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Secure Multi-Party Computation (MPC) protocols allow a group of mutually

distrusting users to compute a function jointly on their inputs without revealing

any information beyond the output. For many years, implementations of MPC

protocols have targeted security against semi-honest adversaries, i.e., attackers are

assumed to execute the protocol honestly but try to learn private information after

the fact. Protocols secure against stronger and more realistic malicious adversaries,

who could behave arbitrarily during the protocol execution, were known to exist but

were much less efficient.

This thesis introduces a new paradigm to construct extremely efficient MPC

protocols with malicious security. In particular, this thesis consists of three major

contributions.

1. We introduce the authenticated garbling framework, and present an efficient

concrete instantiation of the protocol. The resulting protocol partially closes

the gap between semi-honest and malicious MPC protocols asymptotically;



the implementation of the protocol represents the state-of-the-art system for

malicious two-party computation.

2. We discuss how to apply authenticated garbling to the multi-party setting,

where all-but-one parties can be corrupted by the adversary. The resulting

protocol improves upon the best previous constant-round protocol by orders

of magnitude. We also present a system that, for the first time, enables MPC

executions among hundreds of parties, distributed globally.

3. We present a series of optimizations to two-party authenticated garbling by

interpreting authenticated garbling in a new way. The improved malicious

protocol has essentially the same concrete efficiency as the best semi-honest

protocol in the preprocessing model.

4. We develop these protocols in EMP-toolkit, a practical and efficient MPC tool

that can be used to build new protocols and to develop applications using our

existing protocols.
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Chapter 1: Introduction

Protocols for secure multi-party computation (MPC) allow a set of mutually dis-

trusting parties to jointly compute an agreed upon function on their own inputs.

The security of MPC protocols ensures that no party can learn any information

about other parties’ inputs except the output. The past ten years have witnessed

a huge improvement on the concrete efficiency of MPC protocols. Numerous com-

panies have been founded using MPC to solve real-life problems that cannot be

solved otherwise. For example, Dyadic [1] uses MPC to help secure cryptographic

keys; Sharemind [2] uses MPC to process financial data [3] and prevent satellites

from colliding without disclosing trajectories [4]; Partisia [5] uses MPC for privacy-

preserving auctions.

While these results are impressive, the semi-honest security model is used in

almost all applications, which assumes that both parties follow the protocol honestly

yet may try to learn additional information from the execution. This is clearly not

sufficient for all applications and has motivated researchers to construct protocols

achieving the stronger notion of malicious security, where the adversary can cheat

in arbitrary ways. Malicious protocols provide strong security but come with a

very high performance penalty. Indeed, the state-of-the-art protocol with malicious
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security in 2014 [6] is still orders of magnitude slower than the protocols in the

semi-honest setting.

This thesis introduces a new paradigm for constructing maliciously secure

MPC protocols with extremely high efficiency. Existing protocols for MPC can

be categorized into two main classes: 1) protocols based on garbled circuits that

require high bandwidth but only a constant number of roundtrips; 2) protocols based

on secret-sharing that usually need less communication but number of roundtrips

proportional to the circuit depth. Such a trade-off between throughput and latency

seems difficult to avoid especially for concretely efficient protocols. Authenticated

garbling is a new paradigm that shows how to integrate these two classes of protocols

efficiently such that the communication is only marginally increased compared to

the secret-sharing protocols, while achieving constant-round.

Introducing Authenticated Garbling. In Chapter 3, we introduce the authen-

ticated garbling framework, and present an efficient concrete instantiation of the

protocol. From the high-level idea, this protocol follows the preprocessing model,

where a big amount of computation is performed offline, and used later for efficient

secure computation. The main feature of this framework is that, in the preprocessing

model, the rest part of the protocol shares similar cost compared to a semi-honest

protocol. We further improve the preprocessing by more than 2×. As a result, the

resulting protocol closes the gap between semi-honest and malicious MPC protocols

asymptotically; the implementation of the protocol represents the state-of-the-art

for two-party computation.
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This work was published in ACM CCS 2017 [7], and is a recipient of best paper

award.

Applying Authenticated Garbling for the Multiparty Setting. In Chap-

ter 4, we discuss how to apply the authenticated garbling technique to the multi-

party setting, where all-but-one parties can be corrupted by the adversary. Almost

all existing protocol with practical efficiency requires rounds of communication pro-

portional to the depth of the circuit to compute. However, the protocol proposed

here only requires a very small number of roundtrips independent of the circuit.

The resulting protocol improves upon previous best constant-round protocol by at

least three orders of magnitude. We also present a system that, for the first time,

enables MPC execution among hundreds of parties, distributed globally.

This work was published in ACM CCS 2017 [8].

New Understanding and Optimization for Authenticated Garbling. In

Chapter 5, we present a series of optimizations to the two-party authenticated gar-

bling by interpreting authenticated garbling in a new way. The improved malicious

protocol has essentially the same concrete efficiency as the best semi-honest protocol

in the preprocessing model.

This work was published in Crypto 2018 [9].

EMP-Toolkit for Efficient Multi-Party Computation. In the course of this

thesis, we also developed an efficient MPC toolkit, namely EMP-toolkit [10]. EMP

aims to make it easy for cryptography researchers to develop fast prototypes of

their protocols and for application developers who uses MPC as a black-box. See
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Chapter 6 for more details.

1.1 Related Work

We will have a brief overview of prior works on maliciously secure two-party and

multi-party computation protocols, focusing especially on practical protocols.

1.1.1 Two-party Computation

Protocols for generic 2PC in the semi-honest setting based on Yao’s garbled-circuit

protocol [11] have seen tremendous efficiency improvements over the past several

years [12, 13, 14, 15, 16, 17, 18, 19].

Cut-and-choose is one of the most popular approach to strengthen the garbled

circuit protocol with malicious security [20, 21, 22, 23, 24, 25, 26, 27, 6, 28]. For

statistical security 2−ρ, the best approaches using this paradigm require ρ garbled

circuits (which is optimal).

The cut-and-choose approach incurs significant overhead, especially for large

circuits, precisely because ρ garbled circuits need to be transmitted (typically, ρ ≥

40). In order to mitigate this, recent works have explored secure computation in an

amortized setting where the same function is evaluated multiple times (on different

inputs) [29, 30, 31, 32]. When amortizing over τ executions, only O( ρ
log τ

) garbled

circuits are needed per execution. More recently, Nielsen and Orlandi [33] proposed

a protocol with constant amortized overhead, but only when τ is at least the number

of gates in the circuit.
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Other techniques for constant-round, maliciously secure two-party computa-

tion in the single-execution setting, with asymptotically better performance than

circuit-level cut-and-choose, have also been explored. The LEGO protocol [34] and

subsequent optimizations [35, 36, 37, 38] are based on a gate-level cut-and-choose

subroutine that can be carried out during a preprocessing phase before the circuit

to be evaluated is known. This class of protocols has good asymptotic performance

and small online time; however, the best reported implementation of LEGO [37]

still has a higher overall running time than the best protocol based on a circuit-level

cut-and-choose approach.

The Beaver-Micali-Rogaway compiler [39] provides yet another way to con-

struct constant-round protocols with malicious security [40, 41]. This compiler uses

an “outer” secure-computation protocol to generate a garbled circuit that is then

evaluated. Lindell et al. [42, 43] suggested applying this idea using SPDZ [44] (based

on somewhat homomorphic encryption) as the outer protocol, but did not provide

an implementation of the resulting scheme.

There are also protocols whose round complexity is linear in the depth of the

circuit being evaluated. The TinyOT protocol [45] extends the classical GMW pro-

tocol [46] by adding information-theoretic MACs to shares held by the parties; The

IPS protocol [47] has excellent asymptotic complexity, but its concrete complex-

ity is unclear since it has never been implemented (and appears quite difficult to

implement).

5



1.1.2 Multi-Party Computation

Most existing MPC protocols rely on some variant of the secret-sharing paradigm

introduced by Goldreich, Micali, and Wigderson [46]. At a high level, this technique

requires the parties to maintain the invariant of holding a linear secret sharing of

the values on the circuit wires, along with some sort of authentication information

on those shares. Linear gates in the circuit (e.g., XOR, ADD) can be processed

locally, while non-linear operations (e.g., AND, MULT) are handled by having the

parties interact with each other to maintain the desired invariant. The most notable

example of a protocol in this framework is perhaps SPDZ [44, 48, 49], which supports

arithmetic circuits; protocols for boolean circuits have also been designed [50, 51].

Implementations of MPC protocols. The first implementations of generic

MPC assumed a semi-honest adversary corrupting a minority of the parties. Early

work in this area includes FairplayMP [52] for boolean circuits, and VIFF [53] and

SEPIA [54] for arithmetic circuits. Implementations of protocols handling an arbi-

trary number of corrupted parties, but still in the semi-honest setting, were shown

by Choi et al. [55] and Ben-Efraim et al. [56], the latter running in a constant number

of rounds.

There are fewer implementations of MPC protocols handling malicious attack-

ers. Jakobsen et al. [57] developed the first such system. SPDZ and its subsequent

improvements [44, 48, 58, 49] greatly improved the efficiency. As noted earlier, all

existing implementations of MPC tolerating malicious attackers have round com-

plexity linear in the depth of the circuit.
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Another line of work has specifically targeted three-party computation. Imple-

mentations here include Sharemind [59, 3], the sugar-beet auction run by Bogetoft et

al. [60], and the recent work of Araki et al. [61]; these each tolerate only semi-honest

behavior. Mohassel et al. [62] and Furukawa et al. [63] tolerate a malicious attacker

corrupting only one party.

Constant-round MPC. Constant-round MPC protocols tolerating any number of

malicious corruptions have also been designed. The basic approach [64] is to have

the parties run a linear-round secure-computation protocol to compute a garbled

circuit [11] for the function f of interest; the parties can then evaluate that garbled

circuit using a constant number of additional rounds. Since the circuit for computing

the garbling of f has depth independent of f , the overall number of rounds is con-

stant. FairplayMP [52] and Ben-Efraim et al. [56] implemented this approach in the

semi-honest setting. Other researchers have proposed approaches without provid-

ing an implementation, possibly because an implementation would be too complex

or because the concrete efficiency of the resulting protocol would be uncompetitive

with nonconstant-round protocols. As examples, Damg̊ard and Ishai [40] proposed

a protocol making black-box use of the underlying cryptographic primitives, and

Choi et al. [41] looked at the three-party setting with malicious corruption of two

parties. Lindell et al. [42, 43] considered optimizations of the BMR approach in the

malicious setting.
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Chapter 2: Background

2.1 Notation

We use κ to denote the computational security parameter (i.e., security should hold

against attackers running in time ≈ 2κ), and ρ for the statistical security parameter

(i.e., an adversary should succeed in cheating with probability at most 2−ρ). We

use “=” to denote equality and “:=” to denote assignment. We denote the parties

running the protocol by PA and PB.

A circuit is represented as a list of gates having the format (α, β, γ, T ), where

α and β denote the indices of the input wires of the gate, γ is the index of the output

wire of the gate, and T ∈ {⊕,∧} is the type of the gate. We use I1 to denote the set

of indices of PA’s input wires, I2 to denote the set of indices of PB’s input wires, W

to denote the set of indices of the output wires of all AND gates, and O to denote

the set of indices of the output wires of the circuit.

When there are more than two parties, we denote them by P1, . . . , Pn. We use

Ii to denote the set of input-wire indices for Pi, W to denote the set of output-wire

indices for all AND gates, and O to denote the set of output-wire indices of the

circuit. (We assume all parties learn the output.) M is used to denote the set of

all corrupted parties, with H = [n] \M denoting the set of all honest parties. Our
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protocol operates by having the parties distributively construct a garbled circuit

that is evaluated by one of the parties; we let P1 be the circuit evaluator.

Functionality F

Private inputs: Pi has input xi ∈ {0, 1}ni .

1. Receive (input, id, xi) from Pi and store the messages if no such messages have been
received.

2. If (input, id, xi) is present for all i, computes z = f(x1, ..., xn) and send the z to P1.

Figure 2.1: Functionality F for multi-party secure computation.

2.2 Preliminaries

2.2.1 Secure Computation

We use the standard definition of security for two-party and multi-party computation

in the presence of malicious adversaries [65, Chapter 7]. We present the MPC ideal

functionality in Figure 2.1.

2.2.2 Information-theoretic MACs in the Two-Party Setting

We use the information-theoretic message authentication codes (IT-MACs) of [45],

which we briefly recall. PA holds a uniform global key ∆A ∈ {0, 1}κ. A bit b known

by PB is authenticated by having PA hold a uniform key K[b] and having PB hold

the corresponding tag M[b] := K[b]⊕ b∆A. Symmetrically, PB holds an independent

global key ∆B; a bit b known by PA is authenticated by having PB hold a uniform

key K[b] and having PA hold the tag M[b] := K[b] ⊕ b∆B. We use [b]A to denote
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an authenticated bit known to PA (i.e., [b]A means PA holds (b,M[b]) and PB holds

K[b]), and define [b]B symmetrically.

Observe that this MAC is XOR-homomorphic: given [b]A and [c]A, the parties

can (locally) compute [b ⊕ c]A by having PA compute M[b ⊕ c] := M[b] ⊕M[c] and

PB compute K[b⊕ c] := K[b]⊕ K[c].

It is possible to extend the above idea to authenticate secret values by using

XOR-based secret sharing and authenticating each party’s share. That is, we can

authenticate a bit λ, known to neither party, by letting r, s be uniform subject to

λ = r⊕ s, and then having PA hold (r,M[r],K[s]) and PB hold (s,M[s],K[r]). It can

be observed that this scheme is also XOR-homomorphic.

2.2.3 Information-theoretic MACs in the Multi-Party Setting

Authenticated bits. The idea above can be extended to the multiparty setting as

follows. Each player Pi holds a global MAC key ∆i ∈ {0, 1}κ. When Pi holds a bit

x authenticated by Pj, this means that Pj is given a random key Kj[x] ∈ {0, 1}κ and

Pi is given the MAC tag Mj[x] := Kj[x]⊕ x∆j. We let [x]i denote an authenticated

bit where the value of x is known to Pi, and is authenticated to all other parties. In

more detail, [x]i means that (x, {Mk[x]}k 6=i) is given to Pi, and Kj[x] is given to Pj

for j 6= i.

Note that [x]i is XOR-homomorphic: given two authenticated bits [x]i, [y]i

known to the same party Pi, it is possible to locally compute the authenticated bit

[z]i with z = x⊕ y as follows:
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• Pi computes z := x⊕ y, and {Mj[z] := Mj[x]⊕Mj[y]}j 6=i;

• Pj (for j 6= i) computes Kj[z] := Kj[x]⊕ Kj[y].

Parties can also locally negate [x]i, resulting in [z]i with z = x̄:

• Pi computes z := x⊕ 1 and {Mj[z] := Mj[x]}j 6=i;

• Pj (for j 6= i) computes Kj[z] := Kj[x]⊕∆j.

We let Fnabit denote an ideal functionality that distributes authenticated bits to

the parties. Note that the above representation assumes that Pi uses a single global

MAC key ∆i. In cases where other keys are used, we explicitly add a subscript to

the representation, i.e., we use Ki[x]Gi and Mi[x]Gi = Ki[x]Gi ⊕ xGi to denote the

key and MAC tag in this case.

Authenticated shares. In the above construction, x is known to one party. To

generate an authenticated shared bit x, where x is not known to any party, we

generate XOR-shares for x (i.e., shares {xi} with
⊕

i x
i = x) and then distribute

the authenticated bits {[xi]i}. We let 〈x〉 denote the collection of these authenticated

shares for x; that is, 〈x〉 means that each party Pi holds (xi, {Mj[x
i],Ki[x

j]}j 6=i).

2.2.4 Secure Computation in the Preprocessing Model

Depending on the practical application of secure computation protocols, the execu-

tion can be divided into different phases:

• Setup. Here, the parties generate information that can be used for compu-

tation of multiple, possibly different functions. For example, base-OT can be
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performed in this phase.

• Function-independent preprocessing. Here, the parties begin execution

of the protocol for a particular computation. At this point, the parties only

need to know an upper bound on the size of the circuit that will be computed.

• Function-dependent preprocessing. Here the parties know the function

being computed, but need not know their inputs.

• Online phase. The parties evaluate the function on their inputs.

Some applications require fast response given upon inputs, and thus want to mini-

mize the online phase; other applications, where the parties involved in the secure

computation is fixed, may want to minimize the cost of Function-dependent prepro-

cessing and Online phase.

The function-independent preprocessing, denoted as FPre, is described in Fig-

ure 2.2. This functionality is used to set up correlated values between the parties

along with their corresponding IT-MACs. The functionality chooses uniform global

keys for each party, with the malicious party being allowed to choose its global key.

Then, when the parties request a random authenticated bit, the functionality gen-

erates an authenticated secret sharing of the uniform bit λ = r⊕ s. (The adversary

may choose the “random values” it receives, but this does not reveal anything to the

adversary about r⊕ s or the other party’s global key.) Finally, the parties may also

submit authenticated shares of two bits; the functionality then computes a (fresh)

authenticated share of the AND of those bits.
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Functionality FPre

Honest parties:

1. Upon receiving init from all parties, sample {∆i ∈ {0, 1}κ}i∈[n] and send ∆i to Pi.

2. Upon receiving random from all Pi, sample a random bit r and a random authen-
ticated share 〈r〉 = {(ri, {Mj [r

i],Ki[r
j ]}j 6=i)}i∈[n]. For each i ∈ [n], the box sends

(ri, {Mj [r
i],Ki[r

j ]}j 6=i) to Pi.

3. Upon receiving
(
AND, (ri, {Mj [r

i],Ki[r
j ]}j 6=i), (si, {Mj [s

i],Ki[s
j ]}j 6=i

)
from Pi for all i ∈

[n], the box checks that all MACs are valid, computes t :=
(⊕

i∈[n] r
i
)
∧
(⊕

i∈[n] s
i
)

and picks a random authenticated share 〈t〉 = {(ti, {Mj [t
i],Ki[t

j ]}j 6=i)}i∈[n]. For each
i ∈ [n], the box sends (ti, {Mj [t

i],Ki[t
j ]}j 6=i) to Pi.

Corrupted parties: Corrupted parties can choose randomness used to compute the value
they receive from the functionality.

Global key queries: The adversary at any point can send some (p,∆′) and will be told if
∆′ = ∆p.

Figure 2.2: The multi-party preprocessing functionality.
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Chapter 3: Authenticated Garbling for Efficient Two-Party Compu-

tation

In this chapter, we will introduce our new paradigm for constructing constant-

round, maliciously secure 2PC protocols with extremely high efficiency. At a high

level (further details are in Section 3.1), and following ideas of Nielsen et al. [45], our

protocol uses a function-independent preprocessing phase (namely FPre introduced

in Section 2.2.4) that sets up correlated randomness between the two parties, which

they can use during the online phase for information-theoretic authentication of

different values. In contrast to prior work, however, the parties in our protocol use

this information in the online phase to generate a single “authenticated” garbled

circuit. As in the semi-honest case, this garbled circuit can then be transmitted and

evaluated in just one additional round.

Regardless of how we realize FPre, our protocol is extremely efficient in the

function-dependent preprocessing phase and the online phase. Specifically, com-

pared to Yao’s semi-honest garbled-circuit protocol, the cost of the function-dependent

preprocessing phase of our protocol is only about 2× higher (assuming 128-bit com-

putational security and 40-bit statistical security), and the cost of the online phase

is essentially unchanged.
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We show how to instantiate FPre efficiently by developing a highly optimized

version of the TinyOT protocol (adapting [45]), described in Section 3.3. Instan-

tiating our framework in this way, we obtain a protocol with the same asymptotic

communication complexity as recent protocols based on LEGO, but with two ad-

vantages. First, our protocol has much better concrete efficiency (see Section 3.6).

For example, it requires only 16.6 ms total to evaluate AES, a 6× improvement com-

pared to a recent implementation of a LEGO-style approach [37]. Furthermore, the

storage needed by our protocol is asymptotically smaller (see Table 3.1), something

that is especially important when very large circuits are evaluated.

Instantiating our framework with the realization of FPre described in Sec-

tion 3.3 yields a protocol with the best concrete efficiency, and is the main focus.

However, we note that our framework can also be instantiated in other ways:

• When FPre is instantiated using the IPS compiler [47] and the bit-OT protocol

by Ishai et al. [66], we obtain a maliciously secure constant-round 2PC protocol

with total communication complexity O(κ|C|). Up to constant factors, this

matches the complexity of semi-honest 2PC based on garbled circuits.

The only previous work that achieves similar communication complexity [67]

requires a constant number of public-key operations per gate of the circuit,

and would have concrete performance much worse than our protocol.

• We can also realize FPre using an offline, (semi-)trusted server. In that case

we obtain a constant-round protocol for server-aided 2PC with complexity

O(κ|C|). Previous work in the same model [68] achieves the same complexity
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Table 3.1: Asymptotic complexity of constant-round 2PC protocols with malicious

security. Communication (Comm.) is measured as the number of symmetric-key

ciphertexts, and computation (Comp.) is measured as the number of symmetric-key

operations. Storage refers to the number of symmetric-key ciphertexts stored after

the offline stage. |C|, |I|, and |O| are the circuit size, input length, and output

length, respectively; low-order terms independent of these parameters are ignored.

The statistical security parameter is ρ, the computational security parameter is κ,

and the number of protocol executions in the amortized setting is τ .

∗Although the complexity of function-independent preprocessing can be reduced to

O(|C|) using somewhat-homomorphic encryption [44], doing so requires a number of

public-key operations proportional to |C|.

Protocol
Function-ind. Function-dep. Online Online (Comp./

(Comm./Comp.) (Comm./Comp.) (Comm.) Storage)

Cut-and-choose [26, 6, 28] — O (|C|ρ) O(|I|ρ) O(|C|ρ)

Amortized [29, 30] — O
(
|C|ρ
log τ

)
O
(
|I|ρ
log τ

)
O
(
|C|ρ
log τ

)
LEGO [34, 35] O

(
|C|ρ

log τ+log |C|

)
O(|C|) O(|I|+ |O|) O

(
|C|ρ

log τ+log |C|

)
SPDZ-BMR [42, 49]∗ O(|C|κ) O(|C|) O(|I|+ |O|) O(|C|)

This paper (with Section 3.3) O
(

|C|ρ
log τ+log |C|

)
O(|C|) |I|+ |O| O(|C|)

This paper (with [47]) O(|C|)

but with number of rounds proportional to the circuit depth.

3.1 Protocol Intuition

We give a high-level overview of our protocol in the FPre-hybrid model. Our pro-

tocol has the parties compute a garbled circuit in a distributed fashion, where the

garbled circuit is “authenticated” in the sense that the circuit generator (PA in our
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case) cannot change the logic of the circuit. We describe the intuition behind our

construction in several steps.

We begin by reviewing standard garbled circuits. Each wire α of a circuit is

associated with a random “mask” λα ∈ {0, 1} known to PA. If the actual value of

that wire (i.e., the value when the circuit is evaluated on the parties’ inputs) is x,

then the masked value observed by the circuit evaluator (namely, PB) on that wire

will be x̂ = x⊕λα. Using the free-XOR technique [15], each wire α is also associated

with two labels Lα,0 and Lα,1 := Lα,0 ⊕ ∆ known to PA. If the masked bit on that

wire is x̂, then PB learns Lα,x̂.

Let H be a hash function modeled as a random oracle. The garbled table for,

e.g., an AND gate (α, β, γ,∧) with wires α, β, γ having values x, y, z, respectively,

is given by:

x̂ ŷ truth table garbled table

0 0 ẑ00 = (λα ∧ λβ)⊕ λγ H(Lα,0, Lβ,0, γ, 00)⊕ (ẑ00, Lγ,ẑ00 )

0 1 ẑ01 = (λα ∧ λβ)⊕ λγ H(Lα,0, Lβ,1, γ, 01)⊕ (ẑ01, Lγ,ẑ01 )

1 0 ẑ10 = (λα ∧ λβ)⊕ λγ H(Lα,1, Lβ,0, γ, 10)⊕ (ẑ10, Lγ,ẑ10 )

1 1 ẑ11 = (λα ∧ λβ)⊕ λγ H(Lα,1, Lβ,1, γ, 11)⊕ (ẑ11, Lγ,ẑ11 )

PB, holding (x̂, Lα,x̂) and (ŷ, Lβ,ŷ), evaluates this garbled gate by picking the (x̂, ŷ)-th

row and decrypting using the garbled labels it holds, thus obtaining (ẑ, Lγ,ẑ).

The standard garbled circuit just described ensures security against a mali-

cious PB, since (intuitively) PB learns no information about the true values on any

of the wires. Unfortunately, it provides no security against a malicious PA who can

potentially cheat by corrupting rows in the various garbled tables. One particular

attack PA can carry out is a selective-failure attack. Say, for example, that a ma-

licious PA corrupts only the (0, 0)-th row of the garbled table for the gate above,

and assume PB aborts if it detects an error during evaluation. If PB aborts, then PA

learns that the masked values on the input wires of the gate above were x̂ = ŷ = 0,
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Table 3.2: Our final construction of an authenticated garbled table for an AND

gate.

x⊕ λα y ⊕ λβ PA’s share of garbled table PB’s share of garbled table

0 0 H(Lα,0, Lβ,0, γ, 00)⊕ (r00,M[r00], Lγ,0 ⊕ r00∆A ⊕ K[s00]) (s00 = ẑ00 ⊕ r00,K[r00],M[s00])
0 1 H(Lα,0, Lβ,1, γ, 01)⊕ (r01,M[r01], Lγ,0 ⊕ r01∆A ⊕ K[s01]) (s01 = ẑ01 ⊕ r01,K[r01],M[s01])
1 0 H(Lα,1, Lβ,0, γ, 10)⊕ (r10,M[r10], Lγ,0 ⊕ r10∆A ⊕ K[s10]) (s10 = ẑ10 ⊕ r10,K[r10],M[s10])
1 1 H(Lα,1, Lβ,1, γ, 11)⊕ (r11,M[r11], Lγ,0 ⊕ r11∆A ⊕ K[s11]) (s11 = ẑ11 ⊕ r11,K[r11],M[s11])

from which it learns that the true values on those wires were λα and λβ.

The selective-failure attack just mentioned can be prevented if the masks are

hidden from PA: in that case, even if PB aborts and PA learns the masked wire values,

PA learns nothing about the true wire values. Since knowledge of the garbled table

would leak information about the masks to PA, the garbled table must be hidden

from PA as well. That is, we now want to set up a situation in which PA and PB

hold secret shares of the garbled table, as follows:

x̂ ŷ PA’s share of garbled table PB’s share of garbled table

0 0 H(Lα,0, Lβ,0, γ, 00)⊕ (r00, LA
γ,00) (s00 = ẑ00 ⊕ r00, LB

γ,00)

0 1 H(Lα,0, Lβ,1, γ, 01)⊕ (r01, LA
γ,01) (s01 = ẑ01 ⊕ r01, LB

γ,01)

1 0 H(Lα,1, Lβ,0, γ, 10)⊕ (r10, LA
γ,10) (s10 = ẑ10 ⊕ r10, LB

γ,10)

1 1 H(Lα,1, Lβ,1, γ, 11)⊕ (r11, LA
γ,11) (s11 = ẑ11 ⊕ r11, LB

γ,11)

(Here, e.g., LA
γ,00, L

B
γ,00 represent abstract XOR-shares of Lγ,ẑ00 , i.e., Lγ,ẑ00 = LA

γ,00 ⊕

LB
γ,00.) Once PA sends its shares of all the garbled gates, PB can XOR those shares

with its own and then evaluate the garbled circuit as before.

Informally, the above ensures privacy against a malicious PA since (intuitively)

the results of any changes PA makes to the garbled circuit are independent of PB’s

inputs. However, PA can still affect correctness by, e.g., flipping the masked value

in a row. This can be addressed by adding an information-theoretic MAC on PA’s

share of the masked bit. The shares of the garbled table now take the following
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form:

x̂ ŷ PA’s share of garbled table PB’s share of garbled table

0 0 H(Lα,0, Lβ,0, γ, 00)⊕ (r00,M[r00], LA
γ,00) (s00 = ẑ00 ⊕ r00,K[r00], LB

γ,00)

0 1 H(Lα,0, Lβ,1, γ, 01)⊕ (r01,M[r01], LA
γ,01) (s01 = ẑ01 ⊕ r01,K[r01], LB

γ,01)

1 0 H(Lα,1, Lβ,0, γ, 10)⊕ (r10,M[r10], LA
γ,10) (s10 = ẑ10 ⊕ r10,K[r10], LB

γ,10)

1 1 H(Lα,1, Lβ,1, γ, 11)⊕ (r11,M[r11], LA
γ,11) (s11 = ẑ11 ⊕ r11,K[r11], LB

γ,11)

Once PA sends its shares of the garbled circuit to PB, the garbled circuit can be

evaluated as before. Now, however, PB will verify the MAC on PA’s share of each

masked bit that it learns. This limits PA to only being able to cause PB to abort;

as before, though, any such abort will occur independently of PB’s actual input.

