enc,Dec) be a CPA-secure

private-key encryption scheme with Enc : {0, 1}k × {0, 1}∗ → {0, 1}∗. In addition,

we make use of a pseudo-random function f and two pseudo-random permutations Ψ

and Φ with the following parameters:

f : {0, 1}k × {0, 1}` → {0, 1}k+log2(s);

Ψ : {0, 1}k × {0, 1}` → {0, 1}`;

Φ : {0, 1}k × {0, 1}log2(s) → {0, 1}log2(s),

where s is as above 3. Let A be an array with s non-empty cells, and let T be a

({0, 1}` × {0, 1}k+log2(s) × |∆|) look-up table, managed using indirect addressing as

described previously. Our construction is described in Fig. 5.1.

3If the documents are not encrypted with a length preserving encryption scheme or if they are
compressed before encryption, then s is the maximum between the total size of the plaintext D and
the total size of the encrypted D.

102

Theorem 5.4.1. If f is a pseudo-random function, if Ψ and Φ are pseudo-random

permutations, and if Σ is CPA-secure, then the construction described in Figure 5.1

is non-adaptively secure.

Proof. We describe a non-uniform polynomial-time simulator S such that for all non-

uniform polynomial-time adversaries A, for all polynomial-length strings z, the out-

puts of RealΣ,A,z(k) and SimΣ,A,S,z(k) are computationally indistinguishable.

Let A and z be as above and consider the simulator S that given z and the trace of

a q-query history H, generates a string v∗ = (I∗,T∗1, . . . ,T
∗
n, r
∗), where I∗ = (A∗, T∗),

as follows:

1. (Simulating A∗) if q = 0 then for 1 ≤ i ≤ s, S sets A∗[i] to a string of length

log2(n) + k + log2(s) selected uniformly at random. If q ≥ 1, it sets |δ(D)| = q

and runs Step 4 of the Index algorithm on the sets D(w1) through D(wq) using

different random strings of size log2(s) instead of Φ(ctr). Note that S knows

D(w1) through D(wq) from the trace it receives.

2. (Simulating T∗) if q = 0 then for 1 ≤ i ≤ |∆|, S generates pairs (a∗i , c
∗
i) such

that the a∗i are distinct strings of length ` chosen uniformly at random, and the

c∗i are strings of length log2(s) + k also chosen uniformly at random. If q ≥ 1,

then for 1 ≤ i ≤ q, S generates random values β∗i of length log2(s) + k and a∗i

of length `, and sets

T∗[a∗i] = 〈addrA∗(Ni,1)||Ki,0〉 ⊕ β∗i .

103

It then inserts dummy entries into the remaining entries of T∗. So, in other

words, S runs Step 6 of the Index algorithm with |δ(D)| = q, using A∗ instead

of A, and using β∗i and a∗i instead of fy(wi) and Ψz(wi), respectively.

3. (Simulating T∗i) it sets T∗i = (a∗i , β
∗
i)

It follows by construction that searching on I∗ using trapdoors T∗i will yield the

expected search outcomes.

Let v be the outcome of a RealΣ,A,z(k) experiment. We now claim that no

non-uniform polynomial-time D can distinguish between the distributions v∗ and v,

otherwise, by a standard hybrid argument, D could distinguish between at least one

of the elements of v and its corresponding element in v∗. We argue that this is not

possible by showing that each element of v∗ is computationally indistinguishable from

its corresponding element in v.

1. (A and A∗) Recall that A consists of s′ semantically secure ciphertexts and s− s′

random strings of the same size. If q = 0, A∗ consists of all random strings.

While if q ≥ 1, A∗ consists of q semantically secure ciphertexts and s−q random

strings of the same size. In either case, it follows that each element in A∗ will

be indistinguishable from its counterpart in A.

2. (T and T∗) Recall that T consists of |δ(D)| ciphertexts, ci, generated by XOR-

ing a message with the output of f , and of |∆| − |δ(D)| random values of size

k+log2(s). If q = 0, T∗ consists of all random values. While if q ≥ 1, T∗ consists

104

of q ciphertexts generated by XOR-ing a message with a random string β∗i of

length k + log2(s), and |∆| − q random strings of the same length. It follows

that, in either case, each element of T indistinguishable from its counterpart in

T∗.

3. (Ti and T∗i) for 1 ≤ i ≤ q, Ti is indistinguishable from T∗i , otherwise one could

distinguish between the output of Ψ and a random string of size ` or between

the output of f and a random string of size k + log2(s).

Regarding efficiency, we remark that each query takes only one round, and O(1)

message size. In terms of storage, the demands are O(1) on the user and O(s) on the

server; more specifically, in addition to the encrypted D, the server stores the index

I, which has size O(s), and the look-up table T, which has size O(|∆|). Since the size

of the encrypted documents is O(s), accommodating the auxiliary data structures

used for searching does not change (asymptotically) the storage requirements for the

server. The user spends O(1) time to compute a trapdoor, while for a query for

keyword w, the server spends time proportional to |D(w)|.

5.4.2 An Adaptively Secure Construction

While our first construction is efficient, it is only proven secure against non-

adaptive adversaries. We now show a second construction which achieves semantic

105

security against adaptive adversaries at the price of requiring higher communication

size per query and more storage on the server. Asymptotically, however, the costs

are the same.

The difficulty of proving our first construction secure against an adaptive adver-

sary stems from the difficulty of simulating in advance an index for the adversary

that will be consistent with future unknown queries. Given the intricate structure of

the construction, with each keyword having a corresponding linked list whose nodes

are stored encrypted and in a random order, building an index that allows for such a

simulation seems challenging. We circumvent this problem as follows.

