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Lecture 11

Jonathan Katz

1 The Power of IP

In the last lecture we showed a (surprising!) interactive proof for graph non-isomorphism. This
begs the question: how powerful is IP? We have mentioned already that IP ⊆ PSPACE; in this
lecture we show equality by proving PSPACE ⊆ IP.

1.1 coNP ⊆ IP

We begin with a “warm-up” and show that coNP ⊆ IP. Recall from last time that coNP
is unlikely to have a constant-round interactive proof system (since this would imply1 that the
polynomial hierarchy collapses); indeed, the proof system we show here will have a linear number
of rounds.

The basic idea is the following: we arithmetize a 3CNF formula φ to obtain a formula which
evaluates to 0 iff φ has no satisfying assignments. We then show how to give an interactive proof
demonstrating that the formula indeed evaluates to 0. To arithmetize φ, we proceed as follows:
identify 0 with “false” and positive integers with “true.” The literal xi becomes variable xi, and
the literal x̄i becomes (1 − xi). We replace “∧” by multiplication, and “∨” by addition. Let Φ
denote the polynomial that results from this arithmetization (this is an n-variate polynomial in the
variables x1, . . . , xn, of degree at most the number of clauses in φ).

Now consider what happens when the {xi} are assigned boolean values: all literals take the
value 1 if they evaluate to “true,” and 0 if they evaluate to “false.” Any clause (which is a
disjunction of literals) takes a positive value iff at least one of its literals is true; thus, a clause
takes a positive value iff it evaluates to “true.” Finally, note that Φ itself (which is a conjunction
of clauses) takes on a positive value iff all of its constituent clauses are positive. We can summarize
this as: Φ(x1, . . . , xn) > 0 if φ(x1, . . . , xn) = true, and Φ(x1, . . . , xn) = 0 if φ(x1, . . . , xn) = false.
Summing over all possible (boolean) settings to the variables, we see that

φ 6∈ SAT ⇔
∑

x1∈{0,1}

· · ·
∑

xn∈{0,1}

Φ(x1, . . . , xn) = 0.

We have said already that if φ has m clauses, then Φ has degree (at most) m (where the
[total] degree of a polynomial is the maximum degree on any of its monomials, and the degree of a
monomial is the sum of the degrees of its constituent variables). Furthermore, the sum above is at
most 2n · 3m. So, if we work modulo a prime q > 2n · 3m the above is equivalent to:

φ 6∈ SAT ⇔
∑

x1∈{0,1}

· · ·
∑

xn∈{0,1}

Φ(x1, . . . , xn) = 0 mod q.

1In more detail: a constant-round proof system for coNP would imply a constant-round public-coin proof system

for coNP, which would in turn imply coNP ⊆ AM. We showed last time that the latter implies the collapse of PH.
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Working modulo a prime (rather than over the integers) confers two advantages: it keeps the
numbers from getting too large (since all numbers will be reduced modulo q; note that |q| = log q is
polynomial) and it means that we are working over the finite field

�
q (which simplifies the analysis).

We have now reduced the question of whether φ is unsatisfiable to the question of proving that
a particular expression sums to 0(!) Hopefully, this already hints at the power of arithmetiza-
tion: it transforms questions of logic (e.g., satisfiability) into questions of abstract mathematics
(polynomials, group theory, algebraic geometry, . . . ) and we can then use all the powerful tools of
mathematics to attack our problem. Luckily, for the present proof the only “deep” mathematical
result we need to rely on is that a non-zero polynomial of degree m over a field has at most m
roots. An easy corollary is that two different polynomials each of degree (at most) m can agree on
at most m points.

We now show the interactive proof that φ is not satisfiable.

• Both prover and verifier have φ. They both compute the polynomial Φ. The prover wants
to show that 0 =

∑

x1∈{0,1} · · ·
∑

xn∈{0,1} Φ(x1, . . . , xn) Note that although the verifier can
evaluate Φ at any point, the verifier cannot evaluate the summation since it involves a sum
over exponentially-many terms.

• The prover sends a prime q such that q > 2n · 3m. The verifier checks the primality of q.

• The verifier initializes v0 = 0.

• The following is repeated as i runs from 1 to n:

– The prover sends a polynomial P̂i (in one variable) of degree at most m.

– The verifier checks that P̂i has degree at most m and that P̂i(0)+ P̂i(1) = vi−1 (addition
is done in

�
q ). If not, the verifier rejects. Otherwise, the verifier chooses a random

ri ∈
�

q , computes vi = P̂i(ri), and sends ri to the prover.