Note that PA’s shares of the wire labels need not be authenticated, since a

corrupted wire label can only cause input-independent abort; if PB does not abort,

the MACs on the masked bits ensure that PB learns the correct masked wire value,

i.e., ẑ.

Efficient realization. Although the above idea is powerful, it still remains to

design an efficient protocol that allows the parties to distributively compute shares

of a garbled table of the above form even when one of the parties is malicious.

One important observation is that if we set ∆ (the free-XOR shift) equal to

PA’s global key ∆A, then we can secret share, e.g., Lγ,ẑ00 as

Lγ,ẑ00 = Lγ,0 ⊕ ẑ00∆A

= Lγ,0 ⊕ (r00 ⊕ s00)∆A

= Lγ,0 ⊕ r00∆A ⊕ s00∆A

= (Lγ,0 ⊕ r00∆A ⊕ K[s00])︸ ︷︷ ︸
LA
γ,00

⊕ (K[s00]⊕ s00∆A)︸ ︷︷ ︸
LB
γ,00

.

In our construction thus far, PA knows Lγ,0 and r00 (in addition to knowing ∆A).
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Our key insight is that if s00 is an authenticated bit known to PB, then PA can

locally compute the share LA
γ,00 := Lγ,0⊕ r00∆A⊕K[s00] from the information it has;

the other share LB
γ,00 = K[s00]⊕ s00∆A is equal to the value M[s00] that PB holds! So

if we rewrite the garbled table as in Table 3.2, shares of the table become easy to

compute in a distributed fashion.

Another optimization is based on the observation that the masked output

values take the following form:

ẑ00 = (λα ∧ λβ)⊕ λγ
ẑ01 = (λα ∧ λβ)⊕ λγ = ẑ00 ⊕ λα
ẑ10 = (λα ∧ λβ)⊕ λγ = ẑ00 ⊕ λβ
ẑ11 = (λα ∧ λβ)⊕ λγ = ẑ01 ⊕ λβ ⊕ 1.

Thus, the parties can locally compute authenticated shares {rij, sij} of the {ẑi,j}

from authenticated shares of λα, λβ, λγ, and λα ∧ λβ.

Finally, our actual protocol pushes as much of the garbled-circuit generation

as possible into the preprocessing phase.

3.2 Our Main Framework

In Figure 3.2, we give the complete description of our main protocol in the FPre-

hybrid model. For clarity we set ρ = κ, but in Section 3.5 we describe how arbitrary

values of ρ can be supported. Note that the calls to FPre can be performed in parallel

and (as we show later) there is an efficient constant-round protocol for FPre; thus,

the protocol overall runs in constant rounds.

Although our protocol, as described, calls FPre in the function-dependent pre-

processing phase, it is easy to push this to the function-independent phase using
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standard techniques similar to those used with multiplication triples [69].

Protocol Π2pc

Inputs: In the function-dependent phase, the parties agree on a circuit for a function f : {0, 1}|I1| ×
{0, 1}|I2| → {0, 1}|O|.
In the online phase, PA holds x ∈ {0, 1}|I1| and PB holds y ∈ {0, 1}|I2|.
Function-independent preprocessing:

1. PA and PB send init to FPre, which sends ∆A to PA and ∆B to PB.

2. For each wire w ∈ I1 ∪ I2 ∪ W, parties PA and PB send random to FPre. In return, FPre sends
(rw,M[rw],K[sw]) to PA and (sw,M[sw],K[rw]) to PB. Define λw = sw ⊕ rw. PA also picks a uniform
κ-bit string Lw,0 and sets Lw,1 := Lw,0 ⊕∆A.

Function-dependent preprocessing:

3. For each gate G = (α, β, γ,⊕), PA computes (rγ ,M[rγ ],K[sγ ]) := (rα⊕rβ ,M[rα]⊕M[rβ ],K[sα]⊕K[sβ ]),
and sets Lγ,0 := Lα,0 ⊕ Lβ,0 and Lγ,1 := Lγ,0 ⊕ ∆A. Similarly, PB computes (sγ ,M[sγ ],K[rγ ]) :=
(sα ⊕ sβ ,M[rβ ]⊕M[rβ ],K[rα]⊕ K[rβ ]). Define λγ = λα ⊕ λβ .

4. For each gate G = (α, β, γ,∧):

(a) PA (resp., PB) sends (and, (rα,M[rα],K[sα]), (rβ ,M[rβ ],K[sβ ])) (resp., (and, (sα,M[sα],K[rα]), (sβ ,
M[sβ ], K[rβ ]))) to FPre. In return, FPre sends (rσ ,M[rσ ],K[sσ ]) to PA and (sσ ,M[sσ ],K[rσ ]) to PB,
where rσ ⊕ sσ = λα ∧ λβ .

(b) PA computes the following locally:

(rγ,0,M[rγ,0],K[sγ,0]) := (rσ ⊕ rγ , M[rσ ]⊕M[rγ ], K[sσ ]⊕ K[sγ ] )
(rγ,1,M[rγ,1],K[sγ,1]) := (rσ ⊕ rγ ⊕ rα, M[rσ ]⊕M[rγ ]⊕M[rα], K[sσ ]⊕ K[sγ ]⊕ K[sα] )
(rγ,2,M[rγ,2],K[sγ,2]) := (rσ ⊕ rγ ⊕ rβ , M[rσ ]⊕M[rγ ]⊕M[rβ ], K[sσ ]⊕ K[sγ ]⊕ K[sβ ] )
(rγ,3,M[rγ,3],K[sγ,3]) := (rσ ⊕ rγ ⊕ rα ⊕ rβ , M[rσ ]⊕M[rγ ]⊕M[rα]⊕M[rβ ], K[sγ,1]⊕ K[sβ ]⊕∆A )

(c) PB computes the following locally:

(sγ,0,M[sγ,0],K[rγ,0]) := (sσ ⊕ sγ , M[sσ ]⊕M[sγ ], K[rσ ]⊕ K[rγ ] )
(sγ,1,M[sγ,1],K[rγ,1]) := (sσ ⊕ sγ ⊕ sα, M[sσ ]⊕M[sγ ]⊕M[sα], K[rσ ]⊕ K[rγ ]⊕ K[rα] )
(sγ,2,M[sγ,2],K[rγ,2]) := (sσ ⊕ sγ ⊕ sβ , M[sσ ]⊕M[sγ ]⊕M[sβ ], K[rσ ]⊕ K[rγ ]⊕ K[rβ ] )
(sγ,3,M[sγ,3],K[rγ,3]) := (sγ,1 ⊕ sβ ⊕ 1, M[sσ ]⊕M[sγ ]⊕M[sα]⊕M[sβ ], K[rσ ]⊕ K[rγ ]⊕ K[rα]⊕ K[rβ ] )

(d) PA computes Lα,1 := Lα,0 ⊕∆A and Lβ,1 := Lβ,0 ⊕∆A, and then sends the following to PB:

Gγ,0 := H(Lα,0, Lβ,0, γ, 0)⊕ (rγ,0, M[rγ,0], Lγ,0 ⊕ K[sγ,0]⊕ rγ,0∆A)
Gγ,1 := H(Lα,0, Lβ,1, γ, 1)⊕ (rγ,1, M[rγ,1], Lγ,0 ⊕ K[sγ,1]⊕ rγ,1∆A)
Gγ,2 := H(Lα,1, Lβ,0, γ, 2)⊕ (rγ,2, M[rγ,2], Lγ,0 ⊕ K[sγ,2]⊕ rγ,2∆A)
Gγ,3 := H(Lα,1, Lβ,1, γ, 3)⊕ (rγ,3, M[rγ,3], Lγ,0 ⊕ K[sγ,3]⊕ rγ,3∆A)

Figure 3.1: Our protocol in the FPre-hybrid model. Here ρ = κ for clarity, but this

is not necessary (cf. Section 3.5).

3.2.1 Proof of Security

We prove security of our protocol in the FPre-hybrid model.

Theorem 3.2.1. If H is modeled as a random oracle, the protocol in Figure 3.2
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Protocol Π2pc

Online:

5. For each w ∈ I2, PA sends (rw,M[rw]) to PB, who checks that (rw,K[rw],M[rw]) is valid.
If so, PB computes λw := rw⊕ sw and sends yw⊕λw to PA. Finally, PA sends Lw,yw⊕λw
to PB.

6. For each w ∈ I1, PB sends (sw,M[sw]) to PA, who checks that (sw,K[sw],M[sw]) is
valid. PA computes λw := rw ⊕ sw and sends xw ⊕ λw and Lw,xw⊕λw to PB.

Circuit evaluation:

7. PB evaluates the circuit in topological order. For each gate G = (α, β, γ, T ), PB initially
holds (zα⊕λα, Lα,zα⊕λα) and (zβ⊕λβ , Lβ,zβ⊕λβ ), where zα, zβ are the underlying values
of the wires.

(a) If T = ⊕, PB computes zγ ⊕ λγ := (zα ⊕ λα) ⊕ (zβ ⊕ λβ) and Lγ,zγ⊕λγ :=
Lα,zα⊕λα ⊕ Lβ,zβ⊕λβ .

(b) If T = ∧, PB computes i := 2(zα⊕λα)+(zβ⊕λβ) followed by (rγ,i,M[rγ,i], Lγ,0⊕
K[sγ,i] ⊕ rγ,i∆A) := Gγ,i ⊕ H(Lα,zα⊕λα , Lβ,zβ⊕λβ , γ, i). Then PB checks that
(rγ,i,K[rγ,i],M[rγ,i]) is valid and, if so, computes zγ ⊕ λγ := (sγ,i ⊕ rγ,i) and
Lγ,zγ⊕λγ := (Lγ,0 ⊕ K[sγ,i]⊕ rγ,i∆A)⊕M[sγ,i].

Output determination:

8. For each w ∈ O, PA sends (rw,M[rw]) to PB, who checks that (rw,K[rw],M[rw]) is valid.
If so, PB outputs zw := (zw ⊕ λw)⊕ rw ⊕ sw.

Figure 3.2: Our protocol in the FPre-hybrid model. Here ρ = κ for clarity, but this

is not necessary (cf. Section 3.5).

securely computes f against malicious adversaries with statistical security 2−ρ in the

FPre-hybrid model.

Proof. We consider separately a malicious PA and PB.

Malicious PA. Let A be an adversary corrupting PA. We construct a simulator S

that runs A as a subroutine and plays the role of PA in the ideal world involving an

ideal functionality F evaluating f . S is defined as follows.

1–4 S, acting as an honest PB, interacts with A. The simulator also plays the role
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of FPre, recording all values received from and sent to A, as well as all values

that would have been sent to PB.

5 S interacts with A while acting as an honest PB using input y equal to the

0-string.

6 For each wire w ∈ I1, S receives x̂w and computes xw := x̂w ⊕ rw ⊕ sw, where

rw, sw are the values used by FPre in the previous steps. S sends x = {xw}w∈I1

to F .

7–8 S, acting as an honest PB, interacts with A. If PB would abort, S sends

abort to F ; otherwise, it sends continue to F . Finally, it outputs whatever A

outputs.

We show that the joint distribution of the outputs of A and the honest PB in the

real world is indistinguishable from the joint distribution of the outputs of S and

PB in the ideal world. We prove this by considering a sequence of experiments,

the first of which corresponds to the execution of our protocol and the last of which

corresponds to execution in the ideal world, and showing that successive experiments

are computationally indistinguishable.

Hybrid1. This is the hybrid-world protocol, where we imagine S playing the role

of an honest PB using PB’s actual input y, while also playing the role of FPre.

Hybrid2. Same as Hybrid1, except that in step 6, for each wire w ∈ I1 the

simulator S receives x̂w and computes xw := x̂w ⊕ rw ⊕ sw, where rw, sw are

the values used by FPre; it then sends x = {xw}w∈I1 to F . In steps 7–8, if an
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honest PB would abort, S sends abort to F ; otherwise, it sends continue to F

(and so PB outputs f(x, y)).

The distributions on the view of A in Hybrid1 and Hybrid2 are identical.

Lemma 3.2.1 shows that PB generates the same output in both experiments

except with probability at most 2−ρ.

Hybrid3. Same as Hybrid2, except that S sets y equal to the 0-string throughout

the protocol.

The distributions on the view of A in Hybrid3 and Hybrid2 are again iden-

tical (since the {sw}w∈I2 are uniform). Moreover, if S does not abort (when

running the protocol as PB), the distribution on the output of PB is the same

in Hybrid3 and Hybrid2. So it only remains to show that PB aborts with

the same probability in both experiments.

The only place where PB’s abort can depend on y is in steps 7(b) and 8.

However, these aborts depend on which row of a garbled gate is selected to

decrypt. This selection, in turn, depends on λα ⊕ zα and λβ ⊕ zβ, which are

uniformly distributed in both experiments.

Note that Hybrid3 corresponds to the ideal-world execution described earlier. This

completes the proof for a malicious PA.

Malicious PB. Let A be an adversary corrupting PB. We construct a simulator S

that runs A as a subroutine and plays the role of PB in the ideal world involving an

ideal functionality F evaluating f . S is defined as follows.
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1–4 S, acting as an honest PA, interacts with A and also plays the role of FPre.

5 For each wire w ∈ I2, S receives ŷw and computes yw := ŷw ⊕ rw ⊕ sw, where

rw, sw are the values used by FPre in the previous steps. S sends y = {yw}w∈I2

to F , which responds with z = f(x, y).

6–7 S interacts with A while acting as an honest PA using input x equal to the

0-string.

8 For each w ∈ O, if z′w = zw, then S sends (rw,M[rw]); otherwise, S sends

(rw,M[rw] ⊕ ∆B), where ∆B is the value used by FPre in the previous steps.

Finally, S outputs whatever A outputs.

We now show that the distribution on the view of A in the real world is indistin-

guishable from the distribution on the view of A in the ideal world. (Note PA has

no output.)

Hybrid1. This is the hybrid-world protocol, where we imagine S playing the role

of an honest PA using PA’s actual input x, while also playing the role of FPre.

Hybrid2. Same as Hybrid1, except that in step 5, S receives ŷw and computes

yw := ŷw⊕rw⊕sw, where rw, sw are the values used by FPre. Then S performs

the same computation that PB would in step 7, to obtain a value ẑw for each

w ∈ O. Finally, for each w ∈ O, S computes r′w := ẑw ⊕ sw ⊕ zw and sends

(r′w,K[r′w]⊕ r′w∆B) to A, where K[r′w],∆B are the values used by FPre.

Noting that ẑw = zw ⊕ λw, we see that the distributions on the view of A in

Hybrid2 and Hybrid1 are identical.
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Hybrid3. Same as Hybrid2, except that in step 6, S uses x equal to the 0-string.

It follows from the security of garbling with H modeled as a random ora-

cle that the distributions on the views of A in Hybrid2 and Hybrid1 are

computationally indistinguishable.

Note that Hybrid3 is identical to the ideal-world execution.

Lemma 3.2.1. Let PB have input y. Consider an A corrupting PA and let xw :=

x̂w⊕sw⊕rw, where x̂w is the value A sends to PB in step 6 and sw, rw are the values

used by FPre. Except with probability at most 2−ρ, either PB aborts or PB outputs

z∗ = f(x, y).

Proof. For a wire w, let ẑw be the masked value computed by PB on that wire during

the protocol, and let z∗w be the value on that wire when f(x, y) is computed with

x defined as in the lemma. For w ∈ I1 ∪ I2 ∪ W , define λw = rw ⊕ sw, where

rw, sw are the values used by FPre; for each XOR gate (α, β, γ,⊕), inductively define

λw = λα ⊕ λβ.

We prove by induction that, except with probability at most 2−ρ, if PB does

not abort then z∗w = ẑw ⊕ λw for all w.

Base step: It is obvious that z∗w = ẑw ⊕ λw for all w ∈ I1 ∪ I2, unless A is able to

forge an IT-MAC.

Induction step: Consider a gate (α, β, γ, T ), where the stated invariant holds for

wires α, β. We show that z∗γ = ẑγ ⊕ λw.

• T = ⊕: Here we have ẑγ = ẑα ⊕ ẑβ and z∗γ = z∗α ⊕ z∗β. Since λγ = λα ⊕ λβ, the

invariant trivially holds for γ.
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Functionality Fabit

Honest case:

1. Upon receiving init from both parties the first time, choose uniform ∆A,∆B ∈ {0, 1}ρ
and send ∆A to PA and ∆B to PB.

2. Upon receiving (random,A) from both parties, choose uniform x ∈ {0, 1} and
M[x],K[x] ∈ {0, 1}ρ with M[x] = K[x] ⊕ x∆B . Then send (x,M[x]) to PA and K[x]
to PB.

3. Upon receiving (random,B) from both parties, generate an authenticated bit for PB in
a manner symmetric to the above.

Corrupted parties: A corrupted party gets to specify the randomness used on its behalf by
the functionality.

Figure 3.3: The authenticated-bit functionality.

• T = ∧: Here z∗γ = z∗α ∧ z∗β. Assuming PB does not abort, the only way PB can

compute ẑγ 6= z∗γ ⊕ λγ is if A forges an IT-MAC.

In particular, except with probability at most 2−ρ, we have ẑw = z∗w ⊕ λw for all

w ∈ O. It follows that if PB does not abort, it outputs z∗ unless A forges an

IT-MAC.

3.3 Efficiently Realizing FPre

Here we show how to realize FPre efficiently using an optimized version of the TinyOT

protocol.

Our protocol relies on a stateful ideal functionality Fabit (cf. Figure 3.3) for

generating authenticated bits using uniform values of ∆A,∆B ∈ {0, 1}κ that are

preserved across executions [45, 37]. Technically, the functionality also allows the

adversary to make “global-key queries” that correspond to a guess about the honest
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party’s value of ∆. Both these features are preserved in all our ideal functionalities

(including FPre), but we suppress explicit mention of them in our descriptions. (Note

that the global-key queries have little effect on security, since the probability that

the attacker can correctly guess the honest party’s value of ∆ using polynomially

many queries is negligible. One can also verify that they can be easily incorporated

into our security proofs.)

Recall that FPre can be used to generate authenticated values [x1]A, [y1]A, [z1]A,

[x2]B, [y2]B, and [z2]B such that z1 ⊕ z2 = (x1 ⊕ x2) ∧ (y1 ⊕ y2); we refer to these

collectively as an AND triple. In the original TinyOT protocol, the four terms that

result from expanding (x1⊕x2)∧(y1⊕y2) for an AND triple (namely, x1y1, x1y2, x2y1,

and x2y2) are computed individually and then combined. In our new approach, we

instead compute AND triples directly.

At a high level, we use three steps to compute an AND triple.

1. The parties jointly compute [x1]A, [y1]A, [z1]A, [x2]B, [y2]B, [z2]B, such that if

both parties are honest, these are a correct AND triple. If a party cheats, that

party can modify z2 but cannot learn the other party’s bits.

2. The parties perform a checking protocol that ensures the correctness of every

AND triple, while letting the malicious party guess the value of x1 (resp.,

x2). Each such guess is correct with probability 1/2, but an incorrect guess is

detected and will cause the other party to abort.

As a consequence, we can argue that (conditioned on no abort) the malicious

party obtains information on at most ρ AND triples except with probability
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at most 2−ρ.

3. So far we have described a way for the parties to generate many “leaky” AND

triples such that the attacker may have disallowed information on at most ρ

of them. We then show how to distill these into a smaller number of “private”

AND triples, about which the attacker is guaranteed to have no disallowed

information.

Overall, when using bucket size B (see Section 3.3.2) our new TinyOT protocol

requires only (5κ + 3ρ)B bits of communication per AND triple, while the original

TinyOT protocol requires (14κ+ 8ρ)B bits of communication even taking optimiza-

tions into account. For κ = 128 and ρ = 40, this is an improvement of 2.78×.

3.3.1 Half-Authenticated AND Triples

We first show a protocol that realizes a functionality in which only the x’s in an

AND triple are authenticated. This will serve as a building block in the following

sections. This functionality, called FHaAND, is described in Figure 3.4. It outputs

authenticated bits [x1]A and [x2]B to the two parties. It also takes y1 from PA and y2

from PB, and outputs shares of x1y2 ⊕ x2y1. (Note that the parties can then locally

compute x1y1 and x2y2, respectively, and thus generate shares of (x1⊕x2)∧(y1⊕y2).)

In Figure 3.5 we show a protocol that realizes FHaAND in the Fabit-hybrid model.

Lemma 3.3.1. If H is modeled as a random oracle, the protocol in Figure 3.5

securely implements FHaAND in the Fabit-hybrid model.

Proof. We first show correctness. Note that s2 = s1 ⊕ x2y1, so s1 ⊕ s2 = x2y1.
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Similarly, t1⊕ t2 = x1y2. Thus, v1 and v2 are shares of x1y2⊕x2y1. Moreover, when

both parties are honest v1 and v2 are individually uniform.

We next prove security. We consider the case of a malicious PA; the case of a

malicious PB is symmetric (and is, in fact, easier since PB sends (H0, H1) before PA).

The simulator S works as follows:

1. S plays the role of Fabit, and stores all shares of [x1]A and [x2]B, as well as

global keys ∆A, ∆B.

2. S chooses uniform H0, H1 and sends them to A. Let t′1 := Hx1 ⊕H(M[x1]).

3. S receives (H ′0, H
′
1) from A, and computes s′0 := H ′0 ⊕ H(K[x2]), s′1 := H ′1 ⊕

H(K[x2] ⊕ ∆A), and y1 := s′0 ⊕ s′1. It sets v1 := s′0 ⊕ t′1, and sends y1, v1 to

FHaAND on behalf of PA. It then outputs whatever A does.

It is not hard to see that, if H is modeled as a random oracle, the distribution

on the view of A in the ideal-world execution described above is computationally

indistinguishable from the view of A in the real-world execution of the protocol.

Let x2, y2 denote the authenticated bit PB received and PB’s input, respectively. In

a real-world execution of the protocol with transcript (H0, H1, H
′
0, H

′
1), the value

output by PB would be

s2 ⊕ t1 = s′x2
⊕ (t′1 ⊕ x1y2)

= (1⊕ x2)s′0 ⊕ x2s
′
1 ⊕ t′1 ⊕ x1y2

= s′0 ⊕ x2(s′0 ⊕ s′1)⊕ t′1 ⊕ x1y2,
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Functionality FHaAND

Honest case:

1. Generate uniform [x1]A and [x2]B and send the respective shares to the two parties.

2. Upon receiving y1 from PA and y2 from PB, choose uniform v1 and send v1 to PA and
v2 := v1 ⊕ (x1y2 ⊕ x2y1) to PB.

Corrupted parties: A corrupted party gets to specify the randomness used on its behalf by
the functionality.

Figure 3.4: Functionality FHaAND for computing a half-authenticated AND triple.

Protocol ΠHaAND

PA and PB have input y1 and y2, respectively.

Protocol:

1. PA and PB call Fabit to obtain [x1]A and [x2]B, i.e., PA receives (x1,M[x1],K[x2]) and
PB receives (x2,M[x2],K[x1]).

2. PB chooses uniform t1 ∈ {0, 1} and computes H0 := H(K[x1]) ⊕ t1, H1 := H(K[x1] ⊕
∆B)⊕ t1 ⊕ y2. PB sends (H0, H1) to PA, who computes t2 := Hx1 ⊕H(M[x1]).

3. PA chooses uniform s1 ∈ {0, 1} and then computes H ′0 := H(K[x2]) ⊕ s1, H ′1 :=
H(K[x2]⊕∆A)⊕s1⊕y1. PA sends (H ′0, H

′
1) to PB, who computes s2 := H ′x2

⊕H(M[x2]).

4. PA outputs v1 := s1 ⊕ t2, and PB outputs v2 := s2 ⊕ t1.

Figure 3.5: Protocol ΠHaAND realizing FHaAND.

which matches the value

v1 ⊕ (x1y2 ⊕ x2y1) = (s′0 ⊕ t′1)⊕ x1y2 ⊕ x2(s′0 ⊕ s′1)

that PB outputs in the ideal-world execution.
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Functionality FLaAND

Honest case:

1. Generate uniform [x1]A, [y1]A, [z1]A, [x2]B, [y2]B, [z2]B such that z1 ⊕ z2 = (x1 ⊕ x2) ∧
(y1 ⊕ y2), and send the respective shares to the two parties.

2. PA can choose to send a bit b. If b = x2, the functionality sends correct to PA. If b 6= x2,
the functionality sends fail to both parties and abort.

Corrupted parties: A corrupted party gets to specify the randomness used on its behalf by
the functionality.

Figure 3.6: Functionality FLaAND for computing a leaky AND triple.

3.3.2 Leaky AND Triples

The leaky-AND functionality FLaAND is described in Figure 3.6. This functionality

generates authenticated values [x1]A, [y1]A, [z1]A, [x2]B, [y2]B, and [z2]B such that

z1 ⊕ z2 = (x1 ⊕ x2) ∧ (y1 ⊕ y2), but allows a malicious PA (resp., PB) to guess x2

(resp., x1). This guess is correct with probability 1/2, but an incorrect guess is

revealed to the other party (who can then abort).

To realize this functionality, we begin by having the parties generate authenti-

cated bits [y1]A, [z1]A, [y2]B, and then use FHaAND to generate [x1]A, [x2]B and shares

of x1y2⊕ x2y1. The parties can then locally compute shares of (x1⊕ x2)∧ (y1⊕ y2).

Note that PA (resp., PB) can easily misbehave by, for example, sending an incorrect

value of y1 (resp., y2) to FHaAND. We address this in the next step. Looking ahead,

however, we note that the way we address this issue introduces a selective-failure

attack that can leak information to the attacker: if the attacker flips a y-value but

the checking step described next does not abort, then it must be the case that
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Protocol ΠLaAND

Protocol:

1. PA and PB obtain random authenticated bits [y1]A, [z1]A, [y2]B, [r]B. PA and PB also calls
FHaAND, receiving [x1]A and [x2]B.

2. PA picks a random bit v1 and sends (y1, v1) to FHaAND; PB sends y2 to FHaAND, which
sends v2 to PB.

3. PA computes u = v1⊕x1y1⊕ z1 and sends to PB. PB computes z2 := u⊕x2y2⊕ v2 and
sends d := r ⊕ z2 to PA. Two parties compute [z2]B = [r]B ⊕ d.

4. PB checks correctness as follows:

(a) PB computes:

T0 := H(K[x1],K[z1]⊕ z2∆B)
U0 := T0 ⊕H(K[x1]⊕∆B,K[y1]⊕ K[z1]⊕ (y2 ⊕ z2)∆B)
T1 := H(K[x1],K[y1]⊕ K[z1]⊕ (y2 ⊕ z2)∆B)
U1 := T1 ⊕H(K[x1]⊕∆B,K[z1]⊕ z2∆B)

(b) PB sends Ux2
to PA.

(c) PA chooses a uniform κ-bit string R and computes:

V0 := H(M[x1],M[z1]) V1 := H(M[x1],M[z1]⊕M[y1])
W0,0 := H(K[x2])⊕ V0 ⊕R W0,1 := H(K[x2]⊕∆A)⊕ V1 ⊕R
W1,0 := H(K[x2])⊕ V1 ⊕ U0 ⊕R W1,1 := H(K[x2]⊕∆A)⊕ V0 ⊕ U1 ⊕R

(d) PA sends Wx1,0,Wx1,1 to PB and sends R to FEQ.

(e) PB computes R′ := Wx1,x2
⊕H(M[x2])⊕ Tx2

and sends R′ to FEQ.

5. PA checks correctness as follows:

(a) PA computes:

T0 := H(K[x2],K[z2]⊕ z1∆A)
U0 := T0 ⊕H(K[x2]⊕∆A,K[y2]⊕ K[z2]⊕ (y1 ⊕ z1)∆A)
T1 := H(K[x2],K[y2]⊕ K[z2]⊕ (y1 ⊕ z1)∆A)
U1 := T1 ⊕H(K[x2]⊕∆A,K[z2]⊕ z1∆A)

(b) PA sends Ux1 to PB.

(c) PB chooses a uniform κ-bit string R and computes:

V0 := H(M[x2],M[z2]) V1 := H(M[x2],M[z2]⊕M[y2])
W0,0 := H(K[x1])⊕ V0 ⊕R W0,1 := H(K[x1]⊕∆B)⊕ V1 ⊕R
W1,0 := H(K[x1])⊕ V1 ⊕ U0 ⊕R W1,1 := H(K[x1]⊕∆B)⊕ V0 ⊕ U1 ⊕R

(d) PB sends Wx2,0,Wx2,1 to PA and sends R to FEQ,

(e) PA computes R′ := Wx2,x1
⊕H(M[x1])⊕ Tx1

and sends R′ to FEQ.