For a keyword w and an integer j, we derive a label for w by concatenating w

with j, where j is first converted to a string of characters. So, for example, if w is

the keyword “coin” and j = 1, then w||j is the string “coin1”. We define the family

of a keyword w ∈ δ(D) to be the set of labels famw = {w||j : 1 ≤ j ≤ |D(w)|}. So

if the keyword “coin” appears in three documents, then famw = {“coin1”, “coin2”,

“coin3”}. Note that the maximum size of a keyword’s family is n, i.e., the number

of documents in the collection. We associate with the document collection D an

index I, that consists of a look-up table T. For each label in a keyword’s family, we

add an entry in T whose value field is the identifier of the document that contains

an instance of w. So for each w ∈ δ(D), instead of keeping a list we simply derive

the family famw and enter into the table each label together with the identifier of a

document in δ(D). So if “coin” is contained in documents (D5, D8, D9), then we enter

106

the tuples <"coin1",5>, <"coin2",8>, <"coin3",9>. In order to hide the number of

distinct keywords in each document, we pad the look-up table so that the identifier of

each document appears in the same number of entries. To search for the documents

that contain w, it now suffices to search for all the labels in w’s family. Since each

label is unique, a search for it “reveals” a single document identifier. Translated to

the proof, this will allow the simulator to construct an index for the adversary that

is indistinguishable from a real index, even before it knows any of the adversary’s

queries.

Recall that δ(D) is the set of distinct keywords that exist in D. Let max be the

maximum number of distinct keywords that can fit in the largest document in D

(assuming the minimum size for a keyword is one byte). We give an algorithm to

determine max, given the size (in bytes) of the largest document in D, which we denote

MAX. In step 1 we try to fit the maximum number of distinct 1-byte keywords; there

are 28 such keywords, which gives a total size of 256 bytes (28 ·1 bytes). If MAX > 256,

then we continue to step 2. In step 2 we try to fit the maximum number of distinct

2-byte keywords; there are 216 such keywords, which gives a total size of 131328 bytes

(28 · 1 + 216 · 2 bytes). In general, in step i we try to fit the maximum number of

distinct i-byte keywords, which is 28·i. We continue similarly until step i when MAX

becomes smaller than the total size accumulated so far. Then we go back to step i−1

and try to fit as many (i − 1)-byte distinct keywords as possible in a document of

size MAX. For example, when the largest document in D has size MAX = 1 MByte, we

107

can fit at most max = 355349 distinct keywords (28 distinct 1-byte keywords + 216

distinct 2-byte keywords + 289557 distinct 3-byte keywords). Note that max cannot

be larger than |∆|; thus, if we get a value for max (using the previously described

algorithm) that is larger than |∆|, then we set max = |∆|.

Let k be security parameter and s = max ·n, where n is the number of documents

in D. Recall that keywords in ∆ can be represented using at most ` bits. We use a

pseudo-random permutation Ψ : {0, 1}k ×{0, 1}p+log2(n+max) → {0, 1}p+log2(n+max). Let

T be a ({0, 1}p+log2(n+max) × {0, 1}log2(n) × s) look-up table, managed using indirect

addressing. The construction is described in Figure 5.2.

Theorem 5.4.2. If Ψ is a pseudo-random permutation, then the construction de-

scribed in Figure 5.2 is adaptively secure.

Proof. We describe a non-uniform polynomial-time simulator S = (S0, . . .Sq) such

that for all non-uniform polynomial-time adversariesA = (A1, . . . ,Aq), for all polynomial-

length strings z, the outputs of Real2Σ,A,z(k) and Sim2Σ,A,S,z(k) are computationally

indistinguishable.

Let A and z be as above and consider the simulator S that works as follows.

S0(1k, τ(D), z): it computes max using the algorithm described above. Note that

it can do this since it knows the size of all the documents from the trace of

D. It then sets I∗ to be a ({0, 1}`+log2(n+max) × {0, 1}log2(n) × s) look-up table,

where s = max · n, with max copies of each document’s identifier inserted at

108

random locations. S then includes I∗ in StS and outputs (I∗,StS). Clearly, I∗

is indistinguishable from a real index otherwise one could distinguish between

the output of Ψ and a random string of size `+ log2(n+ max).

S1(StS , τ(D, w1), z): Recall that D(wi) = (D(wi||1), . . . ,D(wi||n)). Note that each

D(wi||j), for 1 ≤ j ≤ n, contains only one document identifier which we refer to

as id(Di,j). For all 1 ≤ j ≤ n, S randomly picks an address addrj from I∗ such

that I∗[addrj] = id(Di,j), making sure that all addrj are pairwise distinct. It

then sets T∗i = (addr1, . . . , addrn). Also, S remembers the association between

T∗t and wi by including it in StS . It then outputs (T∗1,StS).

It is easy to see that trapdoor T∗i is indistinguishable from the trapdoors Ti,

otherwise one could distinguish between the output of Ψ and a random string

of size `+ log2(n+ max).

Si(StS , τ(D, w1, . . . , wi), z) for 2 ≤ i ≤ q: first S checks whether (the unknown) wi

has appeared before. This can be done done by checking whether there exists

a 1 ≤ j ≤ i − 1 such that σ[i, j] = 1. If wi has not previously appeared, then

S generates a trapdoor the same way S1 does. On the other hand, if wi did

previously appear, then S retrieves the trapdoor previously used for wi and uses

it as T∗i . S outputs (T∗i ,StS), which is clearly indistinguishable from Ti.

Just like our non-adaptively secure scheme, this construction requires one round

109

of communication for each query and an amount of computation on the server pro-

portional with the number of documents that contain the query (i.e., O(|D(w)|).

Similarly, the storage and computational demands on the user are O(1). The com-

munication is equal to n and the storage on the server is increased by a factor of max

when compared to out first construction . We note that the communication cost can

be reduced if in each entry of T corresponding to an element in some keyword w’s

family, we also store |D(w)| in encrypted form. In this way, after searching for a label

in w’s family, the user will know |D(w)| and can derive famw. The user can then

send in a single round all the trapdoors corresponding to the remaining labels in w’s

family.

