Problem Set 1 — Solutions

1. Let us begin by showing that the first definition implies the second. If L meets the first definition, then $L \in \bigcup_{k \geq 0} \text{NTIME}(n^k)$. So $L \in \text{NTIME}(n^i)$ for some i. That means we have a non-deterministic Turing machine M_L running for time $O(n^i)$ such that if $x \in L$ then there is an accepting computation of $M_L(x)$, but if $x \not\in L$ then there is no accepting computation of $M_L(x)$. Let R_L be the relation:

$$R_L \overset{\text{def}}{=} \{(x, w) \mid \text{w is a sequence of choices that leads } M_L(x) \text{ to an accepting configuration}\}.$$

Clearly, R_L is polynomially-bounded (since $(x, w) \in R_L$ implies $|w| = O(|x|^i)$) and decidable in polynomial time. Also, $x \in L$ iff there exists a w such that $(x, w) \in R_L$. This proves that L meets the second definition.

For the other direction, say we have a language L and a polynomially-bounded relation R_L decidable in polynomial time such that $x \in L$ iff there exists a w such that $(x, w) \in R_L$. Construct the following non-deterministic Turing machine M_L deciding L: given input x, guess a w of (at most) the appropriate length, and accept iff $(x, w) \in R_L$. It is not hard to see that if $x \in L$ then then there is an accepting computation of $M_L(x)$, but if $x \not\in L$ then there is no accepting computation of $M_L(x)$. Furthermore, M_L runs in polynomial time since R_L is decidable in polynomial time.

2. We are given a language L which is \mathcal{NP}-complete and in \mathcal{P}. We need to show that if $L' \in \mathcal{NP}$, we can decide L' in polynomial time. Since L is \mathcal{NP}-complete, there is a function $f_{L'}$ computable in polynomial time such that

$$x \in L' \iff f_{L'}(x) \in L.$$

This gives the following polynomial-time algorithm for L': on input x, first compute $y = f_{L'}(x)$; then, decide whether $y \in L$ and accept only if this is true. Correctness of this algorithm is immediate.

3. The language L of the problem is clearly in \mathcal{P}: on input $(M, x, 1^t)$ simply simulate an execution of $M(x)$ for at most t steps and accept iff $M(x)$ accepts within that time bound. The simulation can be done in polynomial time (it is worth thinking through the details and convincing yourself that this is true — note that you need to handle both “small” and “large” values of t).

We also need to show a reduction from any language $L' \in \mathcal{P}$ to our language L. We know there exists a polynomial time machine $M_{L'}$ deciding L in time n^i for some integer i. So our reduction $f_{L'}$ — which, of course, depends on L' — proceeds as follows: on input x, output $(M_{L'}, x, 1^{|x|^i})$. You can check that $f_{L'}$ can be computed in polynomial time (in fact, time $O(|x|^i + |x|)$).

4. This is rather simple. Let f_1 be a Karp reduction from L_1 to L_2, and let f_2 be a Karp reduction from L_2 to L_3. This means that

\[x \in L_1 \iff f_1(x) \in L_2 \quad \text{and} \quad x \in L_2 \iff f_2(x) \in L_3. \]

Consider the function $F(x) \overset{\text{def}}{=} f_2(f_1(x))$. Note that this can be computed in polynomial time. (In particular, if f_1 takes time at most n^{i_1} to compute, and f_2 takes time at most n^{i_2} to compute, then F takes time at most $|f_1(x)|^{i_2} \leq |x|^{i_1 i_2}$ to compute, which is polynomial.) Furthermore,

\[x \in L_1 \iff f_1(x) \in L_2 \iff f_2(f_1(x)) \in L_3, \]

as desired.

5. Assume we have a super-NP-complete language L. Since $L \in NP$, we know there is a non-deterministic Turing machine M_L deciding L in time at most n^i for some integer i. Let $p(n) \overset{\text{def}}{=} poly(n)$, and let q be a polynomial such that $q(n) = \omega(p(n))$. By the non-deterministic time hierarchy theorem (which we did not cover in class, but which you were allowed to assume for this problem) there exists a language L with $L \in \text{ntime}(q)$ but $L \notin \text{ntime}(p)$.

Since L is super-NP-complete and $L' \in NP$, there exists a Karp reduction f from L' to L such that f can be computed in time $poly(n)$. Consider now the following algorithm for deciding L': on input x, compute $y = f(x)$ and then run $M_L(y)$; accept iff the latter accepts. It is easy to see that this algorithm correctly decides L'. Furthermore, its running time is at most $p(n)$. But this contradicts what we said above.