Figure 3.7: Protocol ΠLaAND realizing FLaAND.

x1 ⊕ x2 = 0.

Checking correctness. Now both parties check correctness of the AND triples
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Functionality FaAND

Honest case: Generate uniform [x1]A, [y1]A, [z1]A, and [x2]B, [y2]B, [z2]B, such that (x1⊕x2)∧
(y1 ⊕ y2) = z1 ⊕ z2.

Corrupted parties: A corrupted party gets to specify the randomness used on its behalf by
the functionality.

Figure 3.8: Functionality FaAND for generating AND triples

Protocol ΠaAND

Protocol:

1. PA and PB call FLaAND a total of `′ = `B times to obtain
{[xi1]A, [y

i
1]A, [z

i
1]A, [x

i
2]B, [y

i
2]B, [z

i
2]B}`

′

i=1.

2. PA and PB use coin tossing to randomly partition the results into ` buckets, each
containing B AND triples.

3. For each bucket, the parties combine B leaky ANDs into one non-leaky
AND. To combine two leaky ANDs ([x′1]A, [y

′
1]A, [z

′
1]A, [x

′
2]B, [y

′
2]B, [z

′
2]B) and

([x′′1 ]A, [y
′′
1 ]A, [z

′′
1 ]A, [x

′′
2 ]B, [y

′′
2 ]B, [z

′′
2 ]B) do:

(a) The parties reveal d′ := y′1⊕y′′1 , d′′ = y′2⊕y′′2 along with their MACs, and compute
d := d′ ⊕ d′′ if the MACs verify.

(b) Set [x1]A := [x′1]A ⊕ [x′′1 ]A, [x2]B := [x′2]B ⊕ [x′′2 ]B, [y1]A := [y′1]A, [y2]B := [y′2]B,
[z1]A := [z′1]A ⊕ [z′′1 ]A ⊕ d[x′′1 ]A, [z2]B := [z′2]B ⊕ [z′′2 ]B ⊕ d[x′′2 ]B.

The parties iterate over all B leaky AND triples one-by-one, taking the resulting triple
and combining it with the next one.

Figure 3.9: Protocol ΠaAND realizing FaAND.

generated in the previous step. If x2 ⊕ x1 = 0, then we want to check that z2 = z1;

if x2⊕x1 = 1, then we want to to check that y1⊕ z1 = y2⊕ z2. However, an obvious

problem is that neither party knows the value of x1⊕x2; therefore there is no way to

know which relationship should be checked. We thus need to construct a checking

procedure such that the computation of PA is oblivious to x2, while the computation

of PB is oblivious to x1.
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We describe the intuition from the point of view of an honest PB holding

x2 = 0. Abstractly, the first step is for PB to compute values T0 and U0 and to

send U0 to PA; PA will then compute V0 such that if x1 = 0 then V0 = T0, but if

x1 = 1 then V0⊕U0 = T0. We set things up such that if the AND triple is incorrect,

then PA cannot compute V0 correctly. Similar constructs (namely V1, U1, and T1)

are computed if x2 = 1. Now, depending on the value of x1 and x2, parties need to

perform an equality comparison between different values, as summarized below.

x1 = 0 x1 = 1
x2 = 0 V0 = T0 V0 ⊕ U0 = T0

x2 = 1 V1 = T1 V1 ⊕ U1 = T1

Unfortunately, a direct comparison is not possible since PA does not know the value

of x2 and therefore does not know which comparison to perform. Our idea is to

transform PA’s computation such that it is oblivious to x2. In detail: if x1 = 0, then

PA computes V0 as if x2 = 0 and computes V1 as if x2 = 1. Then PA “encrypts”

V0 and V1 such that PB can only decrypt Vx2 . PB can then locally check whether

Vx2 = Tx2 . In the case when x1 = 1, PA computes and encrypts V0⊕U0 and V1⊕U1

in a similar manner.

A problem is that although a malicious PA cannot cheat, a malicious PB will

not be caught on an incorrect AND triple because PB compares the results locally

and PA does not learn the result of the comparison! To solve this, we let PA instead

send the encrypted values V0 ⊕ R and V1 ⊕ R, for a uniform R, such that PB can

obtain Vx2 ⊕ R, and learn R from it. Now PA and PB can check the equality on R

using the FEQ functionality that allows both parties get the outcome. (If a party

aborts, that is also detected as cheating.) Finally, the same check is performed in
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the opposite direction to convince both parties of the correctness of the triples.

A complete description of the protocol is shown in Figure 3.7.

3.3.3 Proof for the Leaky-AND protocol

In the following, we will discuss at a high-level how the proof works for the new

TinyOT protocol. We will focus on the security of the ΠLaAND protocol, since the

security of the ΠaAND protocol is fairly straightforward given the proof in the original

paper [45].

Correctness

We want to show that if both parties follow the protocol then in step 4.e Wx1,x2 ⊕

M[x2]⊕Tx2 = R. The checks in step 5 are symmetric to those in step 4. We proceed

on a case-by-case basis.

Case 1: x1 = 0, x2 = 0.

Here we have M[x1] = K[x1] and M[x2] = K[x2]. Since x1 ⊕ x2 = 0, we know that

z1 = z2, which further implies that

M[z1] = K[z1]⊕ z1∆B = K[z1]⊕ z2∆B
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. The desired equation thus holds because:

Wx1,x2 ⊕H(M[x2])⊕ Tx2

= H(K[x2])⊕ V0 ⊕R⊕H(M[x2])⊕H(K[x1],K[z1]⊕ z2∆B)

= V0 ⊕ T0 ⊕R

= H(M[x1],M[z1])⊕H(K[x1],K[z1]⊕ z2∆B)⊕R

= R.

Case 2: x1 = 0, x2 = 1.

Similar to the previous case, we know that M[x1] = K[x1] and that M[x2] = K[x2]⊕

∆B. Then x1 ⊕ x2 = 1 implies

M[z1]⊕M[y1]

= K[y1]⊕ K[z1]⊕ (y1 ⊕ z1)∆B

= K[y1]⊕ K[z1]⊕ (y2 ⊕ z2)∆B.

The desired equation thus holds because:

Wx1,x2 ⊕H(M[x2])⊕ Tx2

= Wx1,x2 ⊕H(M[x2])⊕ T1

= H(K[x2]⊕∆A)⊕ V1 ⊕R⊕H(M[x2])⊕ T1

= V1 ⊕ T1 ⊕R

= H(M[x1],M[z1]⊕M[y1])

⊕H(K[x1],K[z1]⊕ z2∆B ⊕ K[y1]⊕ y2∆B)⊕R

= R.

Case 3: x1 = 1, x2 = 0.
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Similar to the previous cases, we know that M[x1] = K[x1]⊕∆B, M[x2] = K[x2], and

M[z1]⊕M[y1] = K[y1]⊕ K[z1]⊕ (y2 ⊕ z2)∆B. Therefore:

Wx1,x2 ⊕H(M[x2])⊕ Tx2

= Wx1,x2 ⊕H(M[x2])⊕ T0

= H(K[x2])⊕ V1 ⊕ U0 ⊕R⊕H(M[x2])⊕ T0

= V1 ⊕ U0 ⊕R⊕ T0

= H(M[x1],M[z1]⊕M[y1])⊕R⊕ T0

⊕ T0 ⊕H(K[x1]⊕∆B,K[y1]⊕ K[z1]⊕ (y2 ⊕ z2)∆B)

= R.

Case 4: x1 = 1, x2 = 1.

Similar to the previous cases, we know that M[x1] = K[x1]⊕∆B, M[x2] = K[x2]⊕∆B,

and M[z1] = K[z1]⊕ z2∆B. Therefore:

Wx1,x2 ⊕H(M[x2])⊕ Tx2

= Wx1,x2 ⊕H(M[x2])⊕ T1

= H(K[x2]⊕∆A)⊕ V0 ⊕ U1 ⊕R⊕H(M[x2])⊕ T1

= V0 ⊕ U1 ⊕R⊕ T1

= H(M[x1],M[z1])⊕R⊕ T1

⊕ T1 ⊕H(K[x1]⊕∆B,K[z1]⊕ z2∆B)

= R.

We next prove security.

Lemma 3.3.2. If (x1 ⊕ x2) ∧ (y1 ⊕ y2) 6= (z1 ⊕ z2) then the protocol will result in
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an abort except with negligible probability.

We will proceed on a case-by-case basis. Without loss of generality, we assume

PB is honest and PA is corrupted.

Case 1: x1 = 0, x2 = 0.

To pass the test, the adversary would have to produce a pair R and W0,0 such

that:

W0,0 = H(M[x2])⊕ Tx2 ⊕R

W0,0 = H(M[x2])⊕R

⊕H(K[x1],K[z1]⊕ z2∆B).

Since z1⊕z2 = 1, this means the adversary must compute K[z1]⊕z2∆B = M[z1]⊕∆B.

This requires guessing a κ-bit MAC and is thus computationally infeasible. Alterna-

tively, the adversary could try to compute T0 from U0 = T0⊕H(K[x1]⊕∆B,K[y1]⊕

K[z1]⊕(y2⊕z2)∆B). Fortunately, since K[x1]⊕∆B = M[x1]⊕∆B, this is also infeasible.

Case 2: x1 = 0, x2 = 1.

To pass the test, the adversary would have to produce a pair R and W0,1 such

that:

W0,1 = H(M[x2])⊕ Tx2 ⊕R

W0,1 = H(M[x2])⊕R

⊕H(K[x1],K[z1]⊕ z2∆B ⊕ K[y1]⊕ y2∆B).

However, since z1⊕ z2⊕ y1⊕ y2 = 1, the last line requires the adversary to compute

K[y1] ⊕ K[z1] ⊕ (z2 ⊕ y2)∆B = M[y1] ⊕ M[z1] ⊕ ∆B. This requires guessing a κ-bit

MAC and is thus computationally infeasible. Alternatively, the adversary could try
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to compute T1 from U1 = T1 ⊕ H(K[x1] ⊕ ∆B,K[z1] ⊕ z2∆B). Fortunately, since

K[x1]⊕∆B = M[x1]⊕∆B, this is also infeasible.

Case 3: x1 = 1, x2 = 0.

To pass the test, the adversary would have to produce R, W1,0 such that:

W1,0 = H(M[x2])⊕ Tx2 ⊕R

W1,0 = H(M[x2])⊕R

⊕H(K[x1],K[z1]⊕ z2∆B).

Since x1 = 1, the last line requires the adversary to compute K[x1] = M[x1] ⊕∆B.

This requires guessing a κ-bit MAC and is thus computationally infeasible. Al-

ternatively, the adversary could try to compute T0 from U0 = T0 ⊕ H(K[x1] ⊕

∆B,K[y1] ⊕ K[z1] ⊕ (y2 ⊕ z2)∆B). Fortunately, since y1 ⊕ y2 ⊕ z1 ⊕ z2 = 1 we have

K[y1]⊕ K[z1]⊕ (y2 ⊕ z2)∆B = M[y1]⊕M[z1]⊕∆B, and so this is also infeasible.

Case 4: x1 = 1, x2 = 1.

To pass the test, the adversary would have to produce R and W1,1 such that:

W1,1 = H(M[x2])⊕ Tx2 ⊕R

W1,1 = H(M[x2])⊕R

⊕H(K[x1],K[z1]⊕ z2∆B ⊕ K[y1]⊕ y2∆B).

Since x1 = 1, the last line requires the adversary to compute K[x1] = M[x1]⊕

∆B. This requires guessing a κ-bit MAC and is thus computationally infeasible.

Alternatively, the adversary could try to compute T1 from U1 = T1 ⊕ H(K[x1] ⊕

∆B,K[z1]⊕z2∆B). Fortunately, since z1⊕z2 = 1 we have K[z1]⊕z2∆B = M[z1]⊕∆B,
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and so this is also infeasible.

Lemma 3.3.3. The protocol in Figure 3.7 securely realizes FLaAND in the (Fabit,FHaAND,FEQ)-

hybrid model.

Proof. We consider separately the case of a malicious PA and a malicious PB.

Malicious PA. We construct a simulator S as follows:

1 S receives (x1,M[x1]), (y1,M[y1]), (z1,M[z1]), K[x2], K[y2], K[r], and ∆A that A

sends to Fabit. Then S picks a uniform bit s, sets K[z2] := K[r]⊕s∆A, and sends

(x1,M[x1]), (y1,M[y1]), (z1,M[z1]), K[x2], K[y2], K[z2], and ∆A to FLaAND. Func-

tionality FLaAND then sends (x2,M[x2]), (y2,M[y2]), (z2,M[z2]), K[x1], K[y1],

K[z1], and ∆B to PB.

2–3 S plays the role of FHaAND obtaining the inputs from A, namely y′1 and the

value A sent, namely u′. S uses y1 and u to denote the value that an honest

PB would use. If y′1 6= y1, u
′ 6= u, S sets g0 = 1⊕ x1, if y′1 6= y1, u

′ = u, S sets

g0 = x1.

4 S sends a random U∗ to A, and receives some W0,W1 and computes some

R0, R1, such that, if x1 = 0, W0 := H(K[x2])⊕V0⊕R0,W1 := H(K[x2]⊕∆A)⊕

V1 ⊕ R1; otherwise, W0 := H(K[x2]) ⊕ V1 ⊕ U∗ ⊕ R0 and W1 := H(K[x2] ⊕

∆A)⊕ V0 ⊕ U∗ ⊕R1.

S also obtains R that A sent to FEQ. If R does not equal to either R0 or R1,

S aborts; otherwise S computes g1 such that R 6= Rg1 for some g1 ∈ {0, 1}.
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5 S receives U , picks random W ∗
0 ,W

∗
1 and sends them to A. S obtains R′ that

A sent to FEQ.

• If both U,R′ are honestly computed, S proceeds as normal.

• If U is not honestly computed and that R′ = W ∗
x1
⊕ H(M[x1]) ⊕ Tx1 is

honestly computed, S set g2 = 0

• If either of the following is true: 1) x1 = 0 and R′ = W ∗
x1
⊕H(M[x1]) ⊕

U ⊕ H(K[x1] ⊕ ∆B,K[y1] ⊕ (y2 ⊕ z2)∆B); 2) x1 = 1 and R′ = W ∗
x1
⊕

H(M[x1])⊕ U ⊕H(K[x1]⊕∆B,K[z1]⊕ z2∆B), S sets g2 = 1.

• Otherwise S aborts.

6 For each value g ∈ {g0, g1, g2}, if g 6= ⊥, S sends g to FLaAND. If FLaAND abort

after any guess, S aborts.

Note that the first 3 steps are perfect simulations. However, a malicious PA can flip

the value of y1 and/or u used. According to the unforgeability proof, the protocol

will abort if the relationship (x1 ⊕ x2) ∧ (y1 ⊕ y2) ⊕ (z1 ⊕ z2) = 0 does not hold.

Therefore, if A flip y1, it is essentially guessing that x1 ⊕ x2 = 0; if A flip both y1

and u, it is guessing that x1 ⊕ x2 = 1. Such selective failure attack is extracted by

S and answered accordingly.

In step 4, U∗ is sent in the simulation, while Ux2 is sent. This is a perfect

simulation unless both of the input to random oracle in Ux2 get queried. This does

not happen during the protocol, since ∆B in not known to A. In step 5, W ∗
0 ,W

∗
1

are sent in the simulation, while Wx2,0,Wx2,0 are sent in the real protocol. This
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is also a perfect simulation unless PA gets ∆B: both R and one of H(K[x1]) and

H(K[x1]⊕∆B) are random.

Another difference is that PB always aborts in the simulation if Gx2,y2 is not

honestly computed. This is also the case in the real protocol unless A learns ∆B.

Malicious PB. We construct a simulator S as follows:

1. S receives (x2,M[x2]), (y2,M[y2]), (r,M[r]), K[x1], K[y1], K[z1], ∆B that A

sends to Fabit. Then S picks a random bit s, sets

(z2,M[z2]) := (r ⊕ s,M[z2]⊕ s∆B),

and sends (x2,M[x2]), (y2,M[y2]), (z2,M[z2]), K[x1], K[y1], K[z1]) to FLaAND.

Functionality FLaAND then sends (x1,M[x1]), (y1,M[y1]), (z1,M[z1]),K[x2], K[y2],K[z2])

to PB.

2-3 S plays the role of FHaAND and obtains y′2 A sent. S also obtains d′ sent by

PB. Denoting y′2, d as values an honest PB would use, if y′2 6= y2, d
′ 6= d, S sets

g0 = 1⊕ x2, if y′2 6= y2, d
′ = d, S sets g0 = x2.

4-6 Note that step 4 and step 5 of the protocol are the same with the exception

that the roles of PA and PB are switched. We denote S ′ the simulator that was

defined for the case where PA is corrupted. S will employ in step 4 the same

strategy that was employed by S ′ in step 5. S will employ in step 5, the same

strategy that was employed by S ′ in step 4.

The first three steps are perfect simulation, with a malicious PB having a chance to

perform a selective failure attack similar to when PA is malicious. If PB flip y2, it
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is guessing that x1 ⊕ x2 = 0; if PB flip y2 and d, PB is guessing x1 ⊕ x2 = 1. The

proof for step 4 and 5 are the same as the proof for malicious PA (with order of steps

switched).

3.3.4 Combining Leaky AND Triples

The above check is vulnerable to a selective-failure attack, from which a malicious

party can learn the value of x1 or x2 with one-half probability of not being caught. In

order to get rid of the leakage, bucketing is performed analogously to (but different

from) what is done by Nielsen et al. [45]. Given two potentially leaky AND triples

([x′1]A, [y
′
1]A, [z

′
1]A, [x

′
2]B, [y

′
2]B, [z

′
2]B)

and

([x′′1]A, [y
′′
1 ]A, [z

′′
1 ]A, [x

′′
2]B, [y

′′
2 ]B, [z

′′
2 ]B) ,

we set [x1]A := [x′1]A ⊕ [x′′1]A, [x2]B := [x′2]B ⊕ [x′′2]B. Note that the result is non-

leaky as long as one of the original triples is non-leaky. We can also set [y1]A :=

[y′1]A, [y2]B := [y′2]B and reveal the bit d := y′1 ⊕ y′2 ⊕ y′′1 ⊕ y′′2 , since y’s bits are all

private. Observe that

(x1 ⊕ x2)(y1 ⊕ y2) = (x′1 ⊕ x′2 ⊕ x′′1 ⊕ x′′2)(y′1 ⊕ y′2)

= (x′1 ⊕ x′2)(y′1 ⊕ y′2)⊕ (x′′1 ⊕ x′′2)(y′1 ⊕ y′2)

= (x′1 ⊕ x′2)(y′1 ⊕ y′2)⊕ (x′′1 ⊕ x′′2)(y′′1 ⊕ y′′2)

⊕ (x′′1 ⊕ x′′2)(y′1 ⊕ y′2 ⊕ y′′1 ⊕ y′′2)

= (z′1 ⊕ z′2)⊕ (z′′1 ⊕ z′′2 )⊕ d(x′′1 ⊕ x′′2)
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= (z′1 ⊕ z′′1 ⊕ dx′′1)⊕ (z′2 ⊕ z′′2 ⊕ dx′′2).

Therefore, we can just set [z1]A := [z′1]A ⊕ [z′′1 ]A ⊕ d[x′′1]A and [z2]B := [z′2]B ⊕ [z′′2 ]B ⊕

d[x′′2]B. (This corresponds to the protocol in Figure 3.9.)

3.4 Other Ways to Instantiate FPre

We briefly note other ways FPre can be instantiated.

IPS-based instantiation. We can obtain better asymptotic performance by in-

stantiating FPre using the protocol of Ishai, Prabhakaran, and Sahai [47]. In the

function-dependent preprocessing phase, we need to generate an authenticated shar-

ing of λw for each wire w, and an authenticated sharing of λσ = (λα ∧ λβ)⊕ λγ for

each AND gate (α, β, γ,∧). These can be computed by a constant-depth circuit of

size O(|C|κ). For evaluating a circuit of depth d and size `, the IPS protocol uses

O(d) rounds and a communication complexity of O(`) + poly(κ, d, log `) bits. In our

setting, this translates to a communication complexity of O(|C|κ) + poly(κ, log |C|)

bits or, for sufficiently large circuits, O(|C|κ) bits.

Using a (semi-)trusted server. It is straightforward to instantiate FPre using a

(semi-)trusted server. By applying the techniques of Mohassel et al. [68], the offline

phase can also be done without having to know the identity of the party with whom

the online phase will be executed; we refer to their paper for further details.
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3.5 Extensions and Optimizations

Handling κ 6= ρ. In Figure 3.2 step 4d, all MACs that PA sends are κ bits long.

For ρ-bit statistical security, the value M[r00] used in step 4(d) only needs to have

length ρ. Similarly, the MACs in step 5, step 6 and step 8 can be shortened to ρ

bits.

Reducing the size of the garbled tables. Observe that the bits rγ,i need not

be included in the garbled table, since M[rγ,i] is sufficient for PB to determine (and

verify) that value. Furthermore, the value Lγ,0 is uniform and so we can further

reduce the size of garbled tables using ideas similar to garbled row reduction [19].

That is, instead of choosing a uniform Lγ,0, we instead let Lγ,0 be equal to the κ

least-significant bits of H(Lα,0, Lβ,0, γ, 0). This reduces the size of a garbled table to

3κ+ 4ρ bits.

Pushing computation to earlier phases. For clarity, in our description of the

protocol we send the values {rw,M[rw]}w∈I1 and {sw,M[sw]}w∈I2 in steps 5 and 6.

However, these values can be sent in step 4 before the inputs are known, which

reduces the online communication to |I|κ+ |O|ρ.

Further optimization of our TinyOT protocol. We aimed for simplicity in

Figure 3.7, but we note here several optimizations:

1. For clarity, in Figure 3.7 step4c, the value R was chosen uniformly. To reduce

the communication, Wx1,0 can be set to 0, which defines R := H(K[x2])⊕ V0.

This saves two ciphertexts per leaky AND triple.
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Table 3.3: Fewest AND gates needed for bucketing, for different bucket sizes and

statistical security parameters.

Bucket size 3 4 5

ρ = 40 280K 3.1K 320
ρ = 64 1.2B 780K 21K
ρ = 80 300B 32M 330K

Table 3.4: Circuits used in our evaluation.

Circuit I1 I2 O |C|

AES 128 128 128 6800
SHA-128 256 256 160 37300
SHA-256 256 256 256 90825

Hamming Dist. 1048K 1048K 22 2097K
Integer Mult. 2048 2048 2048 4192K

Sorting 131072 131072 131072 10223K

2. Since efficiency depends on the bucket size B = ρ/ log |C|, we calculated the

smallest circuit size needed for each bucket size based on the exact formula, so

that the bucket size can be minimized. Table 3.3 shows the fewest AND gates

needed in order to use different bucket sizes (B), for different values of ρ.

3.6 Evaluation

3.6.1 Implementation and Evaluation Setup

Our implementation uses the EMP-toolkit [10], and is publicly available as a part

of it.

In our evaluation, we set the computational security parameter to κ = 128
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Table 3.5: Comparison in the single-execution setting

LAN WAN

Ind. Dep. Online Total Ind. Dep. Online Total

AES [28] - 28 ms 14 ms 42 ms - 425 ms 416 ms 841 ms
AES [37] 89.6 ms 13.2 ms 1.46 ms 104.3 ms 1882 ms 96.7 ms 83.2 ms 2061.9 ms

AES (here) 10.9 ms 4.78 ms 0.93 ms 16.6 ms 821 ms 461 ms 77.2 ms 1359.2 ms

SHA1 [28] - 139 ms 41 ms 180 ms - 1414 ms 472 ms 1886 ms
SHA1 (here) 41.4 ms 21.3 ms 3.6 ms 66.3 ms 1288 ms 603 ms 78.4 ms 1969.4 ms

SHA256 [28] - 350 ms 84 ms 434 ms - 2997 ms 514 ms 3511 ms
SHA256 [37] 478.5 ms 164.4 ms 11.2 ms 654.1 ms 2738 ms 350 ms 93.9 ms 3182 ms

SHA256 (here) 96 ms 51.7 ms 9.3 ms 157 ms 1516 ms 772 ms 88 ms 2376 ms

Table 3.6: Comparison in the amortized setting. All experiments evaluate AES,

with τ the number of executions being amortized over.

LAN WAN

τ Ind. Dep. Online Total Ind. Dep. Online Total

32 - 45 ms 1.7ms 46.7 ms - 282 ms 190 ms 472 ms
[32] 128 - 16 ms 1.5 ms 17.5 ms - 71 ms 191 ms 262 ms

1024 - 5.1 ms 1.3 ms 6.4 ms - 34 ms 189 ms 223 ms

32 54.5 ms 0.85 ms 1.23 ms 56.6 ms 235.8 ms 5.2 ms 83.2 ms 324.2 ms
[37] 128 21.5 ms 0.7 ms 1.2 ms 23.4 ms 95.8 ms 3.9 ms 83.7 ms 183.4 ms

1024 14.7 ms 0.74 ms 1.13 ms 16.6 ms 42.1 ms 2.1 ms 83.2 ms 127.4 ms

32 8.9 ms 0.6 ms 0.97 ms 10.47 ms 75.2 ms 8.7 ms 76 ms 160 ms
Here 128 5.4 ms 0.54 ms 0.99 ms 6.93 ms 36.6 ms 8.4 ms 75 ms 120 ms

1024 4.9 ms 0.53 ms 1.23 ms 6.66 ms 30.0 ms 7.5 ms 76 ms 113.5 ms

and the statistical security parameter to ρ = 40. In Figure 3.2 we describe garbling

as relying on a random oracle, but in fact it can be done using any encryption

scheme; in our implementation we use the JustGarble approach of Bellare et al. [18].

We use Multithreading, Streaming SIMD Extensions (SSE), and Advanced Vector

Extensions (AVX) to improve performance whenever possible.

Our implementation consists mainly of three parts:

1. Authenticated bits. Authenticated bits can be generated using OT ex-

tension [45]. In our implementation we adopt the OT-extension protocol of

Keller et al. [70] along with the optimizations of Nielsen et al. [37]. The re-
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sulting protocol requires κ+ ρ bits of communication per authenticated bit.

2. FPre functionality. To improve the efficiency, we spawn multiple threads

that each generate a set of leaky AND triples. After these are all generated,

bucketing and combining are done in a single thread.

3. Our protocol. The function-independent phase invokes the above two sub-

routines to generate random AND triples with IT-MACs. In the function-

dependent phase, these random AND triples are used to construct a single

garbled circuit. In the single-execution setting, we use one thread to construct

the garbled circuit; in the amortized setting we use multiple threads, each

constructing a different garbled circuit. (This matches what was done in prior

work.) The online phase is always done using a single thread.

Evaluation setup. Our evaluation focuses on two settings:

• LAN setting: Here we use two Amazon EC2 c4.8xlarge machines, both in the

North Virginia region, with the link between them having 10 Gbps bandwidth

and less than 1ms roundtrip time.

• WAN setting: Here we use two Amazon EC2 c4.8xlarge machines, one in

North Virginia and one in Ireland. Single-thread communication bandwidth is

about 224 Mbps; the maximum total bandwidth is about 3 Gbps when using

multiple threads.

In Section 3.6.2, we first compare the performance of our protocol with pre-

vious protocols in similar settings, focusing on three circuits (AES, SHA-1, and
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Table 3.7: Experimental results for larger circuits.

LAN

Ind. Phase Dep. Phase Online Total

Hamming Dist. 1867 ms 1226 ms 74 ms 3167 ms
Integer Mult. 2860 ms 1921 ms 301 ms 5081 ms

Sorting 7096 ms 5508 ms 1021 ms 13625 ms
WAN

Ind. Phase Dep. Phase Online Total

Hamming Dist. 11531 ms 6592 ms 133 ms 18256 ms
Integer Mult. 20218 ms 9843 ms 376 ms 30437 ms

Sorting 45155 ms 25582 ms 1918 ms 72655 ms

SHA-256) commonly used in prior work. Our results show that these circuits are

no longer large enough to serve as benchmark circuits for malicious 2PC. Therefore,

in Section 3.6.3 we also explore the performance of our protocol on some larger cir-

cuits. (These circuits are available in [10].) Parameters for all the circuits we study

are given in Table 3.4. In Sections 3.6.4 and 3.6.5, we study the scalability of our

protocol and compare its concrete communication complexity with prior work.