5.4.3 Secure updates

We allow for secure updates to the document collection in the sense defined by

Chang and Mitzenmacher [22]: each time the user adds a new set ζ of encrypted

documents, ζ is considered a separate document collection. Old trapdoors cannot

be used to search newly submitted documents, as the new documents are part of

a collection indexed using different secrets. If we consider the submission of the

original document collection an update, then after u updates, there will be u document

collections stored on the server. In the previously proposed solution [22], the user

sends a pseudo-random seed for each document collection, which implies that the

trapdoors have length O(u). We propose a solution that achieves better bounds

110

for the length of trapdoors (namely O(log u)) and for the amount of computation

at the server. For applications where the number of queries dominates the number

of updates, our solution may significantly reduce the communication size and the

server’s computation.

When the user performs an update, i.e., submits a set ζa of new documents, the

server checks it there exists (from previous updates) a document collection ζb, such

that |ζb| ≤ |ζa|. If so, the server sends back ζb and the user combines ζa and ζb into

a single collection ζc with |ζa| + |ζb| documents. The user then computes an index

for ζc. The server stores the combined document collection ζc and its index Ic, and

deletes the document collections ζa, ζb and their indexes Ia, Ib. Note that ζc and its

index Ic will not reveal anything more than what was already revealed by the ζa, ζb

and their indexes Ia, Ib, since one can trivially reduce the security of the combined

collection to the security of the composing collections.

Next, we analyze the number of document collections that results after u updates

using the method proposed above. Without loss of generality, we assume that each

update consists of one new document. Then, it can be shown that after u updates,

the number of document collections is given by the the Hamming weight of f(u).

Note that f(u) ∈ [1, blog(u+ 1)c]. This means that after u updates, there will be at

most log(u) document collections, thus the queries sent by the user have size O(log u)

and the search can be done in O(log u) by the server (as opposed to O(u) in [22]).

111

5.5 Multi-User Searchable Encryption

In this section we consider a natural extension of SSE to the setting where a user

owns a document collection, but an arbitrary group of users can submit queries to

search the collection. A familiar question arises in this new setting, that of managing

access privileges while preserving privacy with respect to the server. We first present

a definition of a multi-user searchable encryption scheme (MSSE) and some of its

desirable security properties, followed by an efficient construction which, in essence,

combines a single-user SSE scheme with a broadcast encryption [30] (BE) scheme.

Let N denote the set of all possible users, and G ⊆ N the set of users that are currently

authorized to search.

Definition 5.5.1 (Multi-user searchable symmetric encryption scheme). A multi-user

SSE scheme is a collection of seven polynomial-time algorithms Ω = (Gen, Index,Add,

RevokeO,RevokeS,Trapdoor, Search) such that,

KO ← Gen(1k): is a probabilistic key generation algorithm that is run by the owner

O to set up the scheme. It takes as input a security parameter k, and outputs

an owner secret key KO.

I← Index(KO,D): is run by the owner O to generate indexes. It takes as input the

owner’s secret key skO and a document collection D, and outputs an index I.

KU ← Add(KO, U): is run by O whenever it wishes to add a user to the group G. It

takes as input the owner’s secret key KO and a user U , and outputs U ’s secret

112

key, KU .

m← RevokeO(KO, U): is run by O server whenever it wishes to revoke a user from

G. It takes as input the owner’s secret key KO and a user U , and outputs a

revocation message m.

b← RevokeS(U,m): is run by the server S in order to revoke a user from G. It takes

as input a user U and message m, and outputs a bit b that signifies success or

failure.

TU,w ← Trapdoor(KU , w): is run by a user (including O) in order to generate a

trapdoor for a keyword. It takes as input a user U ’s secret key KU and a

keyword w, and outputs a trapdoor TU,w.

X ← Search(I,TU,w): is run by the server S in order to search for the documents

in D that contain keyword w. It takes as input an index I and a trapdoor TU,w

for keyword w, and outputs a set X of document identifiers.

We briefly discuss here notions of security that a multi-user SSE scheme should

achieve. It should be clear that the (semantic) security of a multi-user scheme can

be reduced to the semantic security of the underlying single-user scheme. The reason

is that in the multi-user case, just like in the single-user case, we are only concerned

with providing security against the server. One distinct property in this new setting

is that of revocation, which essentially states that a revoked user no longer be able to

perform searches on the owner’s documents.

113

Definition 5.5.2 (Revocation). Let Ω = (Gen, Index,Add,RevokeO,RevokeS,Trapdoor,

Search) be a multi-user SSE scheme, k ∈ N be the security parameter, and A =

(A1,A2,A3) be an adversary. We define RevΩ,A(k) as the following probabilistic

experiment.

RevΩ,A(k)

KO ← Gen(1k)

(St,D)← A1(1k)

KA ← Add(KO,A)

I← Index(KO,D)

St← ASearch(I,·)
2 (St,KA)

m← RevokeO(KO,A)

b← RevokeS(A,m)

(w, T ′)← A3(St)

X ← Search(I,T′)

if X = D(w) output 1

else output 0

We say that Ω achieves revocation if for all non-uniform polynomial-time adversaries

A = (A1,A2),

Pr [RevΩ,A(k) = 1] ≤ negl(k),

where the probability is over the coins of Gen, Add, RevokeO and Index.

Our construction makes use of a single-user SSE scheme and a broadcast encryp-

tion scheme. Let BE = (Gen,Enc,Dec) be a broadcast encryption scheme. Recall that

in broadcast encryption, a center starts out by running the Gen algorithm to generate

long-lived secrets which it distributes to the set of authorized users. It encrypts a

message m to a group G of privileged users that are allowed to access the message.