• The verifier accepts if Φ(r1, . . . , rn) = vn and rejects otherwise. (Note that even though we
originally only “cared” about the values Φ takes when its inputs are boolean, there is nothing
stopping us from evaluating Φ at any points in our field.)

We now show completeness and soundness.

Completeness: For every 1 ≤ i ≤ n (and given the verifier’s choices of r1, . . . , ri−1) define the
polynomial:

Pi(xi)
def
=

∑

xi+1∈{0,1}

· · ·
∑

xn∈{0,1}

Φ(r1, . . . , ri−1, xi, xi+1, . . . , xn).

We claim that if φ is unsatisfiable and the prover always sends P̂i = Pi, then the verifier will always
accept. To see this, first note that Pi always has degree at most m so the verifier never rejects for
that reason. In the first iteration (i = 1), we have

P1(0) + P1(1) =
∑

x1∈{0,1}





∑

x2∈{0,1}

· · ·
∑

xn∈{0,1}

Φ(x1, . . . , xn)



 = 0 = v0,

since φ is unsatisfiable. For i > 1 we have:

Pi(0) + Pi(1) =
∑

xi∈{0,1}

∑

xi+1∈{0,1}

· · ·
∑

xn∈{0,1}

Φ(r1, . . . , ri−1, xi, . . . , xn)

= Pi−1(ri−1) = vi−1.
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Finally, vn
def
= Pn(rn) = Φ(r1, . . . , rn). So, the verifier will accept.

Soundness: To prove soundness we will rely on the following lemma:

Lemma 1 For an execution of the protocol above, define the values Qi (for 0 ≤ i ≤ n) via:

Qi
def
=

∑

xi+1∈{0,1}

· · ·
∑

xn∈{0,1}

Φ(r1, . . . , ri, xi+1, . . . , xn)

= Pi(ri)

(where Pi is the same polynomial defined earlier). For 0 ≤ i < n, if vi 6= Qi the probability that the
verifier does not reject but vi+1 = Qi+1 is at most m

q
(even for a cheating, all-powerful prover).

Proof Assume vi 6= Qi and the prover sends a degree-m polynomial P̂i+1(xi+1). There are two
cases: either P̂i+1 = Pi+1 (as polynomials) or not. If they are equal, the verifier will immediately
reject since

P̂i+1(0) + P̂i+1(1) = Pi+1(0) + Pi+1(1)

=
∑

xi+1∈{0,1}

∑

xi+2∈{0,1}

· · ·
∑

xn∈{0,1}

Φ(r1, . . . , ri, xi+1, . . . , xn)

def
= Qi 6= vi.

If P̂i+1 6= Pi+1, we know that these polynomials can agree on at most m points. Therefore,
except with probability m

q
the verifier chooses a point ri+1 for which

vi+1
def
= P̂i+1(ri+1) 6= Pi+1(ri+1)

def
= Qi+1.

This completes the proof.

Soundness now follows easily: if φ is satisfiable (and so the prover is trying to cheat) then
0 = v0 6= Q0. Using the lemma repeatedly and applying a union bound, we see that vn 6= Qn

except with probability at most nm
q

. But Qn
def
= Φ(r1, . . . , rn), and so vn 6= Qn implies that the

verifier rejects at the end of the protocol.

1.2 #P ⊆ IP

It is straightforward to extend the protocol of the previous section to show that #P ⊆ IP. The
only substantive difference is in the way we arithmetize φ: now we want our arithmetization Φ to
evaluate to exactly 1 on any satisfying assignment to φ, and to 0 otherwise. For literals we proceed
as before, transforming xi to xi and x̄i to 1 − xi. For clauses, we do something different: given
clause a ∨ b ∨ c (where a, b, c are literals), we construct the polynomial:

1 − (1 − â)(1 − b̂)(1 − ĉ),

where â represents the arithmetization of a, etc. Note that if all of a, b, c are set to “false” (i.e.,
â = b̂ = ĉ = 0) the above evaluates to 0 (i.e., false), while if any of a, b, c are “true” the above
evaluates to 1 (i.e., true). Finally, the entire formula φ (which is the “and” of a bunch of clauses)
is simply the product of the arithmetization of its clauses. This gives the arithmetization Φ with
the desired properties. Note that the degree of Φ is now (at most) 3m.
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Using the above arithmetization, a formula φ has exactly K satisfying assignments iff:

K =
∑

x1∈{0,1}

· · ·
∑

xn∈{0,1}

Φ(x1, . . . , xn).