3.6.2 Comparison with Previous Work

Single-execution setting. First we compare the performance of our protocol

to state-of-the-art 2PC protocols in the single-execution setting. In particular, we

compare with the protocol of Wang et al. [28], which is based on circuit-level cut-

and-choose and is tailored for the single-execution setting, as well as the protocol of

Nielsen et al. [37], which is based on gate-level cut-and-choose and is able to utilize

function-independent preprocessing. For a fair comparison, all numbers are based on

the same hardware configuration as we used. Our reported timings do not include
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Figure 3.10: Scalability of our protocol. Initially |I1| = |I2| = |O| = 128 and

|C| = 1024, and then one of those parameters is allowed to grow while the others

remain fixed. The total running time is reported.

the time for the base-OTs for the same reason as in [37]: the time for the base-OTs

is constant across all protocols and is not the focus of our work. For completeness,

though, we note that our base-OT implementation (based on the protocol by Chou

and Orlandi [71]) takes about 20 ms in the LAN setting and 240 ms in the WAN

setting.

As shown in Table 3.5, our protocol performs better than previous protocols in

terms of both overall time and online time. Compared with the protocol by Wang et

al., we achieve a speedup of 2.7× overall and an improvement of about 10× for the
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online time. Compared with the protocol by Nielsen et al., the online time is roughly

the same but our offline time is 4–7× better in the LAN setting, and 1.3-1.5× better

in the WAN setting.

Compared to the recent (unimplemented) work of Lindell et al. [42], our proto-

col is asymptotically more efficient in the function-independent preprocessing phase.

More importantly, the concrete efficiency of our protocol is much better for several

reasons: (1) our work is compatible with free-XOR and we do not suffer from any

blowup in the size of the circuit being evaluated; (2) Lindell et al. require five SPDZ-

style multiplications per AND gate of the underlying circuit, while we need only one

TinyOT-style AND computation per AND gate.

We perform a back-of-the-envelope calculation to compare the relative effi-

ciency of our protocol and that of Lindell et al. [42]. Over a 10 Gbps network, the

recent work of Keller et al. [49] can generate 55,000 SPDZ multiplication triples per

second using an ideal implementation that fully saturates the network. The proto-

col of Lindell et al. requires 5 SPDZ multiplications per AND gate, and so the best

possible end-to-end speed of their protocol is 11,000 AND gates per second. On the

other hand, our actual implementation computes 833,333 AND gates per second (as

shown by the scalability evaluation in Section 3.6.4). Therefore, our protocol is at

least 75× better than the best possible implementation of their protocol.

Comparison with linear-round protocols. The AES circuit has depth 50 [31].

Therefore, even in the LAN setting with 0.5 ms roundtrip time, and ignoring all

computation and communication, any linear-round protocol for securely computing

52



AES would require at least 25 ms in total, which is 1.5× slower than our protocol.

The protocol by Damg̊ard et al. [72] has the best end-to-end running time

among all linear-round protocols. Their protocol only supports amortization for

parallel executions (where inputs to all executions are known at the outset). They

report an amortized time for evaluating AES of 14.65 ms per execution, amortized

over 680 executions. This is roughly on par with our single-execution performance

without any preprocessing. When comparing their results to our amortized perfor-

mance, we are more than 2× faster, and we are not limited to parallel execution.

A more recent work by Damg̊ard et al. [73] proposes a protocol with a very

efficient online phase. In the LAN setting with similar hardware, it has an online

time of 1.09 ms to evaluate AES, which is similar to our reported time (0.93 ms).

They also report 0.47µs online time in the parallel execution setting, which is differ-

ent from our amortized setting as discussed above. We cannot compare end-to-end

running times since they do not report the preprocessing time. However, we note

that they use TinyOT for preprocessing, and our optimized TinyOT protocol is

more efficient. (On the other hand, our new TinyOT protocol could be plugged into

their work to improve the running time of the preprocessing phase in their work as

well.)

Amortized setting. It is somewhat difficult to compare protocols in the amortized

setting, since relative performance depends on the setting (LAN or WAN), the

number of executions being amortized over, and whether one chooses to focus on

the total time or the online time. Nevertheless, as shown in Table 3.6, our protocol
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offers a consistent improvement as compared to the best prior work of Nielsen et

al. [37] and Rindal and Rosulek [32].

3.6.3 Larger Circuits

The results of the previous section show that evaluating the AES circuit using our

protocol takes less time than generating the base-OTs. Thus, our work implies

that AES and other existing benchmark circuits are no longer large enough for a

meaningful performance evaluation of malicious 2PC protocols. We propose three

new example computations and evaluate our protocol on these examples:

• Hamming distance: Here we consider computing the Hamming distance

between two n-bit strings using an O(n)-size circuit. For our concrete experi-

ments, we set n = 1048576; the output is a 22-bit integer.

• Integer multiplication: Here we consider computing the least-significant n

bits of the product of two n-bit integers using a nO(n2)-size circuit. For our

concrete experiments, we use n = 2048.

• Sorting: Here we consider sorting n integers, each ` bits long, that are XOR-

shared between two parties, using a circuit of size O(n` log2 n). For our con-

crete experiments, we use n = 4096 and ` = 32.

The parameters of the concrete circuits we use in our experiments are given in

Table 3.4.

In Table 3.7 we show the performance of our protocol on the above examples.

We observe that the difference in the online time between the LAN and WAN settings

54



Table 3.8: Communication per execution for evaluating an AES circuit. Numbers

presented are for the amount of data sent from garbler to evaluator; this reflects

the speed in a duplex network. For a simplex network, the communication reported

here and by Rindal and Rosulek [32] should be doubled for a fair comparison.

Protocol τ Ind. Phase Dep. Phase Online

[32]

302 - 3.8 MB 25.8 KB
128 - 2.5 MB 21.3 KB
1024 - 1.6 MB 17.0 KB

[37]

1 14.9 MB 0.22 MB 16.1 KB
32 8.7 MB 0.22 MB 16.1 KB
128 7.2 MB 0.22 MB 16.1 KB
1024 6.4 MB 0.22 MB 16.1 KB

1 2.86 MB 0.57 MB 4.86 KB
This 32 2.64 MB 0.57 MB 4.86 KB

Paper 128 2.0 MB 0.57 MB 4.86 KB
1024 2.0 MB 0.57 MB 4.86 KB

is about 75 ms, which is roughly the roundtrip time of the WAN network we used.

This is also consistent with the fact that our protocol requires only one round of

online communication (one message from each party). To compare our results with

state-of-the-art semi-honest protocols, note that garbling can be done at the rate

of about 20 million AND gates per second. So, for example, sorting could be done

with an online time of about 0.5 seconds in the semi-honest setting.

3.6.4 Scalability

To explore the concrete performance of our protocol for circuits with different input,

output, and circuit sizes, we study the effect on the total running time as each of

these parameters is varied. The results are reported in Figure 3.10. Trend lines
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are also included to show the marginal effect (i.e., the slope) of each parameter.

Although the optimal bucket size in our protocol becomes smaller as the circuit size

increases, we fix the bucket size to 3 in Figure 3.10(d).

Our results show that the performance of our protocol scales linearly in the

input, output, and circuit sizes, as expected. In the LAN setting, our protocol

requires only 0.35 µs to process each input bit and 0.03 µs per output bit. Note

that this is much better than circuit-level cut-and-choose protocols, mainly for two

reasons: (1) Since we construct only one garbled circuit, only one set of garbled

labels needs to be transferred; this is an improvement of ρ×. (2) We do not need to

use an XOR-Tree or a ρ-probe matrix (which can incur a huge cost when the input

is large [28]) to prevent selective-failure attacks.

Our results also show that the marginal performance (for all the parameters

considered) is about 3–4× slower in the WAN setting than in the LAN setting, which

roughly matches the ratio of network bandwidth between the two settings.

3.6.5 Communication Complexity

In Table 3.8, we compare the communication complexity (measured in terms of

the amount of data sent from the garbler to the evaluator) of our protocol to that

of other work, focusing on the amortized evaluation of AES. The communication

complexity of our protocol is 3 − −5× less than in the protocol of Nielsen et al..

Furthermore, the communication complexity of our protocol in the single-execution

setting is only half the communication complexity of their protocol even when amor-
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tized over 1024 executions. Note that for protocols based on cut-and-choose, the

total communication required to send 40 garbled AES circuits is 8.7 MB, which is

already higher than the total communication of our protocol in the single-execution

setting.

We also observe that the communication complexity of our protocol in the

function-dependent preprocessing phase is higher than that of the protocol of Nielsen et

al.; this is due to the fact that we need to send 3κ + 4ρ bits per gate while they

only need to send 2κ bits per gate. On the other hand, our online communication

is extremely small: it is about 3× smaller than in the protocol of Nielsen et al. and

3.5–5.3× smaller than in the protocol of Rindal and Rosulek.
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Chapter 4: Applying Authenticated Garbling Technique for Multi-

Party Computation

In this chapter, we will discuss how to extend the idea of authenticated garbling

to the multi-party setting. By doing so, our MPC protocol is constant-round and

able to tolerate any number of malicious corruptions. Previous implementations of

MPC protocols in this model rely on some variant of the secret-sharing paradigm

introduced by Goldreich, Micali, and Wigderson [46]. At a high level, this technique

requires the parties to maintain the invariant of holding a linear secret sharing of

the values on the circuit wires, along with some sort of authentication information

on those shares. Linear gates in the circuit (e.g., XOR, ADD) can be processed

locally, while non-linear operations (e.g., AND, MULT) are handled by having the

parties interact with each other to maintain the desired invariant. The most notable

example of a protocol in this framework is perhaps SPDZ [44, 48, 49], which supports

arithmetic circuits; protocols for boolean circuits have also been designed [50, 51]

with various efficiency.

Although this approach can lead to protocols with reasonable efficiency when

run over a LAN, it suffers the inherent drawback of leading to round complex-

ity linear in the depth of the circuit being evaluated. This can have a significant
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Table 4.1: Asymptotic complexity (per party) for n-party MPC protocols for boolean

circuits, secure against an arbitrary number of malicious corruptions. Here, κ (resp.,

ρ) is the computational (resp., statistical) security parameter, |C| is the circuit size,

d is the depth of the circuit, and B = O(ρ/ log |C|).

Paper Comm./Comp. Complexity Rounds

[74] O (|C|B3n) O(d)
[51] O (|C|B2n) O(d)

[42] + [49] O (|C|κn2) O(1)
[75] O (|C|B2n) O(1)

This paper O (|C|Bn) O(1)

impact on the overall efficiency when the parties running the protocol are geograph-

ically separated or when the number of parties is high, and the communication

latency dominates the cost of the execution. For example, the communication la-

tency between parties located in the U.S. and Europe is around 75 ms even with the

dedicated network provided by Amazon EC2. If such parties are evaluating, say,

SHA-256 (which has a circuit depth of about 4,000), then a linear-round protocol

requires 300, 000 ms just for the back-and-forth interaction between those parties,

not even counting the time required for performing local cryptographic operations

or transmitting any data.

Constant-round protocols tolerating any number of malicious corruptions have

also been designed. The basic approach here, first proposed by Beaver, Micali, and

Rogaway [64], is to have the parties run a linear-round secure-computation protocol

to compute a garbled circuit [11] for the function f of interest; the parties can then

evaluate that garbled circuit using a constant number of additional rounds. Since
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Table 4.2: Selected performance results for our protocol. All results are in millisec-

onds, based on a statistical security of 2−40. We consider the following settings (see

Section 4.6 for more details.):

(a) 3PC-LAN: three-party computation over a LAN;

(b) 128PC-LAN: 128-party computation over a LAN;

(c) 14PC-Worldwide: 14-party computation over a WAN, with parties located in

14 different cities across five continents;

(d) 128PC-Worldwide: 128-party computation over a WAN, with parties located

in 8 different cities across five continents (each city with 16 parties).

Setting Setup Indep. Depen. Online Total

3PC-LAN 36 47 12 2 95
128PC-LAN 390 2727 11670 1870 16657

14PC-Worldwide 8711 9412 1947 250 20320
128PC-Worldwide 88056 30796 22659 2316 143827

the circuit for computing the garbling of f has depth independent of f , the overall

number of rounds is constant. Although several recent papers have explored this

approach [41, 42, 43], these investigations have remained largely theoretical since

the overall cost of even the best protocol using this approach is asymptotically

worse than the nonconstant-round protocols mentioned above; see Table 4.1. In

fact, prior implementations of constant-round MPC consider only the semi-honest

setting [52, 56].

Our Contributions. We take a significant step towards practical MPC tolerating

an unbounded number of malicious corruptions. To this end, we propose a new,
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constant-round protocol for multi-party computation of boolean circuits secure in

this setting. Our protocol extends and generalizes the technique introduced in the

previous chapter in the two-party setting. Specifically, we first design an optimized,

multi-party version of their TinyOT protocol so as to enable n parties to generate

certain authenticated information as part of a preprocessing phase. Next, gener-

alizing their main protocol, we show how to use this information to distributively

construct a single “authenticated” garbled circuit that is evaluated by a single party.

An overview of our entire protocol appears in Section 4.1, with details in the re-

mainder of the paper.

Our protocol improves upon the state-of-the-art both asymptotically (cf. Ta-

ble 4.1) and concretely (see Section 4.6.4), and in particular it allows us to give

the first implementation of a constant-round MPC protocol with malicious security.

Our experiments demonstrate that our protocol is both efficient and scalable:

• Efficiency: For three-party computation over a LAN, our protocol requires

only 95 ms to securely evaluate AES. This is roughly a 700× improvement over

the best prior work, and only 2.5× slower than the state-of-the-art solution

in the two-party setting, introduced in the previous chapter. In general, for

n-party computation our protocol improves upon the best prior work [42, 43]

(which was not implemented) by a factor of more than 200n.

• Scalability: We successfully executed our protocol with many parties located

all over the world, computing (for example) AES with 128 parties across 5 con-

tinents in under 3 minutes. To the best of our knowledge, our work represents
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the largest-scale demonstration of secure computation to date, even consider-

ing weaker adversarial models.

4.1 Overview of Our Main Protocol

Our main protocol is designed in the FPre-hybrid model (see Figure 2.2). At a high

level, FPre generates authenticated shares on random bits x, y, z such that z = x∧y.

(We refer to these as AND triples.) Our main protocol then uses those authenticated

shares to distributively construct a single, “authenticated” garbled circuit that is

evaluated by one of the parties. In the remainder of this section, we describe our

main protocol; further details are in Section 4.2. In Section 4.4 we then discuss how

to efficiently realize FPre.

It is highly non-trivial to extend the two-party protocol introduced in the

previous chapter to the multiparty setting. The main challenge is that even when

n − 1 parties are corrupted, we still need to make sure that the adversary cannot

learn any information about the honest party’s inputs.

Attempted ideas. One idea, adopted by Choi et al. [41] in the three-party setting,

is to let n−1 parties jointly compute a garbled circuit that the remaining party will

evaluate. However, if the n−1 garblers are corrupt, there is no guarantee about the

correctness of the garbled circuit they generate. For that reason, Choi et al. had

to use cut-and-choose to check correctness of a random subset of ρ garbled circuits,

which imposes a huge overhead.

To avoid this additional cut-and-choose, we would like all parties to be involved

62



in the garbled-circuit generation, as in the BMR protocol [64]. However, state-of-the-

art protocols based on BMR that are maliciously secure against corruption of n− 1

parties require either O(n) somewhat homomorphic encryptions [43] or O(n) SPDZ

multiplication subprotocols [42] per AND gate both of which are relatively inefficient.

We aim instead to use “simpler” TinyOT-like functionalities as we explain next.

Multiparty TinyOT: BDOZ-style vs. SPDZ-style. We observe that in the

existing literature, there are mainly two flavors on how authenticated shared are

constructed.

• BDOZ-style [76]: For a secret bit x, each party holds a share of x. For each

ordered pair of parties (Pi, Pj), Pi authenticates its own share (namely xi) to

Pj.

• SPDZ-style [44]: Each party holds a share of a global MAC key. For a secret

bit x, each party holds a share of x and a share of the MAC on x.

Note that these protocols are constructed for arithmetic circuits, but these repre-

sentations also apply to binary circuits. Existing papers prefer SPDZ-style shares to

BDOZ-style shares, because SPDZ-style shares are smaller and thus more efficient

to operate on. Indeed, existing papers that investigated protocols for multi-party

TinyOT are all based on SPDZ-style shares [50, 74, 51].

Our key observation is that such SPDZ-style AND triple, although efficient for

interactive MPC protocols, are not suitable for our use to construct constant-round

MPC protocols. In particular, in the SPDZ-style shares, each parties knows ∆i as a

share of the global key ∆ =
⊕

i ∆i. For each bit x, they holds shares of x∆. Since
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∆ is not known to any party, it is not directly related to any garbled circuit. On the

contrary, in the BDOZ-style protocols, each party holds (xi, {Mj[x
i],Ki[x

j]}j 6=i), as

we have already described in Section 2.2. In this case, they essentially hold shares

of x∆i for all i ∈ [n], because:

x∆i =

(⊕
j

xj

)
∆i = xi∆i ⊕

(⊕
j 6=i

xj∆i

)

= xi∆i ⊕

(⊕
j 6=i

Mi[x
j]⊕ Ki[x

j]

)

=

(
xi∆i ⊕

⊕
j 6=i

Ki[x
j]

)
⊕
⊕
j 6=i

Mi[x
j]

Here, Pi knows the first value, while each Pj with j 6= i knows Mi[x
j]. In other word,

a BDOZ-style share of a bit x can be used to construct shares of x∆i for each i.

This can further be used to construct shares of garbled labels, if we use the same ∆i

for authenticated shares and the global difference used in free-XOR. Indeed, looking

ahead to the main protocol in Figure 4.1 step 4 (d), the content of the garbled circuit

can be viewed as some authentication information plus shares of the garbled output

labels for each garbler.

High level picture of the protocol. Given the above discussion, we can now

picture the high level idea of our protocol. Our idea, from a high level view, is to

let n − 1 parties be garblers, each maintaining a set of garbled labels, and to let

the remaining party be the evaluator. Each garbler knows its own set of garbled

labels. However, for each gate and for each garbler, the permuted garbled output

labels are secretly shared to all parties, and thus no party knows how these labels

are permuted. For each garbler Pi and a garbler row, Pi has shares of permuted

64



Protocol Πmpc

Inputs: In the function-independent phase, parties know |C| and |I|; in the function-dependent phase, parties

get a circuit representing function f : {0, 1}|I1| × ...×{0, 1}|In| → {0, 1}|O|; in the input-processing phase, Pi
holds xi ∈ {0, 1}|Ii|.
Function-independent phase:

1. Pi sends init to FPre, which sends ∆i to Pi.

2. For each wire w ∈ I ∪W, i ∈ [n], Pi sends random to FPre, which sends

(
riw,

{
Mj [r

i
w],Ki[r

j
w]
}
j 6=i

)
to

Pi, where
⊕
i∈[n] r

i
w = λw. For each i 6= 1, Pi also picks a random κ-bit string Liw,0.

Function-dependent phase:

3. For each gate G = (α, β, γ,⊕), each i ∈ [n], Pi computes

(
riγ ,
{

Mj [r
i
γ ],Ki[r

j
γ ]
}
j 6=i

)
:=(

riα ⊕ riβ ,
{

Mj [r
i
α]⊕Mj [r

i
β ],Ki[r

j
α]⊕ Ki[r

j
β ]
}
j 6=i

)
. For each i 6= 1, Pi also computes Liγ,0 :=

Liα,0 ⊕ Liβ,0.

4. For each gate G = (α, β, γ,∧):

(a) For each i ∈ [n], Pi sends

(
and,

(
riα,
{

Mj [r
i
α],Ki[r

j
α]
}
j 6=i

)
,

(
riβ ,
{

Mj [r
i
β ],Ki[r

j
β ]
}
j 6=i

))
to FPre,

which sends

(
riσ ,
{

Mj [r
i
σ ],Ki[r

j
σ ]
}
j 6=i

)
to Pi, where

⊕
i∈[n] r

i
σ =

(⊕
i∈[n] r

i
α

)
∧
(⊕

i∈[n] r
i
β

)
.

(b) For each i 6= 1, Pi computes the following locally.(
riγ,0,

{
Mj [r

i
γ,0],Ki[r

j
γ,0]
}
j 6=i

)
:=
(
riσ ⊕ riγ ,

{
Mj [r

i
σ ]⊕Mj [r

i
γ ], Ki[r

j
σ ]⊕ Ki[r

j
γ ]
}
j 6=i

)
(
riγ,1,

{
Mj [r

i
γ,1],Ki[r

j
γ,1]
}
j 6=i

)
:=
(
riγ,0 ⊕ riα,

{
Mj [r

i
γ,0]⊕Mj [r

i
α], Ki[r

j
γ,0]⊕ Ki[r

j
α]
}
j 6=i

)
(
riγ,2,

{
Mj [r

i
γ,2],Ki[r

j
γ,2]
}
j 6=i

)
:=
(
riγ,0 ⊕ riβ ,

{
Mj [r

i
γ,0]⊕Mj [r

i
β ], Ki[r

j
γ,0]⊕ Ki[r

j
β ]
}
j 6=i

)
(
riγ,3,

{
Mj [r

i
γ,3],Ki[r

j
γ,3]
}
j 6=i

)
:=
(
riγ,1 ⊕ riβ ,

{
M1[riγ,1]⊕M1[riβ ], Ki[r1

γ,1]⊕ Ki[r1
β ]⊕∆i

}
⋃{

Mj [r
i
γ,1]⊕Mj [r

i
β ], Ki[r

j
γ,1]⊕ Ki[r

j
β ]
}
j 6=i,1

)
(c) PA computes the following locally.(

r1
γ,0,

{
Mj [r

1
γ,0],K1[rjγ,0]

}
j 6=i

)
:=
(
r1
σ ⊕ r1

γ ,
{

Mj [r
1
σ ]⊕Mj [r

1
γ ], K1[rjσ ]⊕ K1[rjγ ]

}
j 6=i

)
(
r1
γ,1,

{
Mj [r

1
γ,1],K1[rjγ,1]

}
j 6=i

)
:=
(
r1
γ,0 ⊕ r1

α,
{

Mj [r
1
γ,0]⊕Mj [r

1
α], K1[rjγ,0]⊕ K1[rjα]

}
j 6=i

)
(
r1
γ,2,

{
Mj [r

1
γ,2],K1[rjγ,2]

}
j 6=i

)
:=
(
r1
γ,0 ⊕ r1

β ,
{

Mj [r
1
γ,0]⊕Mj [r

1
β ], K1[rjγ,0]⊕ K1[rjβ ]

}
j 6=i

)
(
r1
γ,3,

{
Mj [r

1
γ,3],K1[rjγ,3]

}
j 6=i

)
:=
(
r1
γ,1 ⊕ r1

β ⊕ 1,
{

Mj [r
1
γ,1]⊕Mj [r

1
β ], K1[rjγ,1]⊕ K1[rjβ ]

}
j 6=i

)
(d) For each i 6= 1, Pi computes Liα,1 := Liα,0 ⊕∆i and Liβ,1 := Liβ,0 ⊕∆i, and sends the following to

PA.

Giγ,0 := H
(

Liα,0, L
i
β,0, γ, 0

)
⊕
(
riγ,0,

{
Mj [r

i
γ,0]
}
j 6=i

, Liγ,0 ⊕
(⊕

j 6=i Ki[r
j
γ,0]
)
⊕ riγ,0∆i

)
Giγ,1 := H

(
Liα,0, L

i
β,1, γ, 1

)
⊕
(
riγ,1,

{
Mj [r

i
γ,1]
}
j 6=i

, Liγ,0 ⊕
(⊕

j 6=i Ki[r
j
γ,1]
)
⊕ riγ,1∆i

)
Giγ,2 := H

(
Liα,1, L

i
β,0, γ, 2

)
⊕
(
riγ,2,

{
Mj [r

i
γ,2]
}
j 6=i

, Liγ,0 ⊕
(⊕

j 6=i Ki[r
j
γ,2]
)
⊕ riγ,2∆i

)
Giγ,3 := H

(
Liα,1, L

i
β,1, γ, 3

)
⊕
(
riγ,3,

{
Mj [r

i
γ,3]
}
j 6=i

, Liγ,0 ⊕
(⊕

j 6=i Ki[r
j
γ,3]
)
⊕ riγ,3∆i

)

Figure 4.1: Our main protocol. Here ρ is set to κ for clarity, but this is not necessary.
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Protocol Πmpc, continued

Input Processing:

5. For each i 6= 1, w ∈ Ii, for each j 6= i, Pj sends (rjw,Mi[r
j
w]) to Pi, who checks that

(rjw,Mi[r
j
w],Ki[r

j
w]) is valid, and computes xiw⊕λw := xiw⊕

(⊕
i∈[n] r

i
w

)
. Pi broadcasts

the value xiw ⊕ λw. For each j 6= 1, Pj sends Ljxi⊕λw to PA.

6. For each w ∈ I1, i 6= 1, Pi sends (riw,M1[riw]) to PA, who checks that (riw,M1[riw],K1[riw])

are valid, and computes x1
w ⊕ λw := x1

w ⊕
(⊕

i∈[n] r
i
w

)
. PA sends x1

w ⊕ λw to Pi, who

sends Liw,x1
w⊕λw

to PA.

Circuit Evaluation:

7. PA evaluates the circuit following the topological order. For each gate G = (α, β, γ, T ),

PA holds

(
zα ⊕ λα,

{
Liα,zα⊕λα

}
i 6=1

)
and

(
zβ ⊕ λβ ,

{
Liβ,zβ⊕λβ

}
i 6=1

)
, where zα, zβ are

the underlying values of the wire.

(a) If T = ⊕, PA computes zγ ⊕ λγ := (zα ⊕ λα) ⊕ (zβ ⊕ λβ) and{
Liγ,zγ⊕λγ := Liα,zα⊕λα ⊕ Liβ,zβ⊕λβ

}
i 6=1

(b) If T = ∧, PA computes ` := 2(zα ⊕ λα) + (zβ ⊕ λβ). For i 6= 1, PA computes(
riγ,`,

{
Mj [r

i
γ,`]
}
j 6=i , L

i
γ

)
:= Giγ,` ⊕H

(
Liα,zα⊕λα , L

i
β,zβ⊕λβ , γ, `

)
.

PA checks that
{(
riγ,`,M1[riγ,`],K1[riγ,`]

)}
i 6=1

are valid and aborts if fails. PA

computes zγ ⊕ λγ :=
⊕

i∈[n] r
i
γ,`, and

{
Liγ,zγ⊕λγ := Liγ ⊕

(⊕
j 6=i Mi[r

j
γ,`]
)}

i 6=1

Output Processing:

8. For each w ∈ O, i 6= 1, Pi sends (riw,M1[riw]) to PA, who checks that (riw,M1[riw],K1[riw])

is valid. PA computes zw := (λw ⊕ zw)⊕
(⊕

i∈[n] r
i
w

)
.

Figure 4.2: Our main protocol, continued. Here ρ is set to κ for clarity, but this is
not necessary.

garbled output labels for all garblers. In the garbled table, Pi encrypts all these

shares using its own set of garbled input labels. Further, shares of the mask value

are authenticated similarly. The evaluator decrypts the same row of garbled tables

from all garblers in order to recompute the garbled output labels for each garbler.

Intuitively, this ensures that for any set of n − 1 parties, they cannot garble or
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evaluate any gate.

4.2 The Main Scheme

Since we have discussed the main intuition of our protocol, we will proceed to the

details directly. The proof of the main protocol can be found in Section 4.3.1. In

Figure 4.1 and Figure 4.2, we present the complete MPC protocol in the FPre-hybrid

model. The protocol can be divided into five phases:

1. Circuit Pre-scan. (Step 1-3) In this phase, each party obtains their own

private global MAC keys (∆i) from FPre, and generate authenticated shares

on wire masks for all wires.

2. Circuit Garbling. In this phase, each party compute shares of garbled tables

for each garbler (Step 4 (a) - 4 (c)). Garblers then compute the distributed

garbled circuits based on these shares (Step 4 (d)).

3. Circuit Input Processing. For each input wire that corresponds to Pi’s

input, all other parties reveal their share of the wire mask to Pi. Party[i] then

broadcasts the masked input values. All garblers, upon receiving this masked

input value, send the corresponding key to the evaluator.

4. Circuit Evaluation. The evaluator evaluate the circuit following the topo-

logical order. In detail, the garbled wire labels from each garbler is used to

obtain a set of shares of the wire labels for the output of the gate. The wire

labels can then be constructed from the shares.
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5. Circuit Output Processing. Now the evaluator holds masked output. All

garblers reveal their shares of the output wire masks for the circuit to let

evaluator unmask the value.

4.3 Security Proofs

4.3.1 Proof of the Main Protocol

Theorem 4.3.1. If H is modeled as a random oracle, the protocol in Figures 4.1

and 4.2 securely realizes Fmpc in the FPre-hybrid model with security negl(κ) against

an adversary corrupting up to n− 1 parties.

Proof. We consider separately the case where PA ∈ H and where PA ∈ M and

PB ∈ H. The case where PA ∈ M and Pi ∈ H for some i ≥ 3 is similar to the

second case.