114

We denote this by c← EncG(m). The group G can be dynamically changing, as users

can be added or removed from G. Although the encrypted message can be received

by a set N ⊇ G of receivers, only the users in G can recover the message. We denote

this by m ← DecG(c). When a user joins the system, it receives a set of secrets, re-

ferred to as long-lived secrets. The long-lived secrets are distinct for each user. Given

an encrypted message, the long-lived secrets allow a user to decrypt it only if the

user was non-revoked at the time the message was encrypted. We use off-the-shelf

broadcast encryption as a building block in our multi-user secure index construction

in order to efficiently manage user revocation.

Let Σ = (Gen, Index,Trapdoor, Search) be a single-user SSE scheme and BE =

(Gen,EncG,DecG) be a broadcast encryption scheme. We require standard security

notions for broadcast encryption: namely, that in addition to being CPA-secure it

provide revocation-scheme security against a coalition of all revoked users and that

its key assignment algorithm satisfies key indistinguishability. Let N denote the set

of all users, and G ⊆ N the set of users (currently) authorized to search, and R

denote the set of revoked users. Let Φ be a pseudo-random permutation such that

Φ : {0, 1}k×{0, 1}t → {0, 1}t, where t is the size of a trapdoor in the underlying single-

user SSE scheme. Φ can be constructed using the techniques proposed by Black and

Rogaway [15], which describe how to build pseudo-random permutations over domains

of arbitrary size. Our multi-user construction Ω = (Gen, Index,Add,RevokeO,RevokeS,

Trapdoor, Search) is described in detail in Figure 5.3.

115

The owner key is composed of a key K for the underlying single-user scheme, and

a key r for the pseudo-random permutation Φ. To create an index, the owner O

simply runs the single-user indexing algorithm, Σ.Index, on the data collection and

stores the index, together with the broadcast encryption of r on the server. To add a

user U , the owner sends it the pair (K, r) together with the long-lived secrets for the

broadcast encryption scheme.

To search for a keyword w, an authorized user U first retrieves EncN\R(r) from

the server and recovers r. It generates a single-user trapdoor Tw, encrypts it using Φ

keyed with r, and sends it to the server. The server, upon receiving Φr(Tw), recovers

the trapdoor by computing Tw = Φ−1
r (Φr(Tw)). The key r currently used for Φ is

only known by the owner, by the set of currently authorized users and by the server.

Each time a user is revoked, the owner picks a new r′ and stores it on the server

encrypted such that only non-revoked users can decrypt it. The server will use the

new r′ when inverting Φ for all subsequent queries. Since revoked users will not be

able to recover r′, with overwhelming probability, their queries will not yield a valid

trapdoor after the server applies Φ−1
r′ .

Notice that to give a user U permission to search through D, the owner sends it

all the secret information needed to perform searches in a single-user context. Note

that O should possess an additional secret that will not be shared with U and that

allows him to perform authentication with the server when he wants to update D.

This guarantees that only O can perform updates to D. However, the extra layer

116

given by the pseudo-random permutation Φ, together with the guarantees offered by

the broadcast encryption scheme and the assumption that the server is honest-but-

curious, is what prevents users from performing successful searches once they are

revoked.

We point out that users receive their long-lived secrets for the broadcast encryption

scheme only when they are given authorization to search. So while a user U that has

not joined the system yet could retrieve EncN\R(r) from the server, since it does

not know the long-lived secrets, it will not be able to recover r. Similarly, when a

revoked user U retrieves EncN\R(r) from the server, it cannot recover r because U ∈ R.

Moreover, even though a revoked user which has been re-authorized to search could

recover (old) values of r that were used while he was revoked, these values are no

longer of interest. The fact that backward secrecy is not needed for the BE scheme

makes the Add algorithm more efficient, since it does not require the owner to send a

message to the server.

Our multi-user construction is very efficient on the server side: when given a

trapdoor, the server only needs to evaluate a pseudo-random permutation in order to

determine if the user is revoked. If access control mechanisms were used instead for

this step, a “heavier” authentication protocol would be required.

117

5.6 Conclusions

In this chapter, we considered the problem of symmetric searchable encryption,

revisiting previous security definitions and pointing out some of their limitations.

More precisely, we show that the current definitions only achieve what we call non-

adaptive security, while the more natural usage of searchable encryption requires

adaptive security. To address this we proposed two new definitions for SSE, one

non-adaptive and one adaptive.

We also presented efficient constructions for both security notions based on any

one-way function. Our first construction is the most efficient non-adaptive SSE

scheme to date in terms of computation on the server, and incurs minimal cost for the

user. Our second construction achieves adaptive security, which was not previously

achieved by any constant-round solution.

Finally, we extend the problem of SSE to the multi-user setting, where a client

wishes to allow an authorized group of users to search through its document collection.

For the case of multi-user SSE we introduce an efficient transformation based on

pseudo-random permutations and broadcast encryption that turns any single-user

scheme into a multi-user scheme.

While our adaptively secure construction is asymptotically optimal in terms of

computational complexity at the server, the underlying constants are prohibitive.

Therefore an interesting open question is whether more efficient adaptively secure

SSE schemes can be achieved. Other interesting directions for future work include

118

provisioning our constructions with more flexible types of queries such as: conjunctive

queries which allow one to searches for keywords w1 and w2; disjunctive queries that

allow one to search for w1 or w2; and fuzzy queries which allow one to search for any

keyword “close” to w.

119

Gen(1k) : sample K1,K2,K3
$← {0, 1}k and output K = 〈K1,K2,K3〉.

