
Notes on Complexity Theory: Fall 2005 Last updated: September, 2005

Lecture 3

Jonathan Katz

1 Terminology

For any complexity class C, we define the class coC as follows:

coC
def
=

{

L | L̄ ∈ C
}

.

One class that is worth mentioning at this time is the class coNP . By definition, we have:

coNP
def
= {L | L̄ ∈ NP},

but this does not give too much intuition about this class. One can show that this definition
is equivalent to the following two definitions:

1. L ∈ coNP iff there exists a polynomially-bounded relation RL ∈ P such that

x 6∈ L ⇔ ∃w : (x,w) ∈ RL.

2. L ∈ coNP iff there exists a polynomially-bounded relation RL ∈ P such that

x ∈ L ⇔ ∀w : (x,w) ∈ RL.

A proof of equivalence is left as an exercise.

2 Non-Deterministic Space Complexity

When we talk about space complexity in general, it is understood that our Turing machine
model includes a read-only input tape (and, in the case of machines computing functions, a
read-only, unidirectional output tape); furthermore, only the space used on the work tape(s)
is counted in determining the space used by the machine. This allows us to meaningfully
talk about sub-linear space classes.

There are some subtleties in defining non-deterministic space complexity. In particular,
there are (at least) three definitions/models one might consider: The first definition is
simply in terms of a Turing machine with a non-deterministic transition function. (We
stress that the machine must work within the allotted space bound for every computation
path it might possibly take.) One might actually say that this is the definition, so other
definitions are useful only if they are equivalent to this one. As in the case of NP , we can
also imagine speaking in terms of witnesses. Specifically, we might augment our Turing
machine model to consider machines with a special, read-only “auxiliary input” tape. Then
we would say that L ∈ nspace(s) if there exists a deterministic machine ML using space

3-1

s(n) such that if x ∈ L then there exists a witness w such that ML(x,w) accepts; if x 6∈ L

then ML(x,w) rejects for all w. (The space used is measured in terms of the length |x| of
the input, and the witness w is placed on the auxiliary input tape. Note that w may be
much longer than x, and the space used on the auxiliary input tape is not counted in the
space complexity of ML.) An important distinction here is whether we allow ML to have
bidirectional access to its auxiliary input or only unidirectional access; the first model is
called the “off-line” model, while the second is called the “on-line” model. In turns out that
the off-line model is too powerful; specifically, for “nice” s:

nspace1(s) ⊆ nspaceoff(log s),

where the subscript “1” refers to the original definition and the subscript “off” refers to the
off-line model. On the other hand, one can show:

nspace1(s) = nspaceon(s),

and so the on-line model is a good one. See [1, Chap. 5] for further discussion as well as
proofs of the above statements.

These issues will not explicitly arise in what follows, but the point is that we always
implicitly work in the on-line model or (equivalently) under the original definition.

2.1 A Translation Lemma

Here is as good a place as any to discuss a simple translation lemma which is often useful.
The lemma is stated for non-deterministic vs. deterministic space bounds but extends to
other cases as well.

Note: We did not cover this in class, but the result is good to know (though the
proof is rather technical).

Lemma 1 Let S1, S2, f be space-constructible with S2(n) ≥ log n and f(n) ≥ n. Then
nspace(S1(n)) ⊆ space(S2(n)) implies nspace(S1(f(n))) ⊆ space(S2(f(n))).

Proof We are given L ∈ nspace(S1(f(n))) and a non-deterministic machine M1 running
in this space bound that decides L. Define a padded version of L by:

Lp def
=

{

x$i | x ∈ L, and M1 accepts x in space S1(|x| + i)
}

,

where we assume that L ⊆ {0, 1}∗. Note that if x ∈ L then x$f(|x|)−|x| ∈ Lp.
It is not hard to see that Lp ∈ nspace(S1(n)). In particular, we have the following

machine M2 to decide it:

1. On input y, first check that y is of the form x$i with x ∈ {0, 1}∗. If not, reject.

2. Otherwise, say y = x$i. Run M1(x). If this execution of M1 ever exceeds space
S1(|x| + i) = S1(|y|), reject. If M1 rejects, reject. If M1 accepts, accept.

3-2

M2 needs only constant space in the first step, and space S1(|y|) in the second.
Now, by assumption, Lp ∈ space(S2(n)). In particular, there exists a deterministic

machine M3 using space S2(n) which decides Lp. We now construct M4 that decides the
original language L in space O(S2(f(n))):

• On input x, simulate executions of M3 on x$j for j = 0, 1, . . . using space at most
2S2(f(|x|)). If any of these accept, accept. If the space bound is ever exceeded, reject.