Honest PA. Let A be an adversary corrupting {Pi}i∈M. We construct a simulator

S that runs A as a subroutine and plays the role of {Pi}i∈M in the ideal world

involving an ideal functionality Fmpc evaluating f . S is defined as follows.

1-4 S acts as honest {Pi}i∈H and plays the functionality of FPre, recording all

outputs. If any honest party or FPre would abort, S outputs whatever A

outputs and then aborts.

5 S interacts with A acting as an honest {Pi}i∈H, using input {xi := 0}i∈H. For

each i ∈M, w ∈ Ii, S receives x̂iw and computes xiw := x̂iw ⊕
⊕

i∈[n] r
i
w. If any

honest party would abort, S outputs whatever A outputs and aborts.
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6 S interacts with A acting as honest {Pi}i∈H, using input x1 := 0.

7-8 S interacts with A acting as honest {Pi}i∈H. If an honest PA would abort, S

outputs whatever A outputs and aborts; otherwise for each i ∈ M, S sends

(input, xi) on behalf of Pi to Fmpc.

At any time, S will answer A’s global key query honestly, since S knows the global

keys of all parties.

Note that since the global keys are randomly selected from {0, 1}κ, A can-

not guess any global key with more than negligible probability. Therefore, in the

following, we will assume that it does not happen.

We now show that the joint distribution over the outputs of A and the honest

parties in the real world is indistinguishable from the joint distribution over the

outputs of S and the parties in the ideal world.

Hybrid1. Same as the hybrid-world protocol, where S plays the role of honest

{Pi}i∈H, using the actual inputs {xi}i∈H.

Hybrid2. Same as Hybrid1, except that in step 5, for each i ∈ M, w ∈ Ii, S

receives x̂iw and computes xiw := x̂iw ⊕
⊕

i∈[n] r
i
w. If any honest party would

abort, S outputs whatever A outputs; otherwise for each i ∈ M, S sends

(input, xi) on behalf of Pi to Fmpc.

The views produced by the two hybrids are exactly the same. According to

Lemma 4.3.1, PA will learn the same output in both hybrids with all but

negligible probability.
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Hybrid3. Same as Hybrid2, except that, for each i ∈ H, S computes {riw}w∈Ii as

follows: S first randomly pick {uiw}w∈Ii , and then computes riw := uiw ⊕ xiw.

The two Hybrids produce exactly the same view.

Hybrid4. Same as Hybrid3, except that S uses {xi = 0}i∈H as input in step 5

and step 6.

Note that although the distribution of {xi}i∈H in Hybrid3 and Hybrid4 are

different, the distribution of {xiw ⊕ riw}i∈H are exactly the same. The views

produced by the two Hybrids are therefore the same, we will show that PA

aborts with the same probability in both Hybrids.

Observe that the only place where PA’s abort can possibly depends on {xi}i∈H

is in step 7(b). However, this abort depends on which row is selected to

decrypt, that is the value of λα⊕zα and λβ⊕zβ, which are chosen independently

random in both Hybrids.

As Hybrid4 is the ideal-world execution, this completes the proof when PA is honest.

Malicious PA and honest PB. Let A be an adversary corrupting {Pi}i∈M. We

construct a simulator S that runs A as a subroutine and plays the role of {Pi}i∈M

in the ideal world involving an ideal functionality Fmpc evaluating f . S is defined

as follows.

1-4 S acts as honest {Pi}i∈H and plays the functionality of FPre, recording all

outputs. If any honest party would abort, S output whatever A outputs and

aborts.
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5-6 S interacts with A acting as honest {Pi}i∈H, using input {xi := 0}i∈H. For

each i ∈M, w ∈ Ii, S receives x̂iw and computes xiw := x̂iw ⊕
⊕

i∈[n] r
i
w. If any

honest party would abort, S output whatever A outputs and aborts.

8 For each i ∈ M, S sends (input, xi) on behalf of Pi to Fmpc. If Fmpc abort,

S aborts, outputting whatever A outputs. Otherwise, if S receives z as the

output, S computes z′ := f(y1, ..., yn), where {yi := 0}i∈H, and {yi := xi}i∈M.

For each i ∈ H, w ∈ O, if z′w = zw, S sends (riw,M1[riw]) on behalf of Pi to A;

otherwise, S sends (riw ⊕ 1,M1[riw]⊕∆1).

At any time, S will answer A’s global key query honestly, since S knows the global

keys of all parties.

Note that since the global keys are randomly selected from {0, 1}κ, A can-

not guess any global key with more than negligible probability. Therefore, in the

following, we will assume it does not happen.

We now show that the joint distribution over the outputs of A and honest

parties in the real world is indistinguishable from the joint distribution over the

outputs of S and honest parties in the ideal world.

Hybrid1. Same as the hybrid-world protocol, where S plays the role of honest

{Pi}i∈H using the actual inputs {xi}i∈H.

Hybrid2. Same as Hybrid1, except that in step 5 and step 6, for each i ∈

M, w ∈ Ii, S receives x̂iw and computes xiw := x̂iw ⊕
⊕

i∈[n] r
i
w. If any honest

party would abort, S outputs whatever A outputs; otherwise for each i ∈M,

S sends (input, xi) on behalf of Pi to Fmpc.
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PA does not have output; furthermore the view of A does not change between

the two Hybrids.

Hybrid3. Same as Hybrid2, except that in step 5 and step 6, S uses {xi := 0}i∈H

as input and in step 8, S computes z′ as defined. For each w ∈ O, if z′w = zw,

S sends (riw,M1[riw]); otherwise, S sends (riw ⊕ 1,M1[riw]⊕∆1).

A has no knowledge of riw, therefore riw and riw ⊕ 1 are indistinguishable.

Note that since S uses different values for x between the two Hybrids, we

also need to show that the distribution of garbled rows opened by PA are

indistinguishable for the two Hybrids. According to the security of garbled

circuits, PA is able to open only one garble rows in each garbled table Gγ,i.

Therefore, given that {λw}w∈I1∪W values are not known to PA, masked values

and garbled keys are indistinguishable between two Hybrids.

As Hybrid3 is the ideal-world execution, the proof is complete.

Lemma 4.3.1. Consider an A corrupting parties {Pi}i∈M such that PA ∈ H, and

denote xiw := x̂iw ⊕
⊕n

i=1 r
i
w, where x̂w is the value A sent, riw are the values from

FPre. With all but negligible probability , PA either aborts or learns z = f(x1, ..., xn).

Proof. Define z∗w as the correct wire values computed using x defined above and y,

zw as the actually wire values PA holds in the evaluation.

We will first show that PA learns {zw ⊕ λw = z∗w ⊕ λw}w∈O by induction on

topology of the circuit.
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Base step: It is obvious that {z∗w⊕λw = zw⊕λw}w∈I1∪I2 , unless A is able to forge

an IT-MAC.

Induction step: Now we show that for a gate (α, β, γ, T ), if PA has {z∗w ⊕ λw =

zw ⊕ λw}w∈{α,β}, then PA also obtains z∗γ ⊕ λγ = zγ ⊕ λγ.

• T = ⊕: It is true according to the following: z∗γ⊕λγ = (z∗α⊕λα)⊕ (z∗β⊕λβ) =

(zα ⊕ λα)⊕ (zβ ⊕ λβ)zγ ⊕ λγ

• T = ∧: According to the protocol, PA will open the garbled row defined by

i := 2(zα⊕ λα) + (zβ ⊕ λβ). If PA learns zγ ⊕ λγ 6= z∗γ ⊕ λγ, then it means that

PA learns r∗γ,i 6= rγ,i. However, this would mean that A forge a valid IT-MAC,

happening with negligible probability.

Now we know that PA learns the correct masked output. PA can therefore

learn the correct output f(x, y) unless A is able to flip {rw}w∈O, which, again, only

happens with negligible probability.

4.4 Efficiently Realizing FPre

In this section, we describe an efficient instantiation of FPre, which is a multi-party

version of TinyOT protocol. All previous related protocols [50, 74, 51] for multi-

party TinyOT rely on cut-and-choose to ensure correctness and another bucketing

to ensure privacy, resulting in a communication/computation complexity at least

Ω(B2n2) per AND triple, where bucket size B = ρ/ log |C| (See Table 4.1 for more

detail). Furthermore, these protocols output SPDZ-style shares that are not com-

patible with our main protocol. Our new protocol introduced in this section works
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with BDOZ-style shares; furthermore the complexity per AND triple is O(Bn2)

with a very small constant. The new protocol features a new distributed AND

triple checking protocol that checks the correctness of an AND triple without cut-

and-choose. The adversary is still able to perform selective failure attacks on a

triple with probability of being caught at least one-half. Such leakage can be easily

eliminated using bucketing.

In the following, we will build our protocol from the bottom up. In Sec-

tion 4.4.1 and Section 4.4.2, we discuss the multi-party authenticated bits and au-

thenticated shares that we also introduced in Section 2.2; in Section 4.4.4, we discuss

an AND triple generation protocol that allows an adversary to perform selective fail-

ure attacks; the final protocol that eliminates such an attack follows the bucketing

protocols used in previous works [45, 7], and is detailed in Section 4.4.5.

Note that similar to the previous chapter, our protocol also relies on two-party

Fabit functionality, which has a random global key for each party preserved across all

executions and allows an adversary to make “global-key queries” to honest parties’

global keys. Both these features are preserved in all our ideal functionalities, but

we suppress explicit mention of them in our descriptions. Global-key queries have

little effect on security, since the probability that the attacker can correctly guess

the honest party’s value of ∆ using polynomially many queries is negligible.
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Functionality Fnabit

Honest Parties: The box receives (input, i, `) from all parties and picks random bit-string

x ∈ {0, 1}`. For each j ∈ [`], k 6= i, the box picks random Kk[xj ], and computes {Mk[xj ] :=
Kk[xj ]⊕ xj∆k}k 6=i, and sends them to parties. That is, for each j ∈ [`], it sends {Mk[xj ]}k 6=i
to Pi and sends Kk[xj ] to Pk for each k 6= i.

Corrupted parties: Corrupted parties can choose their output from the protocol.

Figure 4.3: Functionality for multi-party authenticated bit.

4.4.1 Multi-Party Authenticated Bit

The first step of our protocol is to generate multi-party authenticated bit. The

functionality Fnabit, also discussed in Section 2.2, is shown in Figure 4.3. Notice that if

we set n = 2, then F2
abit is the original two-party authenticated bit functionality [45].

One naive solution to realize Fnabit is to let Pi run the two-party authenticated

bit protocol with every other party using the same bit x. This solution is not

secure, since a malicious Pi can potentially use inconsistent values when running

F2
abit with other parties. In our protocol, we use this general idea and we also

perform additional checks to ensure that Pi uses consistent values. The check is

similar to the recent malicious OT extension protocol by Keller et al. [70], where

parties perform checks based on random linear combination: a malicious Pi who uses

inconsistent values is able to pass ρ checks with probability at most 2−ρ. Note that

these checks also reveal some linear relationship of x’s. To eliminate this leakage,

a small number of random authenticated bits are computed and checked together.

They are later discarded to break the linear relationships. The protocol is described

in Figure 4.4 with proof in Section 4.5.1.
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Protocol Πn
aBit

Protocol:

1. Set `′ := `+ 2ρ. Pi picks random bit-string x ∈ {0, 1}`
′
.

2. For each k 6= i, Pi and Pk runs F2
abit, where Pi sends {xj}j∈[`′] to F2

abit. From the
functionality, Pi gets {Mk[xj ]}j∈[`′], Pk gets {Kk[xj ]}j∈[`′].

3. For j ∈ [2ρ], all parties perform the following:

(a) All parties sample a random `′-bit strings r.

(b) Pi computes Xj =
⊕`′

m=1 rmxm, and broadcast Xj , and computes{
Mk[Xj ] =

⊕`′

m=1 rmMk[xm]
}
k 6=i

.

(c) Pk computes Kk[Xj ] =
⊕`′

m=1 rmKk[xm].

(d) Pi sends Mk[Xj ] to Pk who check the validity.

4. All parties return the first ` objects.

Figure 4.4: The protocol Πn
aBit instantiating Fnabit.

4.4.2 Multi-Party Authenticated Shares

In this section, we aim to construct a protocol that allows multiple parties to obtain

authenticated shares of a secret bit, as shown in Figure 4.5. One straightforward

idea is to call Fnabit n times, where in the i-th execution, they compute [xi]i for

some random xi known only to Pi. However, the adversary is still able to perform

an attack: a malicious Pi can potentially use different global MAC keys (∆i) in

different executions of Fnabit. The result is that [xj]j is authenticated with a global

MAC key ∆i, while some other [xk]k is authenticated with a different global MAC

key ∆′i. This attack does not happen in the two-party setting, because each party

is authenticated to only one party.

Our key idea is based on the observation that the two-party authenticated

bit protocol already ensured that, when Pi and Pj compute multiple authenticated
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Functionality FaShare

Honest Parties: The box receives (input, `) from all parties and picks random bit-strings

x ∈ {0, 1}` and random authenticated shares {〈xj〉}j∈[`], and sends them to parties.

In detail, the box picks random bit strings {xi}i∈[n], each of length ` bits. For each i ∈ [n], j ∈
[`], The box picks random multi-party authenticated bits [xij ]

i and sends them to parties. That

is, for each j ∈ [`], it sends (xij , {Mk[xij ],Ki[x
k
j ]}k 6=i) to Pi.

Corrupted parties: Corrupted parties can choose their output from the protocol.

Figure 4.5: Functionality for multi-party authenticated share.

Protocol ΠaShare

Protocol:

1. Set `′ := `+ ρ. For each i ∈ [n], Pi picks random bit-string xi ∈ {0, 1}`
′
.

2. For each i ∈ [n], all parties compute multi-party authenticated bits by sending (i, `′) to
Fnabit, which sends {[xij ]i}j∈[`′] to parties.

3. For r ∈ [ρ], all parties perform the following:

(a) For each i ∈ [n], Pi parses {[xk`+r]k}k∈[n] as (xi`+r, {Mk[xi`+r],Ki[x
k
`+r]}k 6=i).

Each Pi computes commitments (c0
i , d

0
i ) ← Com(

⊕
k 6=i Ki[x

k
`+r]), (c1

i , d
1
i ) ←

Com(
⊕

k 6=i Ki[x
k
`+r] ⊕ ∆i), and (cMi , d

M
i ) ← Com(xi`+r, {Mk[xi`+r]}k 6=i), and

broadcast (cmi , c
0
i , c

1
i ).

(b) For each i ∈ [n], after receiving all commitments, Pi broadcasts dMi .

(c) For each i ∈ [n], Pi computes bi :=
⊕

k 6=i x
k
`+r, and broadcast db

i

i .

(d) For each i ∈ [n], Pi performs the following to check the consistency of ∆’s:
For each j 6= i, Pi computes Kj ← Open(cbj , dbj ) and check if it equals to⊕

k 6=j Mj [x
k
`+r]. If any check fails, the party aborts.

4. All parties return the first ` objects.

Figure 4.6: The protocol ΠaShare instantiating FaShare.

bits, Pi uses the same ∆i across different authenticated bits. Therefore, in the

above insecure attempt, if one authenticated share has consistent global MAC keys,

then all authenticated shares have consistent global MAC keys, and vice versa. In

our secure construction, we first let all parties compute ` + ρ number of multi-
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party authenticated shares as described above, which may not be secure. Then we

partially open the last ρ tuples to check the consistency of global MAC keys. A

malicious party who uses inconsistent ∆i’s will get caught with probability one-half

for each partially opened shares.

In more detail, each player Pi will take the role of a prover once to prove that

he uses a consistent ∆i and the remaining players will take the role of verifier for

the given prover. The basic idea is that if the prover used a consistent ∆i, then

these authenticated bits across different parties are XOR homomorphic. Taking a

three-party setting as an example. Say P1 has K1[x], K2[y] with global keys ∆x
1

and ∆y
1 which are potentially different; P2 has (x,M1[x]); P3 has (y,M1[y]). In our

checking protocol, we let P1 commit to values K1[x]⊕K1[y] and K1[x]⊕K1[y]⊕∆1.

For an adversary who uses inconsistent global keys, it needs to choose two values

out of the following four values to commit.

x = 0 y = 0 K1[x]⊕ K2[y]

x = 0 y = 1 K1[x]⊕ K2[y]⊕∆y
1

x = 1 y = 0 K1[x]⊕ K2[y]⊕∆x
1

x = 1 y = 1 K1[x]⊕ K2[y]⊕∆x
1 ⊕∆y

1

Later in the protocol, the adversary is asked to open the MAC for x ⊕ y. If in-

consistent global keys are used, this value can be any of the four values each with

one-fourth probability, therefore, the adversary can win with probability at most

2/4 = 1/2. The details of the protocol are shown in Figure 4.6 with proof in Sec-

tion 4.5.2.
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Functionality FHaAND

Honest Parties:

1. The box picks random 〈x〉 and sends it to all parties.

2. Upon receiving (i, {yij}j 6=i) from all Pi, the box picks random bits {vi}i∈[n] such that⊕
i v
i :=

⊕
i

⊕
j 6=i x

iyji . The box sends vi to Pi.

Corrupted parties: Corrupted parties can choose their output from the protocol.

Figure 4.7: The Half Authenticated AND Functionality

Protocol ΠHaAND

Protocol:

1. All parties call FaShare to obtain 〈x〉.

2. For each i, j ∈ [n], such that i 6= j,

(a) Pi picks a random bit sj , and computes H0 := lsb(H(Ki[x
j ])) ⊕ sj , H1 =

lsb(H(Ki[x
j ]⊕∆i))⊕ sj ⊕ yij .

(b) Pi sends (H0, H1) to Pj , who computes ti := Hxj ⊕ lsb(H(Mi[x
j ])).

3. For each i ∈ [n], Pi obtains vi :=
⊕

k 6=i(t
k ⊕ sk).

Figure 4.8: Protocol ΠHaAND instantiating FHaAND.

4.4.3 Half-Authenticated AND Triple

Before introducing the protocol for leaky authenticated AND triples, there is yet

another tool that we need. As described in Figure 4.7, the functionality FHaAND is

introduced to compute cross terms in AND triples. It takes unauthenticated and

potentially inconsistent y’s and outputs authenticated share 〈x〉 as well as unauthen-

ticated shares of cross product terms. Details about the protocol is in Figure 4.8

with proof included in Section 4.5.2.
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4.4.4 Multi-Party Leaky Authenticated AND Triple

Now we are ready to discuss the protocol for leaky authenticated AND triples. It

can be divided into following steps:

1. Call FaShare to obtain some random 〈y〉 and 〈r〉.

2. Call FHaAND with y to obtain a random 〈x〉 and compute shares {zi}, such

that (
⊕

i x
i) ∧ (

⊕
i y

i) =
⊕

i z
i.

3. Reveal d = z ⊕ r and computes 〈z〉 := 〈r〉 ⊕ d.

4. Perform additional check to ensure the correctness of the AND relationship.

In the above steps, the adversary is able to cheat by using inconsistent values of y

and z between step 1 and 2. However, this only allows the adversary to perform

selective failure attack on xi’s. For example, the AND relationship checked is(⊕
i

xi

)
∧

(⊕
i

yi

)
=

(⊕
i

zi

)
.

The adversary can guess that the value of
⊕

xi = 0 and flip yj for some j ∈M. If

the guess is correct, than the check will go through and the protocol will proceed

as normal. However, if the guess is wrong, then the checking will abort and the

adversary is caught.

One main challenge is what leakage we should aim for in this functionality. We

would like to limit the leakage to be possible only on xi’s, otherwise we would need

more bucketing for each possible leakage, as also noted by Nielsen et al. [45]. On

the other hand, the adversary can do more attacks than the one mentioned above:
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it is also possible to, for example, learn
⊕

i∈S x
i for some set S ⊂ [n]. We find that

the best way to abstract such attack is to allow the adversary to perform a linear

check on the value of xi’s. As shown in Figure 4.9, the adversary is allowed to send

a list of coefficients and check if the inner product between the coefficients and x

values is zero or not.

Our checking phase differs substantially from existing works. We design an

efficient checking protocol, that ensures the correctness of the triple (if no party

aborts) which allows malicious parties to learn k bits of some specific information

with probability at most 2−k. In the two-party protocol, one party constructs “check-

ing tables” and lets the other party to evaluate/check. In the multi-party protocol

here, we instead let all parties distributively construct the “checking tables”. In-

terestingly, distributively constructing these checks is inspired by the main protocol

where parties distributively construct garbled tables. As noted before, this protocol

is vulnerable to selective failure attacks. The full description of this protocol is

presented in Figure 4.10.

In the following, we will show the correctness and unforgeability of the proto-

col, which are crucial to the security proof of the protocol.

4.4.4.1 Correctness of the protocol

We want to show that the protocol will compute a correct triple and will not abort

if all parties are honest. Notice that the value we are checking can be written as:

81



Functionality FLaAND

Honest parties: For each i ∈ [n], the box picks random 〈x〉, 〈y〉, 〈z〉 such that (
⊕
xi) ∧

(
⊕
yi) =

⊕
zi.

Corrupted parties:

1. Corrupted parties can choose all their randomness.

2. An adversary can send (Q, {Ri}i∈[n]), which are κ-bit strings, to the box and perform
a linear combination test. The box checks

Q⊕
⊕
i

xiRi = 0

If the check is incorrect, the box outputs fail and terminates, otherwise the box proceeds
as normal.

3. An adversary can also send (q, {ri}i∈[n]), which are all bits, to the box and perform a
linear combination test. The box checks

q ⊕
⊕
i

xiri = 0

If the check is incorrect, the box outputs fail and terminates, otherwise the box proceeds
as normal.

Figure 4.9: Functionality FLaAND for leaky AND triple.

⊕
i

Hi

=
⊕
i

xiΦi ⊕
⊕
k 6=i

Ki[x
k]Φi ⊕Mk[xi]Φk

⊕ zi∆i ⊕

⊕
k 6=i

Ki[z
k]⊕Mk[zi]


=
⊕
i

xiΦi ⊕
⊕
k 6=i

Ki[x
k]Φi ⊕Mk[xi]Φk

⊕⊕
i

zi∆i ⊕

⊕
k 6=i

Ki[z
k]⊕Mk[zi]


=
⊕
i

xiΦi ⊕
⊕
k 6=i

Ki[x
k]Φi ⊕Mi[x

k]Φk

⊕⊕
i

zi∆i ⊕

⊕
k 6=i

Ki[z
k]⊕Mi[z

k]


=
⊕
i

xiΦi ⊕
⊕
k 6=i

xkΦi

⊕⊕
i

zi∆i ⊕

⊕
k 6=i

zk∆i


=

(⊕
i

xi

)
·
(⊕

i

Φi

)
⊕
(⊕

i

zi

)
·
(⊕

i

∆i

)

Notice further that

⊕
i

Φi =
⊕
i

yi∆i ⊕

⊕
k 6=i

Ki[y
k]⊕Mk[yi]

 =

(⊕
i

yi

)
·
(⊕

i

∆i

)
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Protocol ΠLaAND

Triple computation.

1. For each i ∈ [n] each party calls FaShare and obtains random authenticated shares
{〈y〉, 〈r〉}. All parties also calls FHaAND to obtain random authenticated share 〈x〉.

2. For each i ∈ [n], Pi sends (i, {yi}j 6=i) to FHaAND and gets back some vi.

3. For each i ∈ [n], Pi computes zi := xiyi ⊕ vi and ei := zi ⊕ ri. Pi broadcasts ei to all
other parties. All parties computes [zi]i := [ri]i ⊕ ei.

Triple checking.

4. For each i ∈ [n], Pi computes: Φi := yi∆i ⊕
(⊕

k 6=i Ki[y
k]⊕Mk[yi]

)
.

5. For every pair of i, j ∈ [n], such that i 6= j, Pi computes Ki[x
j ]Φi := H(Ki[x

j ]) and
Ui,j := H(Ki[x

j ]⊕∆i)⊕Ki[x
j ]Φi ⊕Φi, and sends Ui,j to Pj . Pj computes Mi[x

j ]Φi :=
xjUi,j ⊕H(Mi[x

j ]).

6. For i ∈ [n], Pi computes

Hi := xiΦi ⊕
(⊕

k 6=i Ki[x
k]Φi ⊕Mk[xi]Φk

)
⊕ zi∆i ⊕

(⊕
k 6=i Ki[z

k]⊕Mk[zi]
)

.

All parties simultaneously broadcast Hi by first broadcasting the commitment of Hi

and send the decommitment after receiving commitments from all parties.

7. Each party check if
⊕

iHi = 0 and abort if not true.

Figure 4.10: The protocol ΠLaAND.

Therefore we know that

⊕
i

Hi =

(⊕
i

xi

)
·
(⊕

i

Φi

)
⊕
(⊕

i

zi

)
·
(⊕

i

∆i

)

=

(⊕
i

xi

)
·
(⊕

i

yi

)
·
(⊕

i

∆i

)
⊕
(⊕

i

zi

)
·
(⊕

i

∆i

)

=

((⊕
i

xi

)
·
(⊕

i

yi

)
⊕
(⊕

i

zi

))
·
(⊕

i

∆i

)

Since
⊕

i ∆i is non-zero,
⊕

iHi = 0 if and only if the logic of this AND is correct.

4.4.4.2 Unforgeability

Now we want to show that any incorrect AND triple cannot pass the check.

Lemma 4.4.1. Define xi, yi from 〈x〉, 〈y〉 which are outputs from FaShare and FHaAND;

define zi := ri ⊕ ei, where 〈r〉 is output from FaShare, ei is the value broadcast from
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Pi. If (
⊕

i x
i) ∧ (

⊕
i y

i) 6= (
⊕

zi) then the protocol results in an abort except with

negligible probability.

We use U∗i,j and H∗i to denote the values that an honest party would have

computed, and define Qi,j = U∗i,j ⊕ Ui,j, Qi = H∗i ⊕ Hi. In the following, we will

assume that the logic of the AND does not hold while at the same time that the

check passes, and we will derive a contradiction from it.

First note that if Pi uses some Qi,j, then Pj will obtain Mi[x
j]Φi with an

additive error of xjQi,j. Note that

⊕
i

H∗i =

((⊕
i

xi

)
·
(⊕

i

yi

)
⊕
(⊕

i

zi

))
·
(⊕

i

∆i

)
=
⊕
i

∆i

Therefore, we know that

⊕
i

Hi =
⊕
i∈M

Hi ⊕
⊕
i∈H

Hi

=
⊕
i∈M

(H∗i ⊕Qi)⊕
⊕
i∈H

H∗i ⊕
⊕
k 6=i

xkQk,i


=
⊕
i

H∗i ⊕
⊕
i∈M

Qi ⊕
⊕
i∈H

⊕
k 6=i

xkQk,i


=
⊕
i

∆i ⊕
⊕
i∈M

Qi ⊕
⊕
i∈H

⊕
k 6=i

xkQk,i



In order to make
⊕

iHi to be 0, the adversary needs to find paddings such that

⊕
i∈M

Qi ⊕
⊕
i∈H

(⊕
k 6=i

xkQk,i

)
=
⊕
i

∆i

The above happens with at most negligible probability.

Theorem 4.4.1. Assuming an adversary corrupting up to n−1 parties, the protocol

in Figure 4.10, where H is modeled as a random oracle, securely instantiates FLaAND

functionality in the (FaShare,FHaAND)-hybrid model.

Note that since no party has private input, the simulation proof is straightfor-

ward given the lemmas above. We provide full details of the proof in Section 4.5.4.
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Functionality FaAND

Honest parties: For each i ∈ [n], the box picks random 〈x〉, 〈y〉, 〈z〉 such that (
⊕
xi) ∧

(
⊕
yi) =

⊕
zi.

Corrupted parties: Corrupted parties get to choose all of their randomness.

Figure 4.11: Functionality FaAND for generating AND triples

Protocol ΠaAND

Protocol:

1. Pi call FLaAND `′ = `B times and obtains {〈xj〉, 〈yj〉, 〈zj〉}j∈[`′].

2. All parties randomly partition all objects into ` buckets, each with B objects.

3. For each bucket, parties combine B leaky ANDs into one non-leaky AND. To combine
two leaky ANDs, namely (〈x1〉, 〈y1〉, 〈z1〉) and (〈x2〉, 〈y2〉, 〈z2〉) :

(a) Parties reveal d := y1 ⊕ y2 with its MACs checked.

(b) Each party Pi sets 〈x〉 := 〈x1〉 ⊕ 〈x2〉, 〈y〉 := 〈y1〉, 〈z〉 := 〈z1〉 ⊕ 〈z2〉 ⊕ d〈x2〉.

Parties iterate all B leaky objects, by taking the resulted object and combine with the
next element.

Figure 4.12: Protocol ΠaAND instantiating FaAND.