IndexK(D) :

Initialization:

1. scan D and generate the set of distinct keywords δ(D)

2. for all w ∈ δ(D), generate D(w)

3. initialize a global counter ctr = 1

Building the array A:

4. for 1 ≤ i ≤ |δ(D)|, build a list Li as follows

(a) sample a key Ki,0
$← {0, 1}k

(b) for 1 ≤ j ≤ |D(wi)|:
· let id(Di,j) be the jth identifier in D(wi)

· sample a key Ki,j
$← {0, 1}k and create a node

Ni,j = 〈id(Di,j)‖Ki,j‖Φk1(ctr + 1)〉

· encrypt the node Ni,j under key Ki,j−1 and store it in A[ΦK1(ctr)]

· set ctr = ctr + 1

(c) for the last node of Li set the address of the next node to NULL

5. let s′ =
∑

wi∈δ(D) |D(wi)|. If s′ < s, then set remaining s− s′ entries of
A to random values of the same size as the existing s′ entries of A.

Building the look-up table T:

6. for all wi ∈ δ(D), set T[ΨK3(wi)] = 〈addrA(Ni,1)||Ki,0〉 ⊕ fy(wi)
7. if |δ(D)| < |∆|, set the remaining |∆| − |δ(D)| entries to random values

8. output I = (A, T).

TrapdoorK(w) : output Tw = (ΨK3(w), fK2(w)).

Search(I,Tw) :

1. Parse Tw as (γ, η), and retrieve θ = T[γ]. Parse θ ⊕ η as 〈α||K′〉
2. Use the key K′ to decrypt the list L starting with the node stored at address
α in A

3. Output the list of document identifiers contained in L.

Figure 5.1: A non-adaptively secure SSE scheme

120

Gen(1k) : sample and output K
$← {0, 1}k

IndexK(D) :

Initialization:

1. scan D and generate the set of distinct keywords δ(D)

2. for all w ∈ δ(D), generate D(w) (i.e., the set of documents that contain

w)

Building the look-up table I:

3. for 1 ≤ i ≤ |δ(D)| and 1 ≤ j ≤ |D(wi)|,

(a) let id(Di,j) be the jth identifier in D(wi)

(b) set I[ΨK(wi||j)] = id(Di,j)

4. let s′ =
∑

wi∈δ(D) |D(wi)|

5. if s′ < s, then set values for the remaining (s − s′) entries in I such

that for all documents D ∈ D, the identifier id(D) appears exactly max

times.

6. output I

TrapdoorK(w) : output Tw = (Tw1 , . . . ,Twn) = (ΨK(w||1), . . . ,ΨK(w||n)).

Search(I,Tw) : for all 1 ≤ i ≤ n, retrieve and output id = I[Twi
]

Figure 5.2: An adaptively secure SSE scheme

121

Gen(1k) : compute K← Σ.Gen(1k) and sample r
$← {0, 1}k. Output KO = (K, r).

Index(KO,D) : run I ← Σ.Index(K,D). Initialize BE and set R = {∅}. Send r

and EncN(r) to the server, and output I.

Add(KO, U) : send KU = (K, r) to user U , where r is the current key used for Φ.

Also send it the long-lived secrets needed for the BE scheme.

RevokeO(KO, U) : set R = R ∪ {U} and sample r
$← {0, 1}k. Output m =

〈r, encN\R(r)〉.

Revokes(U,m) : parse m into 〈r′,EncN\R(r′)〉 and overwrite the old values r and

EncN\R(r) with the new ones.

Trapdoor(KU , w) : compute Tw ← Σ.Trapdoor(K, w). Retrieve EncN\R(r) from the

server and use the long-lived BE secrets to recover r. Output Φr(Tw).

Search(I, TU,w) : compute Tw ← Φ−1
r (TU,w). Run Search(I, Tw) and return its

output.

Figure 5.3: A multi-user SSE scheme

122

Chapter 6

Conclusion

The assumption that the computational devices used by honest parties have ac-

cess to “secured” resources (i.e., resources that are outside of the adversary’s control)

does not hold in many practical settings. In fact, cryptographic protocols that are

implemented on smartcards, or other embedded devices, are often broken by manip-

ulating the device’s source of randomness. Also, there are many settings in which the

honest parties may wish to use resources from parties they do not fully trust. This is

the case, for example, when users outsource their storage.

In this dissertation we explore various security problems in settings where the

honest parties do not fully trust the resources available to them. In particular, we

focus on fundamental computational resources: namely, randomness and storage.

First, we consider the problem of privately encrypting data using malicious ran-

domness. We introduce and formally define two notions of security for private-key

123

encryption that guarantee that if a message is encrypted using a truly random key

and a truly random source of randomness, the message will be protected even against

an adversary that will control the source in the future, and one that controlled it in

the past. We also provide several efficient constructions that meet these new notions

of security.

Second, we consider the problem of authenticating data stored on an unreliable

server. In particular, we show how to compile any 3-round public-coin zero-knowledge

proof of knowledge with certain homomorphic properties into an efficient proof of data

possession system. Our compiler yields PDP systems with O(1)-size proofs, and we

describe a simple protocol that, when compiled, generates a privately verifiable PDP

system that also has O(1) storage complexity at the verifier.

Finally, we consider the problem of storing private data on an untrusted server.

Specifically, we examine the problem of symmetric searchable encryption and observe

that the current definitions only achieve what we call non-adaptive security, while the

more natural usage of searchable encryption requires adaptive security. To address

this, we propose two new definitions for SSE: one non-adaptive and one adaptive.

We also present efficient constructions for both security notions based on any one-

way function. Our first construction is the most efficient non-adaptive SSE scheme to

date in terms of computation on the server, and incurs minimal cost for the user. Our

second construction achieves adaptive security, which was not previously achieved by

any constant-round solution. Finally, we extend the problem of SSE to the multi-user

124

setting, where a client wishes to allow an authorized group of users to search through

its document collection. For the case of multi-user SSE we introduce an efficient

transformation based on pseudo-random permutations and broadcast encryption that

turns any single-user scheme into a multi-user scheme.