Instead of explicitly storing x$j (which may require too much space), M4 will instead
maintain a counter of length log j indicating the input-head position of M3 in the simulation
(in this way, it knows when to feed M3 the input symbol $ rather than a blank). If x 6∈ L,
the above will eventually reject (specifically, it will reject at latest by the time log j exceeds

2S2(f(n))). On the other hand, if x ∈ L then set j∗
def
= f(|x|) − |x|. As pointed out above,

x∗ def
= x$j∗ is in Lp. Furthermore, M3 accepts x∗ in space S2(|x

∗|) = S2(f(|x|)), and M3

never uses more space than this on shorter inputs. Furthermore, the space required (by
M4) to hold the counter is at most log j∗ ≤ log f(|x|) ≤ S2(f(|x|)) (using the fact that
S2(n) ≥ log n). We conclude that M4 will accept x for some j ≤ j∗.

We remark that the analogous lemma for the case of time-bounded machines is even
easier, by setting

Lp def
= {x$f(|x|)−|x| | x ∈ L},

and then letting M4 compute f(|x|) directly and then run M3(x$f(|x|)−|x|). Two modifica-
tions need to be made: first, we need S1(n), S2(n) ≥ n also; second, M2 needs to check that
its input x$j satisfies j = f(|x|) − |x| within its allotted time bound. This may be prob-
lematic if x$j is shorter than f(|x|). To solve this, M2 simply times itself while computing
f(|x|) and rejects if it exceeds its time bound.

3 Non-Deterministic Space and the Reachability Method

In this section, we will see different applications of the so-called reachability method. The
basic idea is that we can view the computation of a non-deterministic machine M on input
x as a directed graph with vertices corresponding to configurations of M(x) and an edge
from i to j iff this represents a legal move of M(x). (We will sometimes refer to this as the
configuration graph of M(x).) If we assume, without loss of generality, that M has only
a single accepting state, then the question of whether M(x) accepts is equivalent to the
question of whether there is a path from the initial configuration of M(x) to the accepting
configuration. We refer to this as the reachability problem in the graph of interest.

3.1 The Class NL

We begin with a brief discussion of L and NL, where

L
def
= space(log n) and NL

def
= nspace(log n).

Clearly, L ⊆ NL but, as in the case of P vs. NP, we do not know whether this inclusion
is strict. Let us define some terminology.

3-3

Definition 1 L is log-space reducible to L′ if there is a function f computable in log-space
such that x ∈ L ⇔ f(x) ∈ L′. ♦

A log-space reduction is a special case of a Karp reduction, since any f computable in
log-space is computable in polynomial time. In particular, then, the length |f(x)| of the
output is at most polynomially-longer than |x|.

Definition 2 L is NL-complete if: (1) L ∈ NL; and (2) for all L′ ∈ NL, L′ is log-space
reducible to L. ♦

Lemma 2 If L is log-space reducible to L′ and L′ ∈ L (resp., L′ ∈ NL) then L ∈ L (resp.,
L ∈ NL).

Proof (Sketch) Let f be a function computable in log space such that x ∈ L iff f(x) ∈ L ′.
The “trivial” way of trying to prove this lemma (namely, on input x computing f(x) and
then determining whether f(x) ∈ L′) does not work: the problem is that |f(x)| may
potentially be larger than O(log |x|) in which case this trivial algorithm will use more than
logarithmic space. Instead, we need to be a bit more clever. The basic idea is as follows:
instead of computing f(x), we simply compute the ith bit of f(x) whenever we need it. In
this way, although we are wasting time (in re-computing f(x) multiple times), we never use
more than logarithmic space.

We now use the reachability method discussed earlier to show a very natural NL-
complete problem: directed connectivity (called conn). Here we are given a directed graph
on n-vertices (say, specified by an adjacency matrix), and two vertices s and t and we need
to determine whether there is a directed path from s to t or not. Formally:

conn
def
= {(G, s, t) | there is a path from s to t in graph G} .

(We remark that the corresponding problem on undirected graphs is possibly easier —
since any undirected graph can be easily transformed into a directed graph — and in
particular undirected connectivity is not believed to be NL-complete.) To see that directed
connectivity is in NL, we need to show is a non-deterministic algorithm using log-space
which never accepts if there is no path from s to t, but which sometimes accepts if there is
a path from s to t. Letting n be the number of vertices in our graph, the following simple
algorithm achieves this:

if s = t accept
set vcurrent := s

for i = 1 to n:
guess a vertex vnext

if there is no edge from vcurrent to vnext, reject
if vnext = t, accept
vcurrent := vnext

if i = n and no decision has yet been made, reject

To see that conn is NL-complete, assume L ∈ NL and let ML be a non-deterministic
log-space machine that decides L. Our log-space reduction from L to conn will take an

3-4

input x and output the configuration graph of ML(x). Specifically, we will output a graph
(represented as an adjacency matrix) in which the nodes represent configurations of ML on
input x and edges represent allowable transitions. The number of configurations of ML on
input x (with |x| = n) is at most |QML

| ·n ·2O(log n) ·O(log n), where these terms correspond
to the state, the position of the input head, the contents of the work-tape, and the position
of the work-tape head. So, a configuration can be represented using O(log n) bits.1 Number
these from 1 to R (with log R = O(log n)). We generate the adjacency matrix in log-space
as follows:

For i = 1 to R:
for j = 1 to R:

Output 1 if there is a legal transition from i to j, and 0 otherwise
(if i or j is not a legal state, simply output 0)

The above algorithm requires O(log n) space to store i, j and at most logarithmic space to
check for a legal transition. Also, note that it indeed gives a reduction to conn by the
properties of the configuration graph that we remarked upon earlier.