4.4.5 Multi-Party Authenticated AND Triple

Once we have a protocol for leaky authenticated AND triple, it is straightforward to

obtain a non-leaky authenticated AND triple, using the combine protocol described

in the previous chapter. We show the details of the protocol in Figure 4.12.
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4.5 Proofs of Security

4.5.1 Multi-Party Authenticated Bits

Theorem 4.5.1. The protocol in Figure 4.4 securely realizes Fnabit with statistical

security 2−ρ in the F2
abit-hybrid model.

Proof. We consider two cases.

Case 1: Pi ∈ H. Note that in this case, the only way malicious parties can break

the protocol is by learning some information about {xi}i∈[`] in the checking step.

However, we will show that, because we “throw out” the last 2ρ authenticated bits,

the adversary can learn nothing about x’s.

We use sj to denote the last 2ρ bits of r in the j-th check. According to

Lemma 4.5.1 and the parameters we chose, the probability that any subset of

{sj}j∈[2ρ] is linearly independent is 1 − 2−ρ. Now we will show that if linear in-

dependence holds then the adversary cannot learn anything.

For the j-checking, X =
(⊕`

m=1 rmxm

)
⊕
(⊕2ρ

m=1 smx`+m
)
. Note that

⊕2ρ
m=1 smx`+m

from each checking are independent random bits, where {xm}`
′

m=` is random. This

is true because the si’s are linearly independent. Therefore,
⊕2ρ

m=1 smx`+m acts as

one-time pad to
⊕`

m=1 rmxm. Given the above, the simulation is straightforward.

Note that for all global key queries, S can answer them honestly, since S knows the

global key for both parties.

Case 2: Pi ∈M. The simulation is straightforward if we could show that for any A

who uses inconsistent x’s can pass all 2ρ checks with at most negligible probability.
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This is what we will proceed to show.

Suppose that A sends x1 to F2
abit when interacting with one honest party, and

uses a different x2 with another honest party, where x1 6= x2. We also assume that

A passes all checks. Note that for the j-th checking, if A is not able to forge a MAC,

then the probability that the checking passes is the probability that Xj =
⊕

m rmx
1
m

and that Xj =
⊕

m rmx
2
m.

Pr

{⊕
m

rmx
1
m =

⊕
m

rmx
2
m

}

= Pr

{⊕
m

rm(x1
m ⊕ x2

m) = 0

}

= Pr

{⊕
m∈I

rm = 0 : I is the set of indices where x1
m 6= x2

m

}

= 1/2

Each checking is independent as long as r is selected independently. Therefore, A

can pass all checks with probability at most 2−2ρ.

Lemma 4.5.1. Let r1, ..., r` be random bit vectors of length k. With probability at

most 2`−k, there exists some subset I ⊂ [`], such that

⊕
i∈I

ri = 0

Proof. Note that given a fixed interval I ⊂ [`], the probability that
⊕

i∈I ri = 0 is

2−k. According to the union bound, the probability that any subset I ⊂ [`] has⊕
i∈I ri = 0 is 2−k × 2` = 2`−k.
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4.5.2 Multi-Party Authenticated Bits

Theorem 4.5.2. The protocol in Figure 4.6 securely realizes FaShare with statistical

security 2−ρ in the Fnabit-hybrid model.

Proof. Without loss of generality, we consider the case when PA is honest. The

simulator plays the role of Fnabit honestly, recording all values it sends to A and

values A sent to Fnabit. S acts as honest parties and check for each i ∈M, if Pi sent

consistent ∆i in all instructions to Fnabit. If not, S aborts outputting whatever A

outputs.

Note that this simulator has a 2−ρ statistical difference to the real world exe-

cution given Lemma 4.5.2

Lemma 4.5.2. When a malicious Pi computes MACs with Pj, denote ∆j
i as the

value Pi sent to Fnabit. If for some ∆j1
i 6= ∆j2

i , the honest parties abort with probability

at least 1− 2−ρ.

Proof. In the following, we will prove that malicious party passes each single test

with probability 1/2, independently. Since malicious parties are ensured to use the

same ∆ for each party, it can either cheat for all bits or be honest for all bits.

Therefore cheating malicious parties cannot pass all checks with more than 2−ρ

probability.

We will prove by contradiction. Suppose at least one party uses inconsistent

value and the check passes. We use Ki to denote the value Pi opened in step 3

(d), and use {M i
k}k 6=i to denote the value committed in step 3 (c). First compute
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Qi := Ki ⊕
⊕

k 6=i Ki[x
k
`+r] and and Qi

k = M i
k ⊕ Mk[x

i
`+r]. Since the check for Pi

passes, we know that the following is zero.

Ki ⊕
⊕
k 6=i

Mk
i =

(⊕
k 6=i

Ki[x
k
`+r]

)
⊕Qi ⊕

(⊕
k 6=i

Mi[x
k
`+r]⊕Qk

i

)

=

(⊕
k 6=i

Ki[x
k
`+r]

)
⊕Qi

⊕

(⊕
k 6=i

Ki[x
k
`+r]⊕ xk`+r∆k

i

)
⊕
⊕
k 6=i

Qk
i

=

(
Qi ⊕

⊕
k 6=i

Qk
i

)
⊕

(⊕
k 6=i

xk`+r∆
k
i

)

If Pi uses ∆k1
`+r 6= ∆k2

`+r for some k1 6= k2, k1, k2 ∈ H, then the value of
(
Qi ⊕

⊕
k 6=iQ

k
i

)
that makes the equation as 0 is different depending on the value of xk1

`+r and xk2
`+r.

This means that Pi needs to guess at least one of them to pass the check.

4.5.3 Half-Authenticated AND Triple

Lemma 4.5.3. If H is modeled as a random oracle, the protocol in Figure 4.8

securely realizes FHaAND in the FaShare-hybrid model.

Proof. Note that for each i ∈ [n], Pi has values {sj, tj}j 6=i. We denote the value

sj, tj held by Pi as sji , t
j
i .

Correctness. First we will show the correctness of the protocol. We further first

show that for any i 6= j, sji ⊕ tij = xjyij. We will discuss in two cases:

• xj = 0. In this case, Pj obtains tij = sj.

• xj = 1. In this case, Pj obtains tij = sj ⊕ yij.
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In any case, the above equation holds. Now the correctness of the protocol can be

seen given the following equation.⊕
i

⊕
j 6=i

xiyji =
⊕
i

⊕
j 6=i

(sji ⊕ t
i
j)

=
⊕
i

⊕
j 6=i

sji ⊕
⊕
i

⊕
j 6=i

tij

=
⊕
i

⊕
j 6=i

sij ⊕
⊕
i

⊕
j 6=i

tij

=
⊕
i

⊕
j 6=i

sij ⊕ tij


=
⊕
i

vi

Simulation proof. We will prove the security assuming PA is honest, that is,

PA ∈ H. The simulation is as follows:

1. S plays the role of FaShare storing all values used.

2. For each pair i 6= j, such that i ∈M, S obtains (H0, H1) sent by malicious Pi.

S computes sj := H0⊕ lsb(H(Ki[x
j])) and yij := H1⊕ lsb(H(Ki[x

j]⊕∆i))⊕ sj.

For each i ∈M, S sends (i, {yij}j 6=i) to FHaAND, which sends back {vi}i∈M.

3. For each i ∈M, S picks random {t′k}k∈H, such that
⊕

k 6=i s
i⊕
⊕

k 6=i,k∈M tki ⊕⊕
k 6=i,k∈H t

′i = vi. For each j ∈ H, S computes Hxi = lsb(H(K[xi]⊕xi∆j))⊕t′j,

and picks a random H1⊕xi . S sends (H0, H1) to Pi on behalf of an honest Pj.

First of all, the first two steps are perfect simulation. For the last step, it is also a

perfect simulation: first the one that is not opened is random since H is a random

oracle. The other value is also random, depending on the value of sj. However, in

order to make the joint distribution of the value A learns here and the output of an

honest PB indistinguishable between ideal and real world protocol, tk are tweaked

such that A will learn the same value in both Hybrids.
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4.5.4 Multi-Party Leaky Authenticated AND Triple

We have described the protocol and the key ideas of the proof in the main body.

Here we will directly proceed to the proof.

Theorem 4.5.3. If H is modeled as a random oracle, the protocol in Figure 4.10

securely realizes FLaAND in the (FaShare,FHaAND)-hybrid model.

Proof. We constructor a simulator in the following. For all global key queries, S

redirect them to FaShare and redirect the answer to A.

1. S plays the role of FaShare storing all information sent to parties.

2-3 S obtains (i, {yij}j 6=i) for each Pi ∈ M. S also obtains {ei}i∈M A broadcasts.

S first computes e∗i, which are what an honest Pi would have broadcast and

compute qi := ei ⊕ e∗i. S further computes ri,j := yij ⊕ yi, where yi is the

value S used when playing the role of FaShare. S computes ri :=
⊕

j∈M,j 6=i rj,i

q :=
⊕

i∈M qi, and sends (q, {ri}n) to FLaAND. If FLaAND terminates, S follows

the protocol as honest parties and abort in step 7.

4-5. For each i ∈ M, S receives {Ui,j}j∈H from Pi. S picks random {Uj,i}j∈H and

sends them to Pi playing the role of Pj for each j ∈ H.

6-7 If FLaAND terminates in step 2, then S follows the protocol as honest parties

and abort in step 7. If the equation hold, S will extract another selective

failure attack query.

Similar to the unforgeability proof, we use U∗i,j andH∗i to denote the values that
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an honest party would have compute, and define Qi,j = U∗i,j ⊕Ui,j, Qi = H∗i ⊕

Hi. This means that is a malicious Pi uses some Qi,j, then Pj will obtain some

Mi[x
j]Φi with an additive error of xjQi,j. S definesRk =

⊕
i 6=k,i∈HQk,i. S sends

(
⊕

i∈MQi, {Ri}i∈[n]) to FLaAND. If FLaAND terminates, S aborts outputting

whatever A outputs; otherwise, S obtains {Hi}i∈M and picks random {Hi}i∈H

such that
⊕

iHi = 0.

Note that the first five steps are perfectly indistinguishable given that H is

a random oracle, except that A can perform a selective failure attack. We will

show that the probability of abort due to this attack is the same between real-world

protocol and ideal-world protocol. The probability that the value A sent in step 2

and 3 cause an abort is the same as S’s query to FLaAND, noticing that the following

is true.

⊕
i

⊕
j 6=i

xiy
j
i ⊕

⊕
i

xiyi ⊕
⊕
i

(ei ⊕ ri)

=
⊕
i

⊕
j∈M,j 6=i

xiy
j
i ⊕

⊕
i

⊕
j∈H,j 6=i

xiy
j ⊕

⊕
i

xiyi ⊕
⊕
i

zi ⊕
⊕
i∈M

qi

=
⊕
i

⊕
j∈M,j 6=i

xirj,i ⊕
⊕
i

⊕
j 6=i

xiy
j ⊕

⊕
i

zi ⊕
⊕
i∈M

qi

=
⊕
i

⊕
j∈M,j 6=i

xirj,i ⊕
⊕
i∈M

qi

=

⊕
i

xi
⊕

j∈M,j 6=i
rj,i

⊕⊕
i∈M

qi

We will focus on the last step. If in step 6, it is the case that (
⊕

i x
i) (
⊕

i y
i) 6=

(
⊕

i z
i), then it is easy to see that the views are indistinguishable: all parties behave

the same between hybrids. According to the unforgeability lemma, the protocol will

abort with all but negligible probability. In the following, we will further focus on
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the case when the equation holds.

Note that in the idea world protocol, all Hi from H are picked randomly. We

need to show that in the real world protocol all Hi’s is also a random share of 0. In

particular, we define

F ∗i =

(⊕
k 6=i

Ki[x
k]Φi ⊕Mk[x

i]Φk

)

and will first show that for any proper subset S ⊂ H,
⊕

i∈S Fi is indistinguishable

from random to the A. We use e to denote an honest party such that e ∈ H, e /∈ S.

Such e always exists, since S is a proper subset of H.

⊕
i∈S

F ∗i =
⊕
i∈S

⊕
k 6=i

(
Ki[x

k]Φi ⊕Mk[x
i]Φk
)

=
⊕
i∈S

⊕
k 6=i

(
Ki[x

k]Φi
)
⊕
⊕
i∈S

⊕
k 6=i

(
Mk[x

i]Φk
)

=
⊕
i∈S

⊕
k 6=i

(
Ki[x

k]Φi
)
⊕
⊕
k∈S

⊕
i 6=k

(
Mi[x

k]Φi
)

=
⊕
i∈S

⊕
k 6=i

(
Ki[x

k]Φi
)
⊕
⊕
i∈[n]

⊕
k∈S,k 6=i

(
Mi[x

k]Φi
)

From the equation, it is clear that for i ∈ S, Ke[x
i] is not in the computation,

while Me[x
i] is. Since Ke[x

i] is randomly picked by Pe, we know
⊕

i∈S F
∗
i is random.

Therefore we can see that for any proper subset S ⊂ H,
⊕

i∈S Hi is indistinguishable

from random.

Finally we need to show that the probability of abort due to selective failure

attack is also the same. This is straightforward given the equation used in the
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Figure 4.13: Amazon EC2 regions used in the WAN experiment. Details see Ta-

ble 4.8.

unforgeability proof:

⊕
i

Hi =
⊕
i∈M

Hi ⊕
⊕
i∈H

Hi

=
⊕
i∈M

(H∗i ⊕Qi)⊕
⊕
i∈H

H∗i ⊕
⊕
k 6=i

xkQk,i


=
⊕
i

H∗i ⊕
⊕
i∈M

Qi ⊕
⊕
i∈H

⊕
k 6=i

xkQk,i


=
⊕
i∈M

Qi ⊕
⊕
i∈H

⊕
k 6=i

xkQk,i


=
⊕
i∈M

Qi ⊕
⊕
k

xk ⊕
i∈H,i 6=k

Qk,i


=
⊕
i∈M

Qi ⊕
⊕
k

xkRk

4.6 Evaluation

4.6.1 Implementation Details

We implemented our protocol in the EMP-toolkit [10] framework and will be made

publicly available as a part of it. To fully explore performance characteristics of our
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Table 4.3: Circuits used in our evaluation.

Circuit n1 n2 n3 |C|

AES 128 128 128 6800
SHA-128 256 256 160 37300
SHA-256 256 256 256 90825

(a) LAN setting. (b) WAN setting.

Figure 4.14: Running time breakdown for evaluating AES. In the LAN setting, all

parties are located in the same region; In the WAN setting, all parties are located in

different regions worldwide, for example, 2PC: within US-east; 5PC: within North

America; 8PC: within North America and Europe; 12PC: within North America,

Europe and Asia; 13PC: further adds Sydney; 14PC: all parties in Figure 4.13.

protocol, we evaluate our implementation in three different settings:

• LAN setting. Machines are located in the same Amazon EC2 region. Ex-

periments are performed for up to 14 parties.

• WAN setting. Each Machine is located in a different Amazon EC2 region

(locations shown in Figure 4.13). For a k-party computation experiment, a

prefix subset of the machines in Table 4.8 are selected. For example, parties
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in 3PC experiments are located in North Virginia, Ohio, and North California

respectively. Experiments are run for up to 14 parties, which is the number of

different Amazon EC2 regions available.

• Crowd setting. In the LAN case, we evaluate up to 128 parties all located in

the same Amazon EC2 region. In the global-scale case, we choose 8 different

cities across 5 continents and open up to 16 parties in each city (totally 128

parties).

All machines are of type c4.8xlarge, with 36 cores and 60 GB RAM. Network

bandwidth within the same region is about 10Gbps. The bandwidth across different

regions depends on the location of the machines. All experiments are based on

ρ = 40, κ = 128. We extend justGarble [18] to support garbling of longer tables

in a straightforward manner. In the implementation, we used the “broadcast with

abort” protocol by Goldwasser and Lindell [77] and achieves the notion of secure

computation with abort. We observe small variance when running in the LAN

setting and slightly higher variance in the WAN setting. All numbers reported in

LAN setting are on average of 10 runs, ones in WAN setting are on average of 20

runs, and ones in the Crowd setting are on average of 5 runs due to the lengthy

experiments.

4.6.2 Performance on Basic Circuits

We evaluate commonly used benchmark circuits on our protocol, including AES,

SHA-1, and SHA-256. Information about these circuits can be found in Table 4.3.
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Table 4.4: Detailed experiment results for the crowd setting. Timings are measured

in terms of milliseconds. In the LAN setting, all parties are located in the same

region. In the Worldwide setting. 8PC is performed with each party located in a

different region; 16PC is performed with 2 parties located in each region; others can

be interpreted similarly.

WAN setting
n Setup Indep. Depen. Online Total

8 16736.0 30647.4 5905.2 783.3 54071.9
16 18708.1 21699.6 12243.5 598.8 53250.0
32 35838.8 19038.4 8242.3 716.6 63836.1
64 71913.8 25280.7 29416.6 1564.0 128175.2
128 88055.9 30795.9 22659.1 2316.2 143827.0

LAN setting
n Setup Indep. Depen. Online Total

8 49.4 122.2 35.7 7.8 215.1
16 78.8 227.8 121.1 29.4 457.0
32 129.9 627.0 446.2 112.3 1315.5
64 212.9 1182.2 2630.1 476.5 4501.7
128 383.0 2727.4 11669.6 1870.2 16650.2

We plot in Figure 4.14 the results for AES in different network setting and

performance breakdown as described above. Detailed timings and more results for

all three circuits can be found in Table 3.4 in the Appendix. First, the performance

of three-party computation is extremely efficient: it takes 95 ms to evaluate a circuit

for AES, with 2 ms online time. We also find that in the LAN setting, the slowdown

from 2PC to 3PC is roughly 1.5×; the slowdown in the WAN setting is larger. This

is caused by the network latency: the first two parties are both located in the U.S.

east coast, while the third party is located in the U.S. west coast with much higher

latency.
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We also find that the cost of the one-time setup is almost independent of num-

ber of parties for small number of parties. This is mainly due to the parallelization

in the implementation that allows all base-OT to run at the same time.

World-wide MPC experiment. We would like to emphasize that in the case of

WAN setting with 14 parties, it is a “world-wide” MPC experiment over 5 continents.

To the best of our knowledge, we are the first to conduct MPC over such large range

even considering semi-honest MPC protocols.

We also notice a big “jump” in running time from 8 parties to 9 parties in the

WAN setting. We believe this is because of the network condition: for experiments

up to 8 parties, it is within the US/Europe area; the ninth party is located in

asia, where the communication to US/Europe is much slower. More details see

Figure 4.14b.

4.6.3 Evaluation in a Global Setting

In this section, we focus on the performance of our protocol with a large number

of parties. We summarize our results in Figure 4.4. We notice that our protocol

scales very well with increasing number of parties. Even in a setting with 128

parties located in the same LAN, where up to 127 of them can be corrupted, it

takes less than 17 seconds end-to-end running time to compute AES. Note that the

performance of a 64-party computation on AES is comparable to the performance

of what used to be the state-of-the-art malicious 2-party computation three years

ago [6], and we believe further optimizations and improvements based on our work
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will flourish too.

When comparing the running time of 128 parties to the one of 8 parties, we

find that the cost of function-dependent phase increases much faster than the cost

of function-independent phase. This is because our function-independent phase is

symmetric and all communication loads are evenly distributed among all parties;

while in the function-dependent phase, n−1 garblers send the garbled circuit to the

evaluator, and the bandwidth of the evaluator becomes the bottleneck. Therefore

in the case where there are a lot of parties, when we double the number of parties,

the running time of the function-dependent phase almost doubles.

We also run the same experiment in the worldwide range. We choose 8 most

separate regions out of 14 and open up to 16 machines in each region (thus totally

128 machines). The performance is also shown in Table 4.4: it takes slightly more

than a minute for 64 parties to compute AES and about 2.5 minutes for 128 parties

located all around the world. We also observe that setup takes much more time; we

believe it is due to the high latency.

4.6.4 Comparison to Other Work

Malicious MPC on AES. Evaluating AES with malicious security against n− 1

corruption was studied by Damg̊ard et al. [78]. They reported 240 ms online time

for 3 parties and 340 ms online time for 10 parties. The offline time for 3 and 10

parties are around 4200 seconds and 15000 seconds respectively. Our protocol takes

95 ms total time to evaluate AES for 3 parties with online time as small as 2 ms;
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and 268 ms total time with online time 12 ms. The improvement for online phase

ranges from 28× to 120×; and the improvement for total time ranges from 44000×

to 56000×. This is a huge improvement even considering hardware differences.

BMR-style protocols. Lindell et al. [42, 43] studied how to use SPDZ and SHE

to construct a BMR-style protocol. Since their protocol is not implemented, we

compare the communication complexity. After incorporating various optimizations,

every AND gate still need 3n + 1 SPDZ multiplication triples. Together with the

most recent advance in SPDZ triple generation by Keller et al. [49], generating

one SPDZ triple with n parties requires communication about 180(n − 1) kilobits

per party. Therefore the communication cost per AND gate per party is about

540n(n − 1) kilobits. In our protocol, each AND gate only needs one AND triple

from FPre, which, using our new protocol in Section 4.4, requires communication

roughly 2.28(n− 1) kilobits per party. Therefore, the improvement of our protocol

compared to the best-optimized BMR protocol based on Lindell et al. is about

237n× with n parties. For a three-party setting, it is an improvement of 711×; for

the 128-party computation that we perform, the improvement is as high as 30, 000×!

Ben-Efraim et al. [56] presented a protocol secure in the semi-honest model

based on BMR. Surprisingly, given the fact that our protocol is maliciously secure,

while theirs only has a semi-honest security, our implementation has roughly the

same performance as theirs. In Table 4.5, we compare the running time of our

protocol with the running time of theirs based on the same hardware. We notice

that for both online time and total time, the performance of the two protocols are
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Table 4.5: Compare with Ben-Efraim et al. [56] Timings are in terms of millisec-

onds. Their protocol works in the semi-honest setting; ours is maliciously secure.

Comparison based on SHA-256, with the same hardware configuration.

3 8 16 32

[56]
Online 80 150 400 1500
Total 228 2000 5900 -

This work
Online 24 95 370 1632
Total 618 1945 6711 18828

roughly the same.

Malicious 3PC protocols with honest majority. Mohassel et al. [62] pro-

posed an efficient protocol for malicious 3PC with honest majority. Their protocol

requires only one garbled circuit to be sent and therefore has a smaller communica-

tion complexity than us. We estimate that our protocol requires about 14× more

communication than theirs. However interestingly we also find that the online time

of two protocols are roughly the same: their protocol requires 31 ms evaluation time,

while ours needs 23.4 ms evaluation time. We belive this is due to the fact that their

protocol needs to check that the garbled circuit received from two garblers are the

same, while it is not needed in our protocol.

Furukawa et al. [63] also presented a malicious 3PC protocol with honest ma-

jority. Their protocol has a smaller communication overhead compared to the pro-

tocol above by Mohassel et al. but requires at least one round of communication

per level of the circuit. In addition to a stronger security guarantee that we support

dishonest majority, our protocol has a better latency, especially for deep circuit (e.g.
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Table 4.6: Compare bandwidth consumption with Hazay et al. [75]. All numbers are

the maximum amount of data one party needs to send in the function-independent

phase, measured in terms of megabytes (MB). Numbers for ρ = 80 are calculated

based on the complexity of both protocols.

ρ 3 8 16

[75]
40 14 49 105
80 55 193 413

This work
40 4.8 16.9 36.4
80 8.6 30 64.5

SHA-256 has a depth of 4000), while their protocol has a better throughput.

Compare with Hazay et al. [75]. We also compare with the concurrent work by

Hazay et al.. As their protocol is benchmarked on different hardware and network

configurations, we only compare the bandwidth usage. We find that both protocols

has similar function-dependent cost and online cost. However, due to our improved

preprocessing protocol, our function-independent cost is much smaller than theirs.

In Table 4.6, we compare the function-independent cost of for AES evaluation with

different value of ρ. Our protocol uses 3× to 6.5× less communication compared to

theirs. Note that the cost of function-independent phase dominates the overall cost,

therefore the speed up here also translates to the speed up to the whole computation.

4.6.5 Communication Complexity

In this section, we evaluate the communication complexity of our protocol. All

numbers reported here are the maximum amount of data sent from one party. All
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Table 4.7: Communication complexity of our protocol. Bandwidth are measured for

evaluating AES and SHA-256. All numbers are the maximum amount of data one

party needs to send.

n Setup Indep. Depen. Online Total

AES

3 57.1 KB 4.8 MB 1.3 MB 4.5 KB 6.2 MB
4 85.7 KB 7.2 MB 1.8 MB 4.5 KB 9.1 MB
5 114.2 KB 9.7 MB 2.2 MB 4.5 KB 12.0 MB
6 142.8 KB 12.1 MB 2.7 MB 4.5 KB 14.9 MB
7 171.4 KB 14.5 MB 3.1 MB 4.5 KB 17.8 MB
8 199.9 KB 16.9 MB 3.5 MB 4.5 KB 20.7 MB
16 428.4 KB 36.4 MB 7.1 MB 4.5 KB 44.0 MB

SHA-256

3 57.1 KB 63.3 MB 17.4 MB 9.0 KB 80.8 MB
4 85.7 KB 95.0 MB 23.4 MB 9.0 KB 118.5 MB
5 114.2 KB 126.6 MB 29.4 MB 9.0 KB 156.2 MB
6 142.8 KB 158.3 MB 35.4 MB 9.0 KB 193.9 MB
7 171.4 KB 190.0 MB 41.4 MB 9.0 KB 231.6 MB
8 199.9 KB 221.7 MB 47.4 MB 9.0 KB 269.3 MB
16 428.4 KB 475.1 MB 95.4 MB 9.0 KB 570.9 MB

numbers are obtained by running our implementation, which are slightly higher than

calculated values due to implementation details. In Table 4.7, we summarize the

bandwith use for AES and SHA-256 for up to 16 parties.

We can see from the figure that the communication required per party grows

linearly with the number of parties. In addition, the communication cost of the

Setup phase and the Online phase are very small. The total communication cost is

dominated by the function-independent phase.
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Table 4.8: List of all Amazon EC2 regions used in the WAN experiment.

Continent Region

North America

North Virginia Ohio
North California Oregon

Toronto

Europe
Ireland London

Frankfurt

Asia
Mumbai Tokyo

Seoul Singapore

Australia Sydney

South America São Paulo
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Chapter 5: Improved Authenticated Garbling in the Two-Party Set-

ting

In this chapter, we will discuss more optimizations that further reduces the com-

munication and computation complexity of authenticated garbling technique in the

two-party. In particular, We show several improvements to the protocol described

in Chapter 3 that, overall, improve its performance by a factor of 2–3×:

• We show how to make the “authenticated garbling” compatible with the half-

gate optimization of Zahur et al. We also show that it is possible to avoid

sending an information-theoretic MAC for each garbled row. These two op-

timizations result in a 2.6× improvement in communication and, somewhat

surprisingly, result in a protocol for malicious secure two-party computation in

which the communication complexity of the online phase is essentially equiv-

alent to that of state-of-the-art semi-honest secure computation.

• The function-dependent phase of the WRK protocol involves the computation

of (shared) “AND triples” between the parties. We show various optimizations

of that step that result in a 1.5× improvement in the communication and a 2×

improvement in the computation. Our optimizations also simplify the protocol

significantly.
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We can combine these improvements in various ways, and suggest in particular two

instantiations: one protocol that minimizes the total cost across all phases, and one

that trades off increased communication in the function-independent preprocess-

ing step for reduced communication in the function-dependent preprocessing step.

These protocols improve upon the state-of-the-art by a significant margin.

Outline In Section 5.1 we provide some background about the WRK protocol.

We provide the high-level intuition behind our improvements in Section 5.2. In

Section 5.3, we describe in detail our optimizations of the online phase of the WRK

protocol, and in Section 5.4 we discuss our optimizations of the preprocessing phase.

In Section 5.5, we compare our resulting protocols to prior work.

5.1 Background

We begin by describing some general background, followed by an in-depth review of

the authenticated garbling technique. In the section that follows, we give a high-level

overview of our optimizations and improvements.

Opening authenticated values. An authenticated bit [b]A known to PA can be

opened by having PA send b and M[b] to PB, who then verifies that M[b] = K[b]⊕b∆B.

As observed in prior work [44], it is possible to open n authenticated bits with less

than n times the communication. Specifically, PA can open [b1]A, . . . , [bn]A by sending

b1, . . . , bn along with h := H(M[b1], . . . ,M[bn]), where H is a hash function modeled

as a random oracle. PA then simply checks whether h = H(K[b1]⊕b1∆B, . . . ,K[bn]⊕

bn∆B).
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We let Open([b1]A, . . .) denote the process of opening one or more authenticated

bits, and overload this notation so that Open(〈b1 | b2〉) denotes the process of having

each party open its portion of an authenticated share.