125

Bibliography

[1] Health Insurance Portability and Accountability Act. http://www.hhs.gov/

ocr/hipaa, 1996.

[2] Gramm-Leach-Bliley Act. http://www.ftc.gov/privacy/

privacyinitiatives/glbact.html, 1999.

[3] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. M. Lee,

G. Neven, P. Paillier, and H. Shi. Searchable encryption revisited: Consistency

properties, relation to anonymous IBE, and extensions. In V. Shoup, editor, Ad-

vances in Cryptology – CRYPTO ’05, volume 3621 of Lecture Notes in Computer

Science, pages 205–222. Springer, 2005.

[4] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and

D. Song. Provable data possession at untrusted stores. In P. Ning, S. D. C.

di Vimercati, and P. Syverson, editors, ACM Conference on Computer and Com-

munication Security (CCS ’07). ACM Press, 2007.

[5] L. Ballard, S. Kamara, and F. Monrose. Achieving efficient conjunctive keyword

126

http://www.hhs.gov/ocr/hipaa
http://www.hhs.gov/ocr/hipaa
http://www.ftc.gov/privacy/privacyinitiatives/glbact.html
http://www.ftc.gov/privacy/privacyinitiatives/glbact.html

searches over encrypted data. In S. Qing, W. Mao, J. Lopez, and G. Wang,

editors, Seventh International Conference on Information and Communication

Security (ICICS ’05), volume 3783 of Lecture Notes in Computer Science, pages

414–426. Springer, 2005.

[6] B. Barak and S. Halevi. A model and architecture for pseudo-random generation

and applications to /dev/random. In V. Atluri, C. Meadows, and A. Juels,

editors, ACM Conference on Computer and Communications Security (CCS ’05).

ACM, 2005.

[7] M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and efficiently searchable

encryption. In A. Menezes, editor, Advances in Cryptology – CRYPTO ’07,

Lecture Notes in Computer Science, pages 535–552. Springer, 2007.

[8] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment

of symmetric encryption. In Symposium on Foundations of Computer Science

(FOCS ’97), pages 394–405. IEEE Computer Society, 1997.

[9] M. Bellare and O. Goldreich. On defining proofs of knowledge. In E. Brickell,

editor, Advances in Cryptology – CRYPTO ’92, volume 740 of Lecture Notes in

Computer Science, pages 390–420. Springer-Verlag, 1992.

[10] M. Bellare, J. Killian, and P. Rogaway. The security of cipher block chaining.

In Y. Desmedt, editor, Advances in Cryptology – CRYPTO ’94, volume 839 of

Lecture Notes in Computer Science, pages 341–358. Springer, 1994.

127

[11] M. Bellare and C. Namprempre. Authenticated encryption: Relations among

notions and analysis of the generic composition paradigm. In T. Okamoto, editor,

Advances in Cryptology – ASIACRYPT ’00, volume 1976 of Lecture Notes in

Computer Science, pages 531–545. Springer, 2000.

[12] M. Bellare and B. Yee. Forward-security in private-key cryptography. In M. Joye,

editor, The Cryptographers’ Track at the RSA Conference (CT-RSA ’03), volume

2612 of Lecture Notes in Computer Science, pages 1–18. Springer, 2003.

[13] S. Bellovin and W. Cheswick. Privacy-enhanced searches using encrypted Bloom

filters. Technical Report 2004/022, IACR ePrint Cryptography Archive, 2004.

[14] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for fault-

tolerant distributed computing. In ACM Symposium on the Theory of Compu-

tation (STOC ’88), pages 1–10. ACM, 1988.

[15] J. Black and P. Rogaway. Ciphers with arbitrary finite domains. In B. Preneel,

editor, The Cryptographers’ Track at the RSA Conference (CT-RSA ’02), volume

2271 of Lecture Notes in Computer Science, pages 114–130. Springer-Verlag,

2002.

[16] M. Blum, W. S. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the cor-

rectness of memories. In IEEE Symposium on Foundations of Computer Science

(FOCS ’91), pages 90–99. IEEE Computer Society, 1991.

128

[17] M. Blum and S. Kannan. Designing programs that check their work. Journal of

the ACM, 42(1):269–291, 1995.

[18] D. Boneh, G. di Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption

with keyword search. In C. Cachin and J. Camenisch, editors, Advances in

Cryptology – EUROCRYPT ’04, volume 3027 of Lecture Notes in Computer

Science, pages 506–522. Springer, 2004.

[19] D. Boneh, E. Kushilevitz, R. Ostrovsky, and W. Skeith. Public-key encryp-

tion that allows PIR queries. In A. Menezes, editor, Advances in Cryptology –

CRYPTO ’07, volume 4622 of Lecture Notes in Computer Science, pages 50–67.

Springer, 2007.

[20] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing.

In C. Boyd, editor, Advances in Cryptology – ASIACRYPT ’01, volume 2248 of

Lecture Notes in Computer Science, pages 514–32. Springer, 2001.

[21] C. Bosley and Y. Dodis. Does privacy require true randomness? In S. Vadhan,

editor, Theory of Cryptography Conference (TCC ’07), volume 4392 of Lecture

Notes in Computer Science, pages 1–20. Springer, 2007.

[22] Y. Chang and M. Mitzenmacher. Privacy preserving keyword searches on remote

encrypted data. In J. Ioannidis, A. Keromytis, and M. Yung, editors, Applied

Cryptography and Network Security (ACNS ’05), volume 3531 of Lecture Notes

in Computer Science, pages 442–455. Springer, 2005.