Another consequence of the reachability method is that if a non-deterministic machine
running in space s(n) ≥ log n has an accepting computation, then it has an accepting
computation passing through at most 2O(s(n)) states and so, in particular, it has an accepting
computation running for at most this much time. So, using a counter, we may always assume
that a non-deterministic machine using space s(n) ≥ log n never runs (in any computation
path) for time longer than 2O(s(n)). In fact, we can prove something even stronger:

Claim 3 For s(n) ≥ log n a space-constructible function, nspace(s(n)) ⊆ time(2O(s(n))).

Proof (Sketch) The idea is that we can solve the reachability problem on a graph with n

nodes in deterministic time O(n2). The graph derived from the non-deterministic machine
ML (which decides some language L in space s(n)) has at most 2O(s(n)) vertices. Combining
these two facts gives the stated theorem.

Corollary 4 NL ⊆ P.

3.2 Savitch’s Theorem

We prove Savitch’s theorem stating that non-deterministic space is not too much more
powerful than deterministic space:

Theorem 5 Let s(n) ≥ log n be space-constructible. Then nspace(s(n)) ⊆ space(s2(n)).

Proof The crux of the proof comes down to showing that reachability on an n-node graph
can be decided in space log2 n. Specifically, let M be a non-deterministic machine using
space O(s(n)). By what we have said above, if M(x) accepts then there exists an accepting
sequence of configurations of length at most CM (|x|) = 2O(s(n)). We may assume without

1An important point is that we do not need to include the input x in the configuration, since x is fixed

throughout the computation.

3-5

loss of generality that M has a single accepting configuration. We view the computation of
M(x) as a directed graph GM with 2O(s(n)) vertices corresponding to configurations of M(x),
and where there is a directed edge between vertices i and j iff going from configuration i to
configuration j represents a legal move for M(x). Note that:

1. Vertices in GM can be represented using space O(s(n)) (for s(n) < n note that we do
not need to explicitly write the input x as part of the configuration since it always
sits on the input tape).

2. There is an enumeration of vertices such that given a vertex i the next vertex in the
enumeration can be generated in constant space.

3. Given two vertices in GM , it is possible to determine whether there is an edge between
them using space O(s(n)). (This is actually an over-estimate.)

We will now solve a more general problem: determining reachability in directed graphs.
Specifically, given an n-vertex graph and vertices s, t we show a deterministic algorithm to
determine whether there is a path from s to t using space log n · |v|, where |v| is the space
required to represent a vertex. Note that this proves the theorem, since then we have the
following deterministic algorithm using space s(n)2: determine whether there is a path from
the initial configuration of M to the accepting configuration of M (viewed as vertices in
GM) in the graph GM .

We now give the promised algorithm. Specifically, we give an algorithm PATH(a, b, i)
which determines whether there is a path of length at most 2i from a to b (we solve the
stated problem by calling PATH(s, t, log n)). The algorithm proceeds as follows:

• If i = 0, output “yes” if a = b or if there is an edge from a to b. Otherwise, output
“no”.

• Otherwise, for each vertex v:

– If PATH(a, v, i − 1) and PATH(v, b, i − 1), output “yes”.

• Return “no”.

Let us analyze the space complexity of the above algorithm. It is clear that the depth of
the recursion is O(log n). At each level of the recursion, the algorithm needs to store a, b,
the current vertex v, and the current value of i, all of which requires space O(|v|). Putting
everything together shows that the algorithm runs within the claimed space.

Corollary 6 NPSPACE = PSPACE.

3.3 The Immerman-Szelepcsényi Theorem

Here we will show the somewhat surprising result that non-deterministic space is closed
under complementation.

Theorem 7 If s(n) ≥ log n is space constructible, then nspace(s(n)) = conspace(s(n)).

3-6

Proof The crux of the proof is to show that non-reachability (i.e., the complement of
conn) on graphs of n vertices can be decided using non-deterministic space log n. We then
show how this implies the theorem. We build up our algorithm in stages. We have already
shown that there exists a non-deterministic algorithm for deciding conn. To make it precise,
let path(s, t, i) be a non-deterministic routine which determines whether there is a path of
length at most i from s to t (then conn is decided in n-vertex graphs by