Circuit-dependent preprocessing. We consider boolean circuits with gates rep-

resented as a tuple (α, β, γ, T ), where α and β are (the indices of) the input wires

of the gate, γ is the output wire of the gate, and T ∈ {⊕,∧} is the type of the gate.

We use W to denote the output wires of all AND gates, I1, I2 to denote the input

wires for each party, and O to denote the output wires.

Wang et al. [7] introduced an ideal functionality called Fpre (cf. Figure 5.1) that

is used by the parties in a circuit-dependent, but input-independent, preprocessing

phase. This functionality sets up information for the parties as follows:

1. For each input wire of the circuit as well as output wire of an AND gate,

namely w, generate a random authenticated share 〈rw | sw〉. We refer to the

value λw
def
= rw ⊕ sw as the mask on wire w.

2. For the output wire γ of each XOR gate (α, β, γ,⊕), generate a random au-

thenticated share 〈rγ | sγ〉 whose value rγ ⊕ sγ is the XOR of the masks on the

input wires α, β.

3. For each AND gate (α, β, γ,∧), generate a random authenticated share 〈r∗γ | s∗γ〉

such that

r∗γ ⊕ s∗γ = (rα ⊕ sα) ∧ (rβ ∧ sβ).

We refer to a triple of authenticated shares (〈rα | sα〉 , 〈rβ | sβ〉 , 〈r∗γ | s∗γ〉) for which
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Functionality Fpre

1. Choose uniform ∆A,∆B ∈ {0, 1}ρ. Send ∆A to PA and ∆B to PB.

2. For each wire w ∈ W ∪ I, generate a random authenticated share 〈rw | sw〉.

3. For each gate G = (α, β, γ, T ), in topological order:

• If T = ⊕, generate a random authenticated share 〈rγ | sγ〉 for which rγ ⊕ sγ =
rα ⊕ sα ⊕ rβ ⊕ sβ .

• If T = ∧, generate a random authenticated share 〈r∗γ | s∗γ〉 for which r∗γ ⊕ s∗γ =
(rα ⊕ sα) ∧ (rβ ⊕ sβ).

Figure 5.1: Preprocessing functionality for some fixed circuit.

r∗γ ⊕ s∗γ = (rα ⊕ sα) ∧ (rβ ⊕ sβ) as an authenticated AND triple. These are just

(authenticated) Beaver triples [69] over the field F2.

From authenticated shares to shared labels. One important optimization in

the WRK protocol is to compute shares of labels efficiently using authenticated

shares. Assume the parties hold an authenticated share 〈r | s〉 of some mask value

λ = s⊕ r. It is then easy to compute a share of λ∆A, since

λ∆A = (r ⊕ s)∆A =
(
r∆A ⊕ K[s]

)
⊕
(

M[s]
)
.

Since PA has r, ∆A, and K[s] while PB has M[s], two parties can locally compute

share of λ∆A, namely [λ∆A] given only 〈r | s〉.

Now we can use this important fact to compute shares of labels for secret

masked bit efficiently. Assuming that the global authentication key (∆A) is also

used as the free-XOR Delta, then we know that Lγ,ẑu,v = Lγ,0 ⊕ ẑu,v∆A. Therefore,

the task of computing share of labels reduces to the task of computing share of
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ẑu,v∆A, since Lγ,0 is known to PA. Notice that

ẑu,v∆A = ((λα ⊕ u) ∧ (λβ ⊕ v)⊕ λγ) ∆A

= λαλβ∆A ⊕ uλα∆A ⊕ vλβ∆A ⊕ uv∆A ⊕ λγ∆A

Assume the parties hold an authenticated AND triple (〈rα | sα〉, 〈rβ | sβ〉, 〈r∗γ | s∗γ〉),

and a random authenticated share 〈rγ | sγ〉, such that λα = rα ⊕ sα, λβ = rβ ⊕ sβ,

λα ∧ λβ = r∗γ ⊕ s∗γ, λγ = rγ ⊕ sγ. Now, two parties can locally computes shares

of λα∆A, λβ∆A, λγ∆A, and (λα ∧ λβ)∆A, and compute share of ẑu,v∆A by linearly

combine the above shares.

5.2 Overview of Our Optimizations

We separately discuss our optimizations for the authenticated garbling and the pre-

processing phases. Details and proofs can be found in Sections 5.3 and 5.4.

5.2.1 Improving Authenticated Garbling

As a high level, the key ideas behind authenticated garbling are that (1) it is possi-

ble to share garbled circuits such that neither party knows how rows in the garbled

tables are permuted (since no party knows the masks on the wires); moreover,

(2) information-theoretic MACs can be used to ensure correctness of the garbled

tables. In the original protocol by Wang et al., these two aspects are tightly inte-

grated: each garbled row includes an encryption of the corresponding MAC tag, so

the evaluator only learns one such tag for each gate.
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Here, we take a slightly different perspective on how authenticated garbling

works. In particular, we (conceptually) divide the protocol into two parts:

• In the first part, the parties compute a shared garbled circuit, without any

authentication, and let the evaluator reconstruct and evaluate that garbled

circuit. We stress here that, even though there is no authentication, corrupting

one or more garbled rows does not allow a selective-failure attack for the same

reason as in the WRK protocol: any failure depends only on the masked wire

values, but neither party knows those masks.

This part is achieved by the encrypted wire labels alone, which have the form

H(Lα,u, Lβ,v)⊕ [Lγ,ẑu,v ]. These require 4κ bits of communication per gate.

• In the second part, the evaluator holds masked wire values for every wire of the

circuit. It then checks correctness of all these masked values. For example, it

will ensure that for every AND gate, the underlying (real) values on the wires

form an AND relationship. Such verification is needed for masked values that

PB obtains during the evaluation of the garbled circuit.

The WRK protocol achieves this by encrypting authenticated shares of the

form H(Lα,u, Lβ,v)⊕(ru,v,M[ru,v]) in each row of a garbled table. The evaluator

decrypts one of the rows and checks the appropriate tag. These encrypted tags

contribute 4ρ bits of communication per gate.

With this new way of viewing authenticated garbling, we can optimize each part

independently. By doing so, we are able to reduce the communication of the first
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part to 2κ+ 1 bits per gate, and reduce the communication of the second part

to 1 bit per gate. In the process, we also reduce the computation (in terms of

hash evaluations) by about half. In the following, we discuss intuitively how these

optimizations work.

Applying row-reduction techniques. In garbled circuits, row reduction refers

to techniques that use fewer than four garbled rows per garbled gate [79, 19, 14,

80]. We review the simplest row-reduction technique here, describe the challenge of

applying the technique to authenticated garbling, and then show how we overcome

the challenge. This will serve as a warm-up to our final protocol that is compatible

with the half-gate technique.

In classical garbling, a garbled AND gate can be written as (in our notation):

G0,0 = H(Lα,0, Lβ,0)⊕ Lγ,ẑ0,0 = H(Lα,0, Lβ,0)⊕ Lγ,0 ⊕ ẑ0,0∆A

G0,1 = H(Lα,0, Lβ,1)⊕ Lγ,ẑ0,1 = H(Lα,0, Lβ,1)⊕ Lγ,0 ⊕ ẑ0,1∆A

G1,0 = H(Lα,1, Lβ,0)⊕ Lγ,ẑ1,0 = H(Lα,1, Lβ,0)⊕ Lγ,0 ⊕ ẑ1,0∆A

G1,1 = H(Lα,1, Lβ,1)⊕ Lγ,ẑ1,1 = H(Lα,1, Lβ,1)⊕ Lγ,0 ⊕ ẑ1,1∆A.

The idea behind GRR3 row reduction [79] is to choose wire labels so G0,0 = 0κ.

That is, the garbler chooses

Lγ,0 := H(Lα,0, Lβ,0)⊕ ẑ0,0∆A.

The garbler now needs to send only (G0,1, G1,0, G1,1), reducing the communication

from 4κ to 3κ bits. If the evaluator has input wires with masked values (0, 0), it

can simply set G0,0 = 0κ and then proceed as before.
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In authenticated garbling, the preprocessing results in shares of {ẑu,v∆A}.

Hence, if PA could compute Lγ,0 then the parties could locally compute shares of

the {Gu,v} (since PA knows all the Lα,u, Lβ,v values and their hashes). PA could then

send its shares to PB to allow PB to recover the entire garbled gate. Unfortunately,

PA cannot compute Lγ,0 because PA does not know ẑ0,0! Indeed, that value depends

on the secret wire masks, unknown to either party.

Summarizing, row-reduction techniques in general compute one (or both) of

the output-wire labels as a function of the input-wire labels and the secret masks,

making them a challenge for authenticated garbling.

Our observation is that although PA does not know ẑ0,0, the garbling requires

only ẑ0,0∆A for which the parties do have shares. Let SA and SB denote the parties’

shares of this value, so that SA ⊕ SB = ẑ0,0∆A. Our main idea is for the parties to

“shift” the entire garbling process by the value SB, as follows:

1. PA computes Lγ,0 := H(Lα,0, Lβ,0)⊕ SA. Note this value differs from the stan-

dard garbling value by a shift of SB. Intuitively, instead of choosing Lγ,0 so

that G0,0 = 0κ, we set implicitly set G0,0 = SB. Although PA does not know

SB, it only matters that the evaluator PB knows it.

2. Based on this value of Lγ,0, the parties locally compute shares of the garbled

gate G0,1, G1,0, G1,1 defined above, and open them to PB.

3. When PB evaluates the gate on input Lα,u, Lβ,v, if (u, v) 6= (0, 0) then evaluation

is the same as usual. If (u, v) = (0, 0) then PB sets G0,0 = SB. This is

equivalent to PB doing the usual evaluation but shifting the result by SB.
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Using the half-gate technique. The state-of-the-art in semi-honest garbling is

the half-gate construction of Zahur et al. [14]. It requires 2κ bits of communication

per AND gate, while being compatible with free-XOR. We describe this idea, trans-

lated from the original work [14] to be written in terms of masks and masked wire

values so as to match our notation.

The circuit garbler computes a garbled gate as:

G0 := H(Lα,0)⊕H(Lα,1)⊕ λβ∆A

G1 := H(Lβ,0)⊕H(Lβ,1)⊕ Lα,0 ⊕ λα∆A,

and computes the 0-label for that gate’s output wire as:

Lγ,0 := H(Lα,0)⊕H(Lβ,0)⊕ (λαλβ ⊕ λγ)∆A.

If the evaluator PB holds masked values u, v and corresponding labels Lα,u, Lβ,v, it

computes:

Eval(u, v, Lα,u, Lβ,v) := H(Lα,u)⊕H(Lβ,v)⊕ uG0 ⊕ v(G1 ⊕ Lα,u).

This results in the value

Eval(u, v, Lα,u, Lβ,v) = H(Lα,0)⊕H(Lβ,0)⊕ (uv ⊕ vλα ⊕ uλβ)∆A

= H(Lα,0)⊕H(Lβ,0)⊕
(

(u⊕ λα)(v ⊕ λβ)⊕ λαλβ
)

∆A

= H(Lα,0)⊕H(Lβ,0)⊕ (ẑu,v ⊕ λαλβ ⊕ λγ)∆A,

which is the correct output Lγ,ẑu,v = Lγ,0 ⊕ ẑu,v∆A.

As before, this garbling technique is problematic for authenticated garbling,

because the garbler PA cannot compute Lγ,0 as specified. (PA does not know the

wire masks, so cannot compute the term (λαλβ ⊕ λγ)∆A.)
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However, the parties hold1 shares of this value; say, SA⊕SB = (λαλβ⊕λγ)∆A.

We can thus conceptually “shift” the entire garbling procedure by SB to obtain the

following interactive variant of half-gates:

1. PA computes the output wire label as

Lγ,0 := H(Lα,0)⊕H(Lβ,0)⊕ SA,

which is “shifted” by SB from what the half-gates technique specifies.

2. The parties locally compute shares of G0, G1 as per the half-gates technique

described above. These shares are opened to PB, so PB learns (G0, G1).

3. To evaluate the gate on inputs Lα,u, Lβ,v, the evaluator PB performs standard

half-gates evaluation and then adds SB as a correction value. This results in

the correct output-wire label, since:

Eval(Lα,u, Lβ,v)⊕ SB = Eval(Lα,u, Lβ,v)⊕ (λαλβ ⊕ λγ)∆A ⊕ SA

= H(Lα,0)⊕H(Lβ,0)⊕ ẑu,v∆A ⊕ SA

= Lγ,0 ⊕ ẑu,v∆A

= Lγ,ẑu,v .

Authentication almost for free. In the WRK scheme, suppose the actual values

on the wires of an AND gate are zα, zβ, zγ with zα ∧ zβ = zγ. During evaluation, PB

learn masked values ẑα = zα ⊕ λα, ẑβ = zβ ⊕ λβ, and ẑγ = zγ ⊕ λγ. For correctness

1Note that (λαλβ ⊕ λγ) = ẑ0,0, the same secret value as in the previous example.
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it suffices to show that

zα ∧ zβ = zγ ⇐⇒ (ẑα ⊕ λα) ∧ (ẑβ ⊕ λβ) = (ẑγ ⊕ λγ)

⇐⇒ (ẑα ⊕ λα) ∧ (ẑβ ⊕ λβ)⊕ λγ︸ ︷︷ ︸
ẑα,β

= ẑγ.

Note the parties already have authenticated shares of λα, λβ, λγ, and (λα ∧ λβ), so

they can also derive authenticated shares of related values.

In the WRK scheme the garbler PA prepares an authenticated share (MAC) of

ẑα,β corresponding to each of the 4 possible values of ẑα, ẑβ. It encrypts this share so

that it can only be opened using the corresponding wire labels. PB can then decrypt

and verify the relevant ẑα,β value (and take it to be the masked output value ẑγ).

Our approach is to apply a technique suggested for the SPDZ protocol [44]:

evaluate the circuit without authentication and then perform batch authentication

at the end. Thus, in our new protocol authentication works as follows:

1. PB evaluates the circuit, obtaining (unauthenticated) masked values ẑα for

every wire α.

2. PB reveals the masked values of every wire (1 bit per wire). Revealing these

to PA does not affect privacy because the masks are hidden from both parties

(except for certain input/output wires where one or both of the parties already

know the underlying values).

3. PA generates authenticated shares of only the relevant ẑα,β values and sends

them. PB verifies the authenticity of each share. This is equivalent to sending

a MAC of PA’s shares. As described in Section 5.1, this can be done by sending

115



only a hash of the MACs.

This technique for authentication adds an extra round, but it makes the authenti-

cation almost free in terms of communication. PB sends 1 bit per wire and PA sends

only a single hash value to authenticate.

Details of the optimizations described above can be found in Section 5.3.

5.2.2 Improving the Preprocessing Phase

We also improve the efficiency of preprocessing in the WRK protocol significantly;

specifically: (1) we design a new protocol for generating so-called leaky-AND triples.

Compared to the best previous protocol by Wang et al., it reduces the number

of hash calls by 2.5× and reduces communication by κ bits. (2) we propose a

new function-dependent preprocessing protocol that can be computed much more

efficiently. We remark that the second optimization is particularly suitable for RAM-

model secure computation, where CPU circuits are fixed ahead of time.

To enable the above optimizations, we need lsb(∆A) = 1 and lsb(∆B) = 0,

where lsb(x) denotes the least significant bit of x.

A new leaky-AND protocol. The output of a leaky-AND protocol is a random

authenticated AND triple (〈rα | sα〉 , 〈rβ | sβ〉 , 〈r∗γ | s∗γ〉) with one caveat: the adver-

sary can choose to guess the value of rα ⊕ sα. A correct guess remains undetected

while an incorrect guess will be caught. (See Figure 5.3 for a formal definition.)

The leaky-AND protocol by Wang et al. works in two steps. Two parties first run a

protocol whose outputs are triples that are leaky without any correctness guarantee;
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then a checking procedure is run to ensure correctness. The leakage is later elim-

inated by bucketing. In our new protocol, we observe that these two steps can be

computed at the same time, reducing the number of rounds as well as the amount

of computation (i.e., H-evaluations). Moreover, computing and checking can be

further improved by adopting ideas from the half-gate technique. Details are below.

Recall that in the half-gate approach, if a wire is associated with wire labels

(L0, L1 = L0 ⊕∆A), the first row of the gate computed by the garbler has the form

G = H(L0)⊕H(L1)⊕ C,

for some C. An evaluator holding (b, Lb) can evaluate it as

E = bG⊕H(Lb)

= b(H(L0)⊕H(L1)⊕ C)⊕H(Lb)

= b(H(L0)⊕H(L1))⊕H(Lb)⊕ bC

= H(L0)⊕ bC.

(5.1)

Correctness ensures that E ⊕ H(L0) = bC, which means that after the evaluation

the two parties hold shares of bC. Note that when free-XOR is used with shift ∆A,

then a pair of garbled labels (L0, L1) and the IT-MAC for a bit (i.e., (K[b],M[b]))

have the same structure. Therefore the above can be reformulated and extended as

follows:

G = H(K[b])⊕H(M[b])⊕ C1

E = bG⊕H(M[b])⊕ bC2

. Assuming the two parties have an authenticated bit [b]B, then E ⊕ H(K[b]) =

b(C1⊕C2). If we view C1 and C2 as shares of some value C = C1⊕C2, then this can
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be interpreted as a way to select on a shared value such that the selection bit b is

known only to one party and at the same time the output (namely, bC = H(K[b])⊕E)

is still shared.

Now we are ready to present our protocol. We will start with a set of random

authenticated bits (〈x1 |x2〉 , 〈y1 | y2〉 , 〈z1 | r〉). We want the two parties to directly

compute shares of

S = ((x1 ⊕ x2) ∧ (y1 ⊕ y2)⊕ z1 ⊕ r) (∆A ⊕∆B).

Assuming lsb(∆A ⊕∆B) = 1, revealing d = lsb(S) allows the parties to “fix” these

random authenticated shares to a valid triple (by computing [z2]B = [r]B⊕d). Once

the parties hold shares of S (for example, PA holds S1 and PB holds S2 = S ⊕ S1),

checking the correctness of d also becomes easy: d is valid if and only if S1 ⊕ d∆A

from PA equals to S2⊕ d∆B from PB. A wrong d can pass the equality check only if

the adversary guesses the other party’s ∆ value. Now the task is to compute shares

of S, where S can be rewritten as

S = x1(y1 ⊕ y2)(∆A ⊕∆B)⊕ x2(y1 ⊕ y2)(∆A ⊕∆B)⊕ (z1 ⊕ r)(∆A ⊕∆B).

Here, we will focus on how to compute shares of

x2(y1∆A ⊕ y1∆B ⊕ y2∆A ⊕ y2∆B).

Now we apply the half-gate observation: PA has C1 = y1∆A ⊕ K[y2]⊕M[y1] and PB

has C2 = y2∆B ⊕ K[y1]⊕M[y2], and we have

x2(C1 ⊕ C2) = x2(y1∆A ⊕ y1∆B ⊕ y2∆A ⊕ y1∆B).
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Therefore, this value can be computed by PA sending one ciphertext to PB. Given

the above observations, the final protocol can be derived in a straightforward way.

Overall this new approach improves communication by 1.2× and improves compu-

tation by 2×.

For details and a security proof corresponding to the above, see Section 5.4.1.

New function-dependent preprocessing. Here we show how to further improve

the efficiency of function-dependent preprocessing. Recall that in the WRK protocol,

each AND triple is derived from B leaky-AND triples, for B ≈ ρ
logC

; these triples

are then used to multiply authenticated masked values for each AND gate of the

circuit. Our observation is that we can reduce the number of authenticated shares

needed per gate from 3B + 2 to 3B − 1. This idea was initially used by Araki et

al. [81] in the setting of honest-majority three-party computation. See Section 5.4.2

for details.

5.3 Technical Details: Improved Authenticated Garbling

Since we already discussed the main intuition of the protocol in the previous sec-

tion, we will present our main protocol in the Fpre-hybrid model. Detailed protocol

description is shown in Figure 5.2. Each step in the protocol can be summarized as

follows:

1. Parties generate circuit preprocessing information using Fpre.

2. PA computes its own share of the garbled circuit and sends to PB.
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Protocol Π2pc

Inputs: PA holds x ∈ {0, 1}I1 and PA holds y ∈ {0, 1}I2 . Parties agree on a circuit for a function f :

{0, 1}I1 × {0, 1}I2 → {0, 1}O.

1. PA and PB call Fpre, which sends ∆A to PA, ∆B to PB, and sends {〈rw | sw〉}w∈I∪W , {〈r∗w | s∗w〉}w∈W
to PA and PB. For each w ∈ I1 ∪ I2, PA also picks a uniform κ-bit string Lw,0.

2. Following the topological order of the circuit, for each gate G = (α, β, γ, T ),

• If T = ⊕, PA computes Lγ,0 := Lα,0 ⊕ Lβ,0

• If T = ∧, PA computes Lα,1 := Lα,0 ⊕∆A, Lβ,1 := Lβ,0 ⊕∆A, and

Gγ,0 := H(Lα,0, γ)⊕H(Lα,1, γ)⊕ K[sβ ]⊕ rβ∆A
Gγ,1 := H(Lβ,0, γ)⊕H(Lβ,1, γ)⊕ K[sα]⊕ rα∆A ⊕ Lα,0
Lγ,0 := H(Lα,0, γ)⊕H(Lβ,0, γ)⊕ K[sγ ]⊕ rγ∆A ⊕ K[s∗γ ]⊕ r∗γ∆A

bγ := lsb(Lγ,0)

PA sends Gγ,0, Gγ,1, bγ to PB.

3. For each w ∈ I2, two parties compute rw := Open([rw]A). PB then sends yw ⊕ λw := yw ⊕ sw ⊕ rw to
PA. Finally, PA sends Lw,yw⊕λw to PB.

4. For each w ∈ I1, two parties compute sw := Open([sw]B). PA then sends xw ⊕ λw := xw ⊕ sw ⊕ rw
and Lw,xw⊕λw to PB.

5. PB evaluates the circuit in topological order. For each gate G = (α, β, γ, T ), PB initially holds (zα ⊕
λα, Lα,zα⊕λα ) and (zβ ⊕ λβ , Lβ,zβ⊕λβ ), where zα, zβ are the underlying values of the wires.

(a) If T = ⊕, PB computes zγ⊕λγ := (zα⊕λα)⊕(zβ⊕λβ) and Lγ,zγ⊕λγ := Lα,zα⊕λα⊕Lβ,zβ⊕λβ .

(b) If T = ∧, PB computes G0 := Gγ,0 ⊕M[sβ ], and G1 := Gγ,1 ⊕M[sα]. PB evaluates the garbled
table (G0, G1) to obtain the output label

Lγ,zγ⊕λγ := H(Lα,zα⊕λα , γ)⊕H(Lβ,zβ⊕λβ , γ)⊕M[sγ ]⊕M[s∗γ ]

⊕ (zα ⊕ λα)G0 ⊕ (zβ ⊕ λβ)(G1 ⊕ Lα,zα⊕λα )

and zγ ⊕ λγ := bγ ⊕ lsb(Lγ,zγ⊕λγ )

6. For each w ∈ W, PB sends ẑw := zw ⊕ λw to PA.

7. For each AND gates (α, β, γ,∧), both parties know ẑα = zα ⊕ λα, ẑβ = zβ ⊕ λβ , and ẑγ = zγ ⊕ λγ .
Two parties compute authenticated share of bit cγ defined as

cγ = (ẑα ⊕ λα) ∧ (ẑβ ⊕ λβ)⊕ (ẑγ ⊕ λγ).

Note that cγ is a linear combination of λα, λβ , λγ and λ∗γ = λα ∧ λβ , therefore authenticated share of
cγ can be computed locally.

8. Two parties use Open to check that cγ is 0 for all gates γ, and abort if any check fails.

9. For each w ∈ O, two parties compute rw := Open([rw]A). PB computes zw := (λw ⊕ zw)⊕ rw ⊕ sw.

Figure 5.2: The main protocol in the Fpre hybrid model

3-4. Parties process PA and PB’s input and let PB learn the corresponding masked

input wire values and garbled labels.

5. PB locally reconstructs the garbled circuit and evaluates it.
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6-8. PB sends all masked wire values (including all input, output, and internal

wires) to PA; two parties check the correctness of all masked wire values.

9. PA reveals the masks of output wires to PB, who can recover the output.

Note that steps 2 through 9 are performed in the online phase, with 2κ + 2 bits of

communication per AND gate, κ+ 1 bits of communication per input bit, and 1 bit

of communication per output bit.

5.3.1 Proof of Security

We start by stating our main theorem.

Theorem 5.3.1. If H is modeled as a random oracle, the protocol in Figure 5.2

securely computes f against malicious adversaries in the Fpre-hybrid model.

Before proceeding to the formal proof, we first introduce two important lem-

mas. The first lemma addresses correctness of our distributed garbling scheme in

the semi-honest case; the second lemma addresses correctness of the whole protocol

when PA is corrupted.

Lemma 5.3.1. When both parties follow the protocol honestly then, after step 5,

for each wire w in the circuit PB holds (zw ⊕ λw, Lw,zw⊕λw).

Proof. We prove this by induction on the gates in the circuit.

Base case. It is easy to verify from step 3 and step 4 that the lemma holds for

input wires.
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Induction step. XOR-gates are trivial and so focus on an AND gate (α, β, γ,∧).

First, the garbled tables are computed distributively, therefore we first write down

the table after PB merged its own share as follows. Note that we ignore the gate id

(γ) for simplicity.

G0 = H(Lα,0)⊕H(Lα,1)⊕ K[sβ]⊕ rβ∆A ⊕M[sβ]

= H(Lα,0)⊕H(Lα,1)⊕ λβ∆A

G1 = H(Lβ,0)⊕H(Lβ,1)⊕ K[sα]⊕ ra∆A ⊕M[sα]⊕ Lα,0

= H(Lβ,0)⊕H(Lβ,1)⊕ λα∆A ⊕ Lα,0.

PA locally computes the output garbled label for 0 values, namely Lγ,0 as:

Lγ,0 := H(Lα,0)⊕H(Lβ,0)⊕ K[sγ]⊕ rγ∆A ⊕ K[s∗γ]⊕ r∗γ∆A.

PB, who holds (zα⊕λα, Lα,zα⊕λα) and (zβ⊕λβ, Lβ,zβ⊕λβ) by the induction hypothesis,

evaluates the circuit as follows:

Lγ,zγ⊕λγ := H(Lα,zα⊕λα)⊕H(Lβ,zβ⊕λβ)⊕ (zα ⊕ λα)G0

⊕ (zβ ⊕ λβ)(G1 ⊕ Lα,zα⊕λα)⊕M[sγ]⊕M[s∗γ].

Observe that

(zα ⊕ λα)G0 ⊕H(Lα,zα⊕λα)

= (zα ⊕ λα) (H(Lα,0)⊕H(Lα,1)⊕ λβ∆A)⊕H(Lα,zα⊕λα)

= (zα ⊕ λα) (H(Lα,0)⊕H(Lα,1)⊕ λβ∆A)⊕ (zα ⊕ λα) (H(Lα,0)⊕H(Lα,1))⊕H(Lα,0)

= H(Lα,0)⊕ λβ(zα ⊕ λα)∆A,

122



and

(zβ ⊕ λβ)(G1 ⊕ Lα,zα⊕λα)⊕H(Lβ,zβ⊕λβ)

= (zβ ⊕ λβ) (H(Lβ,0)⊕H(Lβ,1)⊕ λα∆A ⊕ (zα ⊕ λα)∆A)⊕H(Lβ,zβ⊕λβ)

= (zβ ⊕ λβ) (H(Lβ,0)⊕H(Lβ,1)⊕ zα∆A)⊕ (zβ ⊕ λβ) (H(Lβ,0)⊕H(Lβ,1))⊕H(Lβ,0)

= H(Lβ,0)⊕ (λβ ⊕ zβ)zα∆A.

Therefore, we conclude that

Lγ,0 ⊕ Lγ,zγ⊕λγ

= H(Lα,0)⊕H(Lβ,0)⊕H(Lα,zα⊕λα)⊕H(Lβ,zβ⊕λβ)⊕ (zα ⊕ λα)G0

⊕ (zβ ⊕ λβ)(G1 ⊕ Lα,zα⊕λα)⊕ λγ∆A ⊕ (λα ∧ λβ)∆A

= (λα ⊕ zα)λβ∆A ⊕ (λβ ⊕ zβ)zα∆A ⊕ λγ∆A ⊕ (λα ∧ λβ)∆A

= ((zα ∧ zβ)⊕ λγ)∆A = (zγ ⊕ λγ)∆A.