129

[23] R. Cramer, I. Damgrard, and B. Schoenmakers. Proofs of partial knowledge and

simplified design of witness hiding protocols. In Y. Desmedt, editor, Advances in

Cryptology – CRYPTO ’94, volume 839 of Lecture Notes in Computer Science,

pages 174–187. Springer, 1994.

[24] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmet-

ric encryption: Improved definitions and efficient constructions. In A. Juels,

R. Wright, and S. D. C. di Vimercati, editors, ACM Conference on Computer

and Communications Security (CCS ’06), pages 79–88. ACM, 2006.

[25] Y. Deswarte, J.-J. Quisquater, and A. Saidane. Remote integrity checking. In

M. Gertz, editor, Integrity and Internal Control in Information Systems (IICIS’

03), 2003.

[26] Y. Dodis, S. J. Ong, M. Prabhakaran, and A. Sahai. On the (im)possibility of

cryptography with imperfect randomness. In IEEE Symposium on Foundations

of Computer Science (FOCS ’04), pages 196–205. IEEE Computer Society, 2004.

[27] Y. Dodis and J. Spencer. On the (non)universality of the one-time pad. In IEEE

Symposium on Foundations of Computer Science (FOCS ’02), pages 376–. IEEE

Computer Society, 2002.

[28] U. Feige, A. Fiat, and A. Shamir. Zero knowledge proofs of identity. Journal of

Cryptology, 1(2):77–94, 1988.

130

[29] U. Feige and A. Shamir. Witness indistinguishable and witness hiding protocols.

In ACM Symposium on Theory of Computing (STOC ’90), pages 416–426. ACM,

1990.

[30] A. Fiat and M. Naor. Broadcast encryption. In D. Stinson, editor, Advances in

Cryptology – CRYPTO ’93, volume 773 of Lecture Notes in Computer Science,

pages 480–491. Springer, 1993.

[31] A. Fiat and A. Shamir. How to prove yourself: practical solutions to identifica-

tion and signature problems. In A. Odlyzko, editor, Advances in Cryptology –

CRYPTO ’86, volume 263 of Lecture Notes in Computer Science, pages 186–194.

Springer, 1986.

[32] D. Filho and P. Baretto. Demonstrating data possession and uncheatable data

transfer. Technical Report 2006/150, IACR ePrint Cryptography Archive, 2006.

[33] M. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with 0(1)

worst case access time. Journal of the ACM, 31(3):538–544, 1984.

[34] K. Fu, S. Kamara, and T. Kohno. Key regression: Enabling efficient key distribu-

tion for secure distributed storage. In Network and Distributed System Security

Symposium (NDSS 2006). The Internet Society, 2006.

[35] E.-J. Goh. Secure indexes. Technical Report 2003/216, IACR ePrint Cryptog-

raphy Archive, 2003. See http://eprint.iacr.org/2003/216.

131

http://eprint.iacr.org/2003/216

[36] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.

In IEEE Symposium on the Foundations of Computer Science (FOCS ’84), pages

464–479. IEEE Computer Society, 1984.

[37] O. Goldreich, S. Micali, and A. Wigderson. How to play ANY mental game. In

ACM Symposium on the Theory of Computation (STOC ’87), pages 218–229.

ACM, 1987.

[38] O. Goldreich, S. Micali, and A. Wigderson. How to prove all NP statements

in zero-knowledge and a methodology of cryptographic protocol design. In

A. Odlyzko, editor, Advances in Cryptology – CRYPTO ’86, volume 263 of Lec-

ture Notes in Computer Science, pages 171–185. Springer, 1987.

[39] O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious

RAMs. Journal of the ACM, 43(3):431–473, 1996.

[40] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and

System Sciences, 28(2):270–299, April 1984.

[41] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interac-

tive proof-systems. In ACM Symposium on Theory of Computing (STOC ’85),

pages 291–304. ACM, 1985.

[42] P. Golle, J. Staddon, and B. Waters. Secure conjunctive keyword search over

encrypted data. In M. Jakobsson, M. Yung, and J. Zhou, editors, Applied Cryp-

132

tography and Network Security Conference (ACNS ’04), volume 3089 of Lecture

Notes in Computer Science, pages 31–45. Springer, 2004.

[43] L. Guillou and J.-J. Quisquater. A practical zero-knowledge protocol fitted to se-

curity microprocessor minimizing both transmission and memory. In C. Günther,

editor, Advances in Cryptology – EUROCRYPT ’88, volume 330 of Lecture Notes

in Computer Science, pages 123–128. Springer, 1988.

[44] J. Hastad, R. Impagliazzo, L. Levin, and M. Luby. A pseudorandom generator

from any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

[45] A. Juels and B. Kaliski. PORs: Proofs of retrievability for large files. In P. Ning,

S. D. C. di Vimercati, and P. Syverson, editors, ACM Conference on Computer

and Communication Security (CCS ’07). ACM, 2007.

[46] S. Kamara and J. Katz. How to encrypt with a malicious random number

generator. In K. Nyberg and S. Vaudenay, editors, Fast Software Encryption

(FSE ’08), Lecture Notes in Computer Science. Springer, 2008. To Appear.

[47] J. Katz and M. Yung. Unforgeable encryption and chosen ciphertext secure

modes of operation. In B. Schneier, editor, Fast Software Encryption (FSE ’00),

volume 1978 of Lecture Notes in Computer Science, pages 284–299. Springer,

2000.

[48] M. Krohn, M. Freedman, and D. Mazieres. On-the-fly verification of rateless

133

erasure codes for efficient content distribution. In IEEE Symposium on Security

and Privacy, pages 226–240. IEEE Computer Society, 2004.

[49] E. Kushilevitz and R. Ostrovsky. Replication is NOT needed: SINGLE database,

computationally-private information retrieval. In IEEE Symposium on Founda-

tions of Computer Science (FOCS ’97), pages 364–373. IEEE Computer Society,

1997.