Using the exact same protocol as before, except with q > 2n (since the above summation can
now be at most 2n) and setting v0 = K (the claimed number of satisfying assignments), gives an
interactive proof for #SAT with soundness error 3mn/q.

2 IP = PSPACE

Before we show that PSPACE ⊆ IP, we need to find a PSPACE-complete problem to work with. It
should not be surprising that the problem we pick will be a variant of satisfiability. However, the
proof that the problem is PSPACE-complete is not entirely trivial.

2.1 A PSPACE-Complete Problem

The problem we will consider is totally quantified boolean formulae (denoted QSAT ) which consists
of quantified formulae of the form:

∀x1∃x2 · · ·Qnxn φ(x1, . . . , xn),

where Qn = ∀ if n is odd, and Qn = ∃ if n is even, and an expression of the above form is in QSAT
if it is true: that is, if it is the case that “for all x1 ∈ {0, 1}, there exists an x2 ∈ {0, 1}, . . . such
that φ(x1, . . . , xn) evaluates to true.” (Note that it does not make a difference whether the “∀”
quantifier or the “∃” quantifier comes first, since we can always add an extra “dummy” variable.)
While this looks very similar to the polynomial hierarchy we have seen earlier, the key difference
here is that the number of alternations is unbounded (but polynomial in the input size); in contrast,
the kth level of the polynomial hierarchy allows only a constant (i.e., k) number of alternations.

It is not too difficult to see that QSAT ∈ PSPACE (basically, in polynomial space we can try
all settings of all the variables and keep track of whether the quantified expression is true). It is a
bit trickier to show that QSAT is PSPACE-complete. Given a PSPACE machine M deciding some
language L, we will reduce the computation of M on some input x to an instance of QSAT . Since
M uses space nk and runs in time 2nk

for some constant k, we may encode configurations of M
on some initial input x (with |x| = n) using O(nk) bits. We will construct a sequence of formulae
ψi(a, b) which evaluate to true iff there is a path (i.e., sequence of steps of M) of length at most 2i.
Letting a0 denote the initial state of M (on input x), and letting z denote the (unique) accepting
state of M , deciding whether M accepts x is equivalent to deciding whether ψnk(a0, z) is true.

We need now to construct the ψ. For ψ0 this is easy: to evaluate ψ0(a, b) we simply test
whether a = b or whether configuration b follows from configuration a in one step. Now, given ψi

we construct ψi+1. The “obvious” way of doing this would be as in the proof of Savitch’s theorem:
namely, to define ψi+1(a, b) as:

∃c : ψi(a, c) ∧ ψi(c, b).

Doing so, however, would result in a formula ψnk of exponential size! (To see this, note that
expanding everything [and collapsing the existential quantifiers] we would get an expression like:

∃c1, . . . , c2nk−1
: ψ0(a0, c1) ∧ · · · ∧ ψ0(c2nk−1

, z),
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which is exponential in |x|. We may also note that we have not made any use of universal quantifiers
in the above.) Instead, we proceed a bit more cleverly and “encode” ψi(a, c) ∧ ψi(c, b) in a single
expression. In particular, define ψi+1(a, b) as:

∃c∀x, y :
(

(

(x, y) = (a, c)
)

∨
(

(x, y) = (c, b)
)

)

⇒ ψi(x, y).

(Note that the logical implication a ⇒ b is equivalent to the expression b ∨ ā.) The key point is
that whereas previously the size of ψi+1 was double the size of ψi, here the size of ψi+1 is only a
constant (additive) factor larger than ψi.

A few technical points remain to be addressed: first, the quantifiers of ψi are “buried” inside
the expression for ψi+1 (whereas QSAT requires that these quantifiers come up front); however, it
is easy to see that the quantifiers of ψi can be migrated to the front without changing the truth
of the overall expression. A second problem is that ψnk is not in CNF form. However, since the
inner expression of ψnk can be evaluated by a polynomial-size circuit, we can easily convert this
inner expression to the required form (as in the proof that circuit-SAT is NP-complete). See [2]
for further details.