This means that, with respect to PA’s definition of Lγ,zγ⊕λγ , PB’s label is always

correct. The masked value is correct because the least-significant bit of ∆A is 1;

thus,

bγ ⊕ lsb(Lγ,zγ⊕λγ ) = lsb(Lγ,0)⊕ lsb(Lγ,zγ⊕λγ )

= lsb(Lγ,0 ⊕ Lγ,zγ⊕λγ )

= lsb((zγ ⊕ λγ)∆A) = zγ ⊕ λγ.

Lemma 5.3.2. Let x
def
= x̂w ⊕ λw and y

def
= ŷw ⊕ λw, where x̂w is what PB sends in
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step 3, ŷw is what PA sends in step 4, and λw is defined by Fpre. If PA is malicious,

then PB either aborts or outputs f(x, y).

Proof. After step 5, PB obtains a set of masked values zw⊕λw for all wires w in the

circuit. In the following, we will show that if these masked values are not correct,

then PB will abort with all but negligible probability.

Again we will prove by induction. Note that the lemma holds for all wires

w ∈ I1 ∪ I2, according to how x, y are defined, as well as for XOR-gates. In the

following, we will focus on an AND gate (α, β, γ,∧). Now, according to induction

hypothesis, we already know that PB hold correct values of (zα ⊕ λα, zβ ⊕ λβ).

Recall that the checking is done by computing

c = (ẑα ⊕ λα) ∧ (ẑβ ⊕ λβ)⊕ (ẑγ ⊕ λγ).

The correctness of input masked values means that

c = zα ∧ zβ ⊕ ẑγ ⊕ λγ.

Since Open does not abort, c = 0, which means that ẑγ = zα ∧ zβ ⊕ λγ = zγ ⊕ λγ.

This means that the output masked wire value is also correct.

Given the above two lemmas, the proof of security of our main protocol is

relatively easy. We provide all details below.

Proof. We consider separately a malicious PA and PB.

Malicious PA. Let A be an adversary corrupting PA. We construct a simulator S

that runs A as a subroutine and plays the role of PA in the ideal world involving an

ideal functionality F evaluating f . S is defined as follows.
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1. S plays the role of Fpre and records all values that Fpre sends to two parties.

2. S receives all values that A sends.

3. S acts as an honest PB using input y := 0.

4. For each wire w ∈ I1, S receives x̂w and computes xw := x̂w ⊕ rw ⊕ sw, where

rw, sw are the values used by Fpre in the previous steps.

6. S picks random bits for all ẑw and send them to A.

7–9. S acts as an honest PB If an honest PB would abort, S aborts; otherwise S

computes the input x of A. from the output of Fpre and the values A sent. S

then sends x to F .

We show that the joint distribution of the outputs of A and the honest PB in the

real world is indistinguishable from the joint distribution of the outputs of S and

PB in the ideal world. We prove this by considering a sequence of experiments,

the first of which corresponds to the execution of our protocol and the last of which

corresponds to execution in the ideal world, and showing that successive experiments

are computationally indistinguishable.

Hybrid1. This is the hybrid-world protocol, where we imagine S playing the role

of an honest PB using PB’s actual input y, while also playing the role of Fpre.

Hybrid2. Same as Hybrid1, except that in step 6, for each wire w ∈ I1 the

simulator S receives x̂w and computes xw := x̂w ⊕ rw ⊕ sw, where rw, sw are

the values used by Fpre. If an honest PB would abort in any later step, S sends

abort to F ; otherwise it sends x = {xw}w∈I1 to F .
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The distributions on the view of A in Hybrid1 and Hybrid2 are identical.

The output PB gets are the same due to Lemma 5.3.1 and Lemma 5.3.2.

Hybrid3. Same as Hybrid2, except that S uses y′ = 0 in step 3 and ignore what

A sends back. Then in step 6, S sends random bits instead of the value for

zw ⊕ λw.

The distributions on the view of A in Hybrid3 and Hybrid2 are again iden-

tical (since the {sw}w∈I2 are uniform).

Note that Hybrid3 corresponds to the ideal-world execution described earlier. This

completes the proof for a malicious PA.

Malicious PB. Let A be an adversary corrupting PB. We construct a simulator S

that runs A as a subroutine and plays the role of PB in the ideal world involving an

ideal functionality F evaluating f . S is defined as follows.

1. S plays the role of Fpre and records all values sent to both parties.

2. S acts as an honest PA and send the shared garbled tables to PB.

3. For each wire w ∈ I2, S receives ŷw and computes yw := ŷw ⊕ rw ⊕ sw, where

rw, sw are the values used by Fpre in the previous steps.

4. S acts as an honest PA using input x = 0.

6–8. S acts as an honest PA. If an honest PA would abort, S abort.

9. S sends y computed in step 3 to F , which returns z = f(x, y). S then computes

z′ := f(0, y) and defines r′w = zw ⊕ z′w ⊕ rw for each w ∈ O. S then acts as
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an honest PA and opens values r′w to A. If an honest PA would abort, S S

outputs whatever A outputs.

We now show that the distribution on the view of A in the real world is indistin-

guishable from the distribution on the view of A in the ideal world. (Note PA has

no output.)

Hybrid1. This is the hybrid-world protocol, where S acts as an honest PA using

PA’s actual input x, while playing the role of Fpre.

Hybrid2. Same as Hybrid1, except that in step 3, S receives ŷw and computes

yw := ŷw ⊕ rw ⊕ sw, where rw, sw are the values used by Fpre. If an honest PA

abort in any step, send abort to F .

Hybrid3. Same as Hybrid2, except that in step 4, S acts as an honest PA with

input x = 0. S sends x computed in step 3 to F , which returns z = f(x, y).

S then computes z′ := f(0, y) and defines r′w = zw ⊕ z′w ⊕ rw for each w ∈ O.

S then acts as an honest PA and opens values r′w to A. If an honest PA would

abort, S S outputs whatever A outputs.

The distributions on the view of A in Hybrid3 and Hybrid2 are identical.

Note that Hybrid3 is identical to the ideal-world execution.

5.4 Technical Details: Improved Preprocessing

In this section, we provide details for our two optimizations of the preprocessing

phase. The first optimization improves the efficiency to compute a leaky AND gate.
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Leaky AND gate is a key component towards a preprocessing with full security. This

functionality (FLaAND) outputs triples with guaranteed correctness but the adversary

can choose to guess the x value from the honest party: an incorrect guess will be

caught immediately; while a correct guess remain undetected.

The second optimization focuses on how to combine leaky triples in a more

efficient way. In particular, we observe that a recent optimization in the honest-

majority secret sharing protocol by Araki et al. [81], can be applied to our setting

too. As a result, we can roughly reduce the bucket size by one.

5.4.1 Improved Leaky AND

Before giving the details, we point out a minor difference in the leaky-AND func-

tionality (FLaAND) as compared to [7]. As shown in Figure 5.3, instead of letting A

directly learn the value of x, the functionality allows A to send a query in a form of

(P1, p2, P3) and return if P3 ⊕ x2P1 = (p2 ⊕ x2lsb(P1))∆B. It can be seen that this

special way is no more than a query on x and two queries on ∆, and the A cannot

learn any information on y or z.

The main intuition of the protocol is already discussed in Section 5.2.2. We

will proceed to present the protocol, in Figure 5.4.

Theorem 5.4.1. The protocol in Figure 5.4 securely realizes FLaAND in the (Fabit,FEQ)-

hybrid model.

Proof. As the first step, we will show that the protocol is correct if both parties are

honest. We recall that
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Functionality FLaAND

Honest case:

1. Generate uniform 〈x1 |x2〉, 〈y1 | y2〉, 〈z1 | z2〉 such that z1 ⊕ z2 = (x1 ⊕ x2) ∧ (y1 ⊕ y2),
and send the respective shares to the two parties.

2. PA can choose to send (P1, p2, P3) ∈ {0, 1}κ×{0, 1} ×{0, 1}κ. The functionality checks

P3 ⊕ x2P1 = (p2 ⊕ x2lsb(P1)) ∆B.

If the check fails, the functionality sends fail to both parties and abort. (PB can do the
same symmetrically.)

Corrupted parties: A corrupted party gets to specify the randomness used on its behalf by
the functionality.

Figure 5.3: Functionality FLaAND for computing a leaky AND triple.

Protocol ΠLaAND

Protocol:

1. PA and PB obtain random authenticated shares (〈x1 |x2〉 , 〈y1 | y2〉 , 〈z1 | r〉).
PA locally computes CA := y1∆A ⊕ K[y2]⊕M[y1], and
PB locally computes CB := y2∆B ⊕M[y2]⊕ K[y1].

2. PA sends G1 := H(K[x2]⊕∆A)⊕H(K[x2])⊕ CA to PB.
PB computes E1 := x2G1 ⊕H(M[x2])⊕ x2CB.

3. PB sends G2 := H(K[x1]⊕∆B)⊕H(K[x1])⊕ CB to PA.
PA computes E2 := x1G2 ⊕H(M[x1])⊕ x1CA.

4. PA computes S1 := H(K[x2])⊕E2⊕(z1∆A⊕K[r]⊕M[z1]), PB computes S2 := H(K[x1])⊕
E1⊕ (r∆B⊕M[r]⊕K[z1]). PA sends lsb(S1) to PB; PB sends lsb(S2) to PA. Both parties
computes d := lsb(S1)⊕ lsb(S2).

5. PA sends L1 := S1 ⊕ d∆A to FEQ, PB sends L2 := S2 ⊕ d∆B to FEQ. If FEQ returns 0,
parties abort, otherwise, they compute [z2]B := [r]B ⊕ d.

Figure 5.4: Our improved leaky-AND protocol.

1. G1 := H(K[x2]⊕∆A)⊕H(K[x2])⊕ CA

2. G2 := H(K[x1]⊕∆B)⊕H(K[x1])⊕ CB

3. CA := y1∆A ⊕ K[y2]⊕M[y1]
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4. CB := y2∆B ⊕M[y2]⊕ K[y1]

Note that

E1 ⊕H(K[x2]) = x2G1 ⊕H(M[x2])⊕ x2CB ⊕H(K[x2]).

When x2 = 0, we have

E1 ⊕H(K[x2]) = x2G1 ⊕H(M[x2])⊕ x2CB ⊕H(K[x2])

= H(M[x2])⊕H(K[x2])

= 0 = x2(CA ⊕ CB).

When x2 = 1, we have

E1 ⊕H(K[x2]) = x2G1 ⊕H(M[x2])⊕ x2CB ⊕H(K[x2])

= x2(G1 ⊕ CB)⊕H(M[x2])⊕H(K[x2])

= x2(G1 ⊕ CB)⊕H(K[x2]⊕∆A))⊕H(K[x2])

= x2(CA ⊕ CB).

Therefore,

E1 ⊕H(K[x2]) = x2(CA ⊕ CB)

= x2(y1∆A ⊕ K[y2]⊕M[y1]⊕ y2∆B ⊕M[y2]⊕ K[y1]))

= x2(y1∆A ⊕ y2∆A ⊕ y1∆B ⊕ y2∆B)

= x2(y1 ⊕ y2)(∆A ⊕∆B).

Similarly,

E2 ⊕H(K[x1]) = x1(y1 ⊕ y2)(∆A ⊕∆B).
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Taking these two equations, we know that

S1 ⊕ S2 = (E1 ⊕H(K[x2]))⊕ (E2 ⊕H(K[x1]))

⊕ (z1∆A ⊕ K[r]⊕M[z1]⊕ r∆B ⊕M[r]⊕ K[z1])

= (x1 ⊕ x2)(y1 ⊕ y2)(∆A ⊕∆B)

⊕ (z1∆A ⊕ K[z1]⊕M[z1]⊕ r∆B ⊕ K[r]⊕M[r])

= (x1 ⊕ x2)(y1 ⊕ y2)(∆A ⊕∆B)

⊕ (z1∆A ⊕ z1∆B ⊕ r∆B ⊕ r∆A)

= (x1 ⊕ x2)(y1 ⊕ y2)(∆A ⊕∆B)⊕ (z1 ⊕ r)(∆A ⊕∆B)

= ((x1 ⊕ x2) ∧ (y1 ⊕ y2)⊕ z1 ⊕ r)(∆A ⊕∆B).

Since lsb(∆A ⊕∆B) = 1, it holds that

d = lsb(S1 ⊕ S2) = (x1 ⊕ x2) ∧ (y1 ⊕ y2)⊕ z1 ⊕ r.

Therefore, (x1 ⊕ x2) ∧ (y1 ⊕ y2) = d⊕ z1 ⊕ r = z1 ⊕ z2.

Now we will focus on the security of the protocol in the malicious setting. First

note that the protocol is symmetric, therefore we only need to focus on the case of a

malicious PA. The local computation of both parties is deterministic, with all inputs

sent from Fabit. Therefore, all messages sent during the protocol can be anticipated

(emulated) by S after S sending out the shares. This is not always possible if A uses

local random coins or if A has private inputs. This fact significantly reduces the

difficulty of the proof. Intuitively, S will be able to immediately catch A cheating

by comparing what it sends with what it would have sent (which S knows by locally

emulating). The majority of the work then is to extract A’s attempt to perform a
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selective failure attack.

Define a simulator S as follows.

0a. S interacts with FLaAND and obtains PA’s share of (〈x1 |x2〉, 〈y1 | y2〉, 〈z1 | z2〉).

S also gets ∆A from Fabit. S randomly picks ∆B and PB’s share of (〈x1 |x2〉,

〈y1 | y2〉, 〈z1 | z2〉) in a way that makes it consistent with PA’s share. S now

randomly picks d and computes [r]B := [z2]B ⊕ d.

0b. Using values (〈x1 |x2〉 , 〈y1 | y2〉 , 〈z1 | r〉) from both parties, S locally emulates

all messages sent by each party, namely (G1, d1, L1) sent by an honest PA and

(G2, d2, L2) sent by an honest PB.

1. S plays the role of Fabit and sends out (〈x1 |x2〉 , 〈y1 | y2〉 , 〈z1 | r〉) as defined

above.

2. S acts as an honest PB and receive G′1 sent by A. S computes P1 = G′1 ⊕G1.

3. S randomly picks a G2 and send it to A.

4. S acts as an honest PB and receives d′1. S computes p2 := d′1 ⊕ d1.

5. S plays the role of FEQ and obtain L1. S computes P3 = L′1 ⊕ L1. S sends

(P1, p2, P3) to FLaAND as the selective failure attack query. If FLaAND abort, S

plays the role of FEQ and aborts. If the value d in the protocol equals to r

defined in step 0a, FEQ returns 0; otherwise FEQ returns 1.

6. S sends (P1, p2, P3) to FLaAND as the selective failure query. If FLaAND returns

fail, S sends 0 to A as the output of FEQ.
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Protocol Πpre

Inputs: Two parties agree on a circuit for a function f : {0, 1}I1 × {0, 1}I2 → {0, 1}O.
Protocol:

1. Two parties initialize Fabit, which sends ∆A to PA and ∆B to PB.

2. For each wire w ∈ I1∪I2∪W, two parties obtain an authenticated share 〈rw | sw〉 from
Fabit.

3. For each gate G = (α, β, γ,⊕), two parties compute 〈rγ | sγ〉 := 〈sα | rα〉 ⊕ 〈rβ | sβ〉.

4. For each gate G = (α, β, γ,∧), two parties have (〈rα | sα〉 , 〈rβ | sβ〉), and run step 2 to
step 5 in ΠLaAND to obtain 〈r∗γ | s∗γ〉, such that r∗γ ⊕ s∗γ = (rα ⊕ sα) ∧ (rβ ⊕ sβ)

5. PA and PB call FLaAND to obtain (B − 1)|C| number of leaky AND triples
(〈x1 |x2〉 , 〈y1 | y2〉 , 〈z1 | z2〉).

6. Two parties perform secure coin-flipping to determine a random permutation and per-
mute the triples obtained in step 4. For each AND gate G = (α, β, γ,∧) in the circuit,
perform secure merging for B − 1 times.

(a) Obtain the next triple in the permuted list, namely (〈x1 |x2〉 , 〈y1 | y2〉 , 〈z1 | z2〉)
(b) Compute 〈d1 | d2〉 := 〈y1 | y2〉 ⊕ 〈rβ | sβ〉, and d := Open(〈d1 | d2〉).
(c) Update triple: 〈rα | sα〉 := 〈rα | sα〉 ⊕ 〈x1 |x2〉, 〈r∗γ | s∗γ〉 := 〈r∗γ | s∗γ〉 ⊕ 〈z1 | z2〉 ⊕

d 〈x1 |x2〉.

Figure 5.5: Protocol Πpre instantiating Fpre in the (Fabit, FLaAND)-hybrid model.

Note that messages that S sends to A in the protocol are changed from (G2, d2, L2)

to (G2, d2⊕x2lsb(P1), L2⊕x2P1⊕d′∆B), where d′ = p2⊕x2 · lsb(P1) and the equality

checking in step 5 changed from comparing L1 = L2 to

L1 ⊕ P3 = L2 ⊕ x2P1 ⊕ (p2 ⊕ x2lsb(P1)) ∆B,

that is

P3 ⊕ x2P1 = (p2 ⊕ x2lsb(P1)) ∆B.

This is the same form as the selective failure query in FLaAND.
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5.4.2 Improved Function-Dependent Preprocessing

In this section, we will focus on improving the preprocessing in the Leaky AND triple

generation (FLaAND) hybrid model. The main observation is that in the protocol of

WRK, each wire is associated with a mask (in the authenticated share format).

Then the AND of input masks are computed using one AND triple. This is a waste

of randomness, since we also directly construct all triples in place for all wires. Note

that the idea is similar to Araki et al. [81]. The detailed protocol is presented in

Figure 5.5

Note that although the above optimization aims to reduce the overall cost of

the protocol, but it turns out that even in this case, most of the computation and

communication (including computation of all authenticated bits as well as all leaky-

AND triples in step 5) can be still done in the function-independent phase. The

function-dependent cost is increased by only κ bits per AND gate only. Therefore,

here we have an option to trade-off between total communication and communication

in the offline stage. By increasing the function-dependent cost by κ bits per gate,

we reduce bucket size by 1. We believe both versions can be useful depending on

the application, and the concrete cost of both versions of the protocol are presented

in the performance section.

5.5 Performance

In this section, we discuss the concrete efficiency of our protocol. We consider two

variants of our protocol that optimize the cost of different phases: The first version
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Table 5.1: Communication complexity of different protocols for evaluating

AES, rounded to two significant figures. One-way communication refers to

the maximum communication one party sends to the other; two-way communication

refers to the sum of both parties’ communication. The best prior number in each

column is bolded for reference.

One-way Communication (Max) Two-way Communication

Ind. Dep. Online Total Ind. Dep. Online Total
(MB) (MB) (KB) (MB) (MB) (MB) (KB) (MB)

Single execution

[37] 15 0.22 16 15 15 0.22 16 15
[7] 2.9 0.57 4.9 3.4 5.7 0.57 6.0 6.3
[82] - 3.4 ≥ 4.9 3.4 - 3.4 ≥ 4.9 3.4

This work, v. 1 1.9 0.33 5.0 2.2 3.8 0.33 5.0 4.2
This work, v. 2 2.5 0.22 5.0 2.7 4.9 0.22 5.0 5.1

Amortized cost over 1024 executions

[32] - 1.6 17 1.6 - 3.2 17 3.2
[37] 6.4 0.22 16 6.6 6.4 0.22 16 6.6
[38] - 1.6 19 1.6 - 1.6 19 1.6
[7] 2.0 0.57 4.9 2.6 4.0 0.57 6.0 4.6

This work, v. 1 1.4 0.33 5.0 1.7 2.7 0.33 5.0 3.1
This work, v. 2 1.9 0.22 5.0 2.1 3.8 0.22 5.0 4.0

of our protocol is optimized to minimize the total communication; the second version

is optimized to minimize the communication in the function-dependent phase. (The

cost of the online phase is identical in both versions.)

5.5.1 Communication Complexity

Table 5.1 shows the communication complexity of recent two-party computation

protocols in the malicious setting. Numbers for these protocols are obtained from

the respective papers, while numbers for our protocol are calculated. We tabulate
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both one-way communication and total communication. If parties’ data can be sent

at the same time over a full-duplex network, then one-way communication is a better

reflection of the running time. In general, for a circuit that requires a bucket size

of B, we can obtain an estimation of the concrete communication cost: our first

version has function dependent cost of 3κ per gate, and function independent cost

of (4B−2)κ+ (3B−1)ρ per gate; our second version has a function dependent cost

of 2κ per gate, and a function independent cost of (4B + 2)κ+ (3B + 2)ρ per gate.

We see that our protocol and the protocol by Nielsen et al. [37] are the only

ones that, considering the function-dependent phase and the online phase, have cost

similar to that of the state-of-the-art semi-honest garbled-circuit protocol. In other

words, the overhead induced by malicious security can be completely pushed to the

preprocessing stage. Compared to the protocol by Nielsen et al., we are able to

reduce the communication in the preprocessing stage by 6× in the single-execution

setting, and by 3.4× in the amortized setting. Our protocol also has the best total

communication complexity in both settings, excepting the work of [32, 38] which

are 6% better but do not support function-independent preprocessing.

5.5.2 Computational Complexity

Since the WRK protocol represents the state-of-the-art as far as implementations

are concerned, we compare the computational complexity of our protocol to theirs.

We also include a comparison to the more recent protocol by Hazay et al. [82] (the

HIV protocol), which has not yet been implemented.
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Table 5.2: Number of H-evaluations. We align the security parameters in both

protocols and set B = ρ/ logC + 1 for a fair comparison.

Ind. Dep. Online Total

WRK 10B 8 2 10B + 10
This work, v. 1 4B − 4 8 2 4B + 6
This work, v. 2 4B 4 2 4B + 6

Comparing to the WRK protocol. Our protocol follows the same high-level

approach as the WRK protocol. Almost all H-evaluations in our protocol can be

accelerated using fixed-key AES, as done in [18]. We tabulate the number of H-

evaluations for both protocols in Table 5.2. Due to our improved FLaAND, we are

able to achieve a 2–2.5× improvement.

Comparing to the HIV protocol. As noted by the authors, the HIV protocol has

polylogarithmic computational overhead compared to semi-honest garbled circuits.

This is due to their use of the MPC-based zero-knowledge proof by Ames et al. [83].

On the other hand, in our protocol, the computation is linear in the circuit size.

Furthermore, almost all cryptographic operations in our protocol can be accelerated

using hardware AES instructions.

Taking an AES circuit as example, the ZK protocol by Ames et al. for a circuit

of that size has a prover running time of around 70 ms and a verifier running time of

around 30 ms. Therefore, even if we ignore the cost of computing and sending the

garbled circuit, the oblivious transfers, and other operations, the end-to-end running

time of the HIV protocol will still be at least 100 ms. On the other hand, the entire

WRK protocol runs within 17 ms for the same circuit. As our protocol results in at
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least a 2× improvement, our protocol will be at least an order of magnitude faster

than the HIV protocol.

5.6 Challenges in Extending to the Multi-Party Case

Wang et al. [8] have also shown how to extend their authenticated-garbling protocol

to the multi-party case. In this section, we discuss the challenges involved in apply-

ing our new techniques to that setting. Note that Ben-Efraim et al. [84] recently

proposed new techniques for multi-party garbling, making it compatible with some

of the half-gate optimizations. Despite being based on half-gates, they still require

4 garbled rows per AND gate, and thus their work still leaves open the question of

reducing the communication complexity of the online phase in the multi-party case.

In the multi-party WRK protocol, there are n − 1 garbling parties and one

evaluating party. For each wire, each garbler chooses their own set of wire labels

(called “subkeys”). As in the 2-party case, the preprocessing defines some authen-

ticated bits, and as a result all parties can locally compute additive shares of any

garbler’s subkey corresponding to any authenticated value.

In each gate, each garbler Pi generates standard Yao garbled gate consisting of

4 rows. Each row of Pi’s gate is encrypted by only Pi’s subkeys, and the payload of

the row is Pi’s shares of all garblers’ subkeys. That way, the evaluator can decrypt

the correct row of everyone’s garbled gates, obtain everyone’s shares of everyone’s

subkeys, and combine them to get everyone’s appropriate subkey for the output

wire.
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Now suppose we modify things so each garbler generates a half-gates-style

garbled gate instead of a standard Yao garbled gate. The half-gate uses garbler Pi’s

subkeys as its “keys” and encodes Pi’s shares of all subkeys as its “payloads”. Now

the protocol may not be secure against an adversary corrupting the evaluator and

a garbler. In particular, half-gates garbling defines G0 = H(Lα,0)⊕H(Lα,1)⊕ λβ∆.

When Pi is acting as garbler, these Lα,u values correspond to Pi’s subkeys. Now

suppose Pi colludes with the evaluator. If the evaluator comes to learn G0 (which

is necessary to evaluate the gate in half of the cases), then the adversary can learn

the secret mask λβ since it is the only unknown term in G0. Clearly revealing

the secret wire mask breaks the privacy of the protocol. This is not a problem

with Yao garbled gates, where each row can be written as Gu,v = H(Lα,u, Lβ,v) ⊕

[payload already known to garbler]. The secret masks do not appear in the garbled

table, except indirectly through the payloads (subkey shares).

It is even unclear if row-reduction can be made possible. In the multi-party

setting, the garbler has no control over the “payload” (i.e., output wire label) of the

garbled gate when using row-reduction. Indeed, this is what makes it possible to

reduce the size of a garbled gate. This is not a problem in the two-party case, where

there is only one garbler who has control over all garbled gates and all wire labels.

He generates a garbled table, and then computes his output wire label (subkey) as a

function of the payload in the table. However, in the multi-party case, Pi generates

a half-gate whose payloads include Pi’s shares of Pj’s subkeys! We would need Pj’s

choice of subkeys to depend on the payloads of Pi’s garbling (for all i and j!). It

is not clear how this can be done, and even if it were possible it would apparently
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require additional rounds proportional to the depth of the circuit.
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Chapter 6: EMP-toolkit: Efficient Multi-Party Computation Toolkit

As part of this thesis, we also developed the EMP toolkit, which contains the

implementation of protocols mentioned in this thesis as well as other commonly used

protocols and building blocks. From a high-level view, EMP is developed with two

goals in mind:

1. It should allow cryptography researchers to develop fast prototypes of their

protocols to confirm and demonstrate the efficiency and scalability.

2. It should also allow application developers from academia and industry to

develop reliable and scalable applications on top of MPC, without the need to

understand the underlying cryptographic techniques.

In the following, we will discuss how EMP achieves the above two goals.

6.1 Prototyping MPC Protocols

EMP aims to help cryptography researchers to develop protocol prototypes with

ease. To this end, we developed EMP in a layered structure. The bottom layer of

EMP is a rich set of building blocks that are commonly needed in cryptographic
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protocols, including the pseudorandom generator (PRG), hash function, network

communication, wrappers for elliptic-curve cryptography (ECC) operations and

Advanced Vector Extensions (AVX) operations. All building blocks are carefully

optimized to take advantage of state-of-the-art optimizations and instructions to

achieve the best performance. In addition, they are encapsulated as EMP object

for ease-of-use. The following code snippet is an example of how PRG can be used

in EMP.

On top of the basic layer is a set of commonly used functionalities specific for

MPC protocols, including garbling, Oblivious Transfer (OT) and OT extensions.

Similar to basic building blocks, they are implemented as EMP objects with similar

interfaces. The following code snippet is an example of how to set up network

communication and run semi-honest OT between two parties.
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6.2 Developing MPC Applications.

EMP provides a rich set of ways to develop applications easily. The following is an

implementation of the millionaire problem in EMP based on the semi-honest garbled

circuit protocol.

From line 1 to line 3, we include necessary libraries and namespaces. From line 6 to

line 9, we set up the network and the garbled circuit protocol. Line 11 and line 12

specifies inputs from each party. In particular, line 11 says that Alice inputs a 32-bit

integer as inputs (from argv[3]); line 12 says that Bob also has a 32-bit integer as

the input. Line 14 computes a comparison circuit in garbled circuits, and the result

is revealed only to Bob in the end.

EMP has implemented most commonly used operations for integer, and floating-

point numbers. It also implements numerous useful circuits that are essential to

building efficient circuits in MPC.
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Chapter 7: Conclusion

This dissertation shows a new paradigm to design maliciously secure multi-party

computation protocols that are secure against all-but-one corruption with high effi-

ciency. Specifically,

1. We present a maliciously secure two-party computation protocol that signifi-

cantly deviates from existing approach and achieves extremely high concrete

efficiency. The protocol can also be instantiated such that one gate only needs

O(κ) bits communication.

2. We present a maliciously secure multi-party computation protocol that scales

to hundreds to parties distributed globally. In a high latency network, this

protocol achieves the best performance both asymptotically and concretely.

3. We present further optimizations to the two-party protocol to benefit from

state-of-the-art garbling optimizations. The resulting protocol has a similar

cost to the semi-honest protocol in the preprocessing model.

4. Finally, we present EMP-toolkit, an efficient and easy-to-use framework to

building MPC protocols and applications.
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