[50] J. McInnes and B. Pinkas. On the impossibility of private key cryptography

with weakly random keys. In A. Menezes and S. Vanstone, editors, Advances in

Cryptology – CRYPTO ’90, volume 537 of Lecture Notes in Computer Science,

pages 421–435. Springer, 1990.

[51] M. Naor and G. Rothblum. The complexity of online memory checking. In IEEE

Symposium on Foundations of Computer Science (FOCS ’05), pages 573–584.

IEEE Computer Society, 2005.

[52] M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen

ciphertext attack. In ACM Symposium on Theory of Computing (STOC ’90),

pages 427–437. ACM, 1990.

[53] R. Ostrovsky. Efficient computation on oblivious RAMs. In ACM Symposium

on Theory of Computing (STOC ’90), pages 514–523. ACM, 1990.

[54] R. Ostrovsky and W. Skeith. Private searching on streaming data. In V. Shoup,

134

editor, Advances in Cryptology – CRYPTO ’05, volume 3621 of Lecture Notes in

Computer Science, pages 223–240. Springer, 2005.

[55] D. Park, K. Kim, and P. Lee. Public key encryption with conjunctive field

keyword search. In C. H. Lim and M. Yung, editors, Workshop on Information

Security Applications (WISA ’04), volume 3325 of Lecture Notes in Computer

Science, pages 73–86. Springer, 2004.

[56] C. Rackoff and D. Simon. Non-interactive zero-knowledge proof of knowledge

and chosen ciphertext attack. In J. Feigenbaum, editor, Advances in Cryptology

– CRYPTO ’91, volume 576, pages 433–444. Springer, 1991. Lecture Notes in

Computer Science.

[57] O. Rogaway. Nonce-based symmetric encryption. In B. Roy and W. Meier,

editors, Fast Software Encryption (FSE ’04), volume 3017 of Lecture Notes in

Computer Science, pages 348–359. Springer, 2004.

[58] C.-P. Schnorr. Efficient signature generation by smart cards. Journal of Cryp-

tology, 4(3):161–174, 1991.

[59] T. Schwarz and E. Miller. Store, forget, and check: Using algebraic signatures

to check remotely administered storage. IEEE International Conference on Dis-

tributed Computing Systems (ICDCS’06), page 12, 2006.

[60] F. Sebe, A. Martinez-Balleste, Y. Deswarte, J. Domingo-Ferrer, and J.-J.

135

Quisquater. Time-bounded remote file integrity checking. Technical Report

04429, LAAS, 2004.

[61] H. Shacham and B. Waters. Compact proofs of retrievability. Cryptology ePrint

Archive, Report 2008/073, 2008.

[62] D. Song, D. Wagner, and A. Perrig. Practical techniques for searching on en-

crypted data. In IEEE Symposium on Research in Security and Privacy, pages

44–55. IEEE Computer Society, 2000.

[63] M. Tompa and H. Woll. Random self-reducibility and zero knowledge interactive

proofs of possession of information. In IEEE Symposium on Foundations of

Computer Science (FOCS ’87), pages 472–482. IEEE Computer Society, 1987.

[64] G. Yamamoto, S. Oda, and K. Aoki. Fast integrity for large data. In Software

Performance Enhancement for Encryption and Decryption (SPEED ’07), 2007.

[65] A. Yao. Protocols for secure computations. In IEEE Symposium on Foundations

of Computer Science (FOCS ’82), pages 160–164. IEEE Computer Society, 1982.

136

Curriculum Vitae

Seny Kamara was born on April 25th, 1978 in Noisy-le-Sec, France. He earned a

B.Sc. in Computer Science from Purdue University in December 2001, and a M.S.E.

in Computer Science from the Johns Hopkins University in 2006. He was the recipient

of a Bell Labs Graduate Fellowship, a Phillips and Camille Bradford fellowship and

was a visiting fellow at the UCLA Institute for Pure and Applied Mathematics during

the Fall of 2006.

Seny has published peer-reviewed scientific papers on various topics including

cryptography, biometrics and network security.

137

	Abstract
	Acknowledgements
	List of Figures
	Introduction
	Encrypting with a malicious random number generator
	Authenticating data stored on an unreliable server
	Storing private data on an untrusted server

	Notation and Preliminaries
	Basic Cryptographic Primitives

	Encrypting with a Malicious Random Number Generator
	Introduction
	Previous Work
	Summary of Contributions

	Defining Security Against Chosen-Randomness Attacks
	Comparison to Traditional Definitions
	Comparison to Nonce-Based Security

	Achieving Security Against Chosen-Randomness Attacks
	A Fixed-Length CRA-Secure Construction
	A Variable-Length CRA-secure Construction
	A CPA-to-CRA Transformation

	Achieving Security against Chosen-Ciphertext and Randomness Attacks
	Conclusions

	Authenticating Data Stored on an Unreliable Server
	Introduction
	Previous Work
	Summary of Contributions

	Definitions
	Proofs of Data Possession
	Sigma-Protocols
	Unforgeable Sigma-Protocols
	Homomorphically Verifiable Sigma-Protocols

	Compiling Sigma-Protocols into PDP Systems
	Concrete Instantiations Based on the Schnorr Protocol
	A Compact Privately Verifiable PDP System

	Conclusions

	Storing Private Data on an Untrusted Server
	Introduction
	Previous work
	Summary of Contributions

	Preliminaries
	Defining Security for Searchable Symmetric Encryption
	Our Definitions

	Our Constructions
	An Efficient Non-Adaptively Secure Construction
	An Adaptively Secure Construction
	Secure updates

	Multi-User Searchable Encryption
	Conclusions

	Conclusion
	Bibliography
	Curriculum Vitae