2.2 An Interactive Proof for QSAT

We now show an interactive proof system for QSAT ; coupled with the fact that QSAT is PSPACE-
complete, this shows that PSPACE ⊆ IP. We use the same arithmetization we used for #P; recall,
for a boolean formula φ this results in a degree-3m polynomial Φ such that Φ(x1, . . . , xn) = 1 if
φ(x1, . . . , xn) is true, and Φ(x1, . . . , xn) = 0 if φ(x1, . . . , xn) is false. But now we need to worry
about quantifiers. The arithmetization of an expression of the form ∀xnφ(x1, . . . , xn) will be:

∏

xn

Φ(x1, . . . , xn)
def
= Φ(x1, . . . , xn−1, 0) · Φ(x1, . . . , xn−1, 1)

(where Φ is the arithmetization of φ). Note that if we fix values for x1, . . . , xn−1 then the above
evaluates to 1 if the expression ∀xnφ(x1, . . . , xn) is true, and evaluates to 0 if this expression is
false. The arithmetization of an expression of the form ∃xnφ(x1, . . . , xn) will be

∐

xn

Φ(x1, . . . , xn)
def
= 1 −

(

1 − Φ(x1, . . . , xn−1, 0)
)

·
(

1 − Φ(x1, . . . , xn−1, 1)
)

(where, again, Φ is the arithmetization of φ). Note again that if we fix values for x1, . . . , xn−1

then the above evaluates to 1 if the expression ∃xnφ(x1, . . . , xn) is true, and evaluates to 0 if this
expression is false. Proceeding in this way, a quantified boolean formula ∃x1∀x2 · · · ∀xnφ(x1, . . . , xn)
is true iff

1 =
∐

x1

∏

x2

· · ·
∏

xn

Φ(x1, . . . , xn) (1)

(where Φ is our original arithmetization of φ).
A natural idea is to “plug in” Eq. (1) to the existing protocols we have seen for coNP and

#P, and to have the prover help the verifier evaluate the above expression by “stripping off”
operators one-by-one. However, things are not quite this easy: the problem is that the degrees of
the intermediate polynomials are too large. For example, following the ideas used in the previous
protocols we would want the honest prover to send the polynomial:

P (x1)
def
=

∏

x2

· · ·
∏

xn

Φ(x1, . . . , xn)
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(and then the verifier would check that
∐

x1
P (x1) = 1, etc.). But the degree of x1 doubles each

time a
∏

or
∐

operator is applied, meaning that the degree of P (x1) would be exponential in n.
Besides whatever effect this will have on soundness, this is even a problem for completeness since a
polynomially-bounded verifier simply cannot process an exponentially-large polynomial (i.e., with
exponentially-many non-zero coefficients).

To address the above issue, we use a simple2 trick. Note that we only care about evaluating
Eq. (1) for {xi} taking on boolean values. But for any k > 0 we have xk

i = xi when xi ∈ {0, 1}. So
we can in fact reduce the degree of every variable in any intermediate polynomial to (at most) 1.
(For example, the polynomial x5

1x
4
2 +x6

1 +x7
1x2 would become 2x1x2 +x1.) Let Rxi

denote a reduce
operator denoting this “degree reduction” operation applied to variable xi. Thus, the prover needs
to convince the verifier that:

1 =
∐

x1

Rx1

∏

x2

Rx1
Rx2

∐

x3

· · ·Rx1
· · ·Rxn−1

∏

xn

Rx1
· · ·RxnΦ(x1, . . . , xn).

As in the previous protocols, we will actually evaluate the above modulo some prime q. Note that
the above expression evaluates to either 0 or 1 (as long as Φ is derived by arithmetizing a boolean
expression), and so soundness is only affected by choice of q in that the soundness will end up being
proportional to 1/q (see below).

Now we can apply the basic idea from the previous protocols to construct a new protocol in
which, in each round, the prover helps the verifier “strip” one operator from the above expression.
Denote the above expression abstractly by:

Fφ = O1O2 · · · O` Φ(x1, . . . , xn) mod q ,

where ` =
∑n

i=1
(i+1) and each Oj is one of

∏

xi
,
∐

xi
, or Rxi

(for some i). Describing the protocol
in a bit more detail, at every round k the verifier holds some value vk and the prover wants to
convince the verifier that

vk = Ok+1 · · · O` Φk mod q,

where Φk is some polynomial. At the end of the round the verifier will compute some vk+1 and will
then want to be convinced that

vk+1 = Ok+2 · · · O` Φk+1 mod q,

for some Φk+1. We explain how this is done below. At the beginning of the protocol we start with
v0 = 1 and Φ0 = Φ (so that the prover wants to convince the verifier that the given quantified
formula is true); at the end of the protocol the verifier will be able to compute Φ` itself and check
whether this is equal to v`.

