Problem Set 4
Due at the beginning of class on Oct. 20

1. In class we gave two different definitions of coRP (see lecture 5). Show that they are equivalent.

2. (a) Prove that RP is closed under union and intersection. (A complexity class C is closed under some operation \(\circ \) if \(L_1, L_2 \in C \) implies \(L_1 \circ L_2 \in C \).)

(b) Extend your proof from above to show that BPP is closed under union and intersection.

(c) We will discuss complexity class PP in a subsequent lecture, but for now the definition alone will suffice: Say \(L \in \mathcal{PP} \) if there exists a ppt machine \(M \) such that

\[
x \in L \Rightarrow \Pr[M(x) = 1] > 1/2 \quad \text{and} \quad x \notin L \Rightarrow \Pr[M(x) = 1] < 1/2.
\]

Does your proof technique from the previous two parts extend to show that \(\mathcal{PP} \) is closed under union and intersection? If so, fill in the details and complete the proof that \(\mathcal{PP} \) is closed under union and intersection. If not, describe in 1–2 sentences what goes wrong.

3. Consider the following language \(L \):

\[
L \triangleq \left\{ (M, x, 1^t) \mid \text{\(M \) is a probabilistic T.M. which accepts \(x \) with probability at least 2/3 within \(t \) steps} \right\}.
\]

(a) Show that \(L \) is BPP-hard, where this is defined in the natural way.

(b) Consider the following algorithm for deciding \(L \): on input \((M, x, 1^t) \), choose a random tape \(\omega \) uniformly at random and run \(M(x; \omega) \) for at most \(t \) steps. Accept iff this results in acceptance. Does this prove that \(L \in BPP \)? Why or why not?

4. Extending what we showed in class for RP, show how to perform error reduction for BPP using pairwise-independent random sources. Specifically, given a ppt algorithm \(M \) which uses \(m \) random bits and errs with probability at most \(1/3 \), describe and analyze a ppt algorithm that errs with probability at most \(2^{-q(|x|)} \) (for some given \(q = O(\log |x|) \)) but uses only \(O(\max\{q, m\}) \) random bits.
5. Given a language B, let

$$
[x \in B] \overset{\text{def}}{=} \begin{cases}
1 & x \in B \\
0 & x \notin B
\end{cases}.
$$

Say that A is $1-tt$-reducible to B if there are two poly-time functions f, g such that

$$
x \in A \iff [f(x) \in B] = g(x).
$$

(An easier way of expressing the above is that this is just a Turing reduction from A to B, but where the machine is only allowed one query to the oracle for B.) Show by modifying the proof of Mahaney’s theorem that if an \mathcal{NP}-complete language is $1-tt$ reducible to a sparse set, then $\mathcal{P} = \mathcal{NP}$.

6. Show that if $\mathcal{PH} = \mathcal{PSPACE}$ then the polynomial hierarchy collapses to some level.
(Hint: use the fact that \mathcal{PSPACE} has complete languages.)