It only remains to describe each of the individual rounds. There are three cases corresponding to
the three types of operators (we omit the “ mod q” from our expressions from now on, for simplicity):

Case 1: Ok+1 =
∏

xi
(for some i). Here, the prover wants to convince the verifier that

vk =
∏

xi

Rx1
· · ·

∐

xi+1

· · ·
∏

xn

Rx1
· · ·RxnΦ(r1, . . . , ri−1, xi, . . . , xn). (2)

(Important technical note: when we write an expression like the above, we really mean:




∏

xi

Rx1
· · ·

∐

xi+1

· · ·
∏

xn

Rx1
· · ·RxnΦ(x1, . . . , xi−1, xi, . . . , xn)



 [r1, . . . , ri−1].

2Of course, it seems simple in retrospect. . .
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That is: first the expression is computed symbolically, and then the resulting expression is evaluated
by setting x1 = r1, . . . , xi−1 = ri−1.) This is done in the following way:

• The prover sends a degree-1 polynomial P̂ (xi).

• The verifier checks that vk =
∏

xi
P̂ (xi). If not, reject. Otherwise, choose random ri, set

vk+1 = P̂ (ri), and enter the next round with the prover trying to convince the verifier that:

vk+1 = Rx1
· · ·

∐

xi+1

· · ·
∏

xn

Rx1
· · ·RxnΦ(r1, . . . , ri−1, ri, xi+1, . . . , xn). (3)

We show completeness and an analogue of Lemma 1 (which will be used to prove soundness)
for the above step. For completeness, assuming Eq. (2) is true the prover can send

P̂ (xi) = P (xi)
def
= Rx1

· · ·
∐

xi+1

· · ·
∏

xn

Rx1
· · ·RxnΦ(r1, . . . , ri−1, xi, . . . , xn)

and then the verifier will not reject and also Eq. (3) will hold for any choice of ri. As for soundness,
if Eq. (2) does not hold then the prover must send P̂ (xi) 6= P (xi) (or else the verifier rejects right
away); but then Eq. (3) will not hold except with probability 1/q.

Case 2: Ok+1 =
∐

xi
(for some i). This case and its analysis are similar to the above and are

therefore omitted.

Case 3: Ok+1 = Rxi
(for some i). Here, the prover wants to convince the verifier that

vk = Rxi
· · ·Rxj

Oxj+1
· · ·

∏

xn

Rx1
· · ·RxnΦ(r1, . . . , rj , xj+1, . . . , xn), (4)

where j ≥ i and O ∈ {
∏

,
∐

}. This case is a little different from anything we have seen before.
This round proceeds as follows:

• The prover sends a polynomial P̂ (xi) of appropriate degree (see below).

• The verifier checks that
(

Rxi
P̂ (xi)

)

[ri] = vk. If not, reject. Otherwise, choose a new random

ri, set vk+1 = P̂ (ri), and enter the next round with the prover trying to convince the verifier
that:

vk+1 = Ok+2 · · ·
∏

xn

Rx1
· · ·RxnΦ(r1, . . . , ri−1, ri, ri+1, . . . , rj , xj+1, . . . , xn) (5)

(and this falls into one of the three possible cases).

Completeness is again easy to see: assuming Eq. (4) is true, the prover can simply send:

P̂ (xi) = P (xi)
def
= Ok+2 · · ·

∏

xn

Rx1
· · ·RxnΦ(r1, . . . , ri−1, xi, ri+1, . . . , rj , xj+1, . . . , xn)

and then the verifier will not reject and also Eq. (5) will hold for any choice of (new) ri. As for
soundness, if Eq. (4) does not hold then the prover must send P̂ (xi) 6= P (xi); but then Eq. (5) will
not hold except with probability d/q where d is the degree of P̂ .
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This brings us to the last point, which is what the degree of P̂ should be. We can see that
except for the final n reduce operators, the degree of the intermediate polynomial can be at most 2;
for the final n operators, the degree can be up to 3m. We may now compute the soundness error of
the entire protocol: we obtain a 1/q error for each of the n operators of type

∏

or
∐

, a 3m/q error
for each of the final n reduce operators, and a 2/q error for all other reduce operators. Applying a
union bound, we see that the soundness error is:

n

q
+

3mn

q
+

2

q
·

n−1
∑

i=1

i =
3mn+ n2

q
.

Bibliographic Notes

The result that PSPACE ⊆ IP is due to Shamir [3], building on [1]. The “simplified” proof given
here is from [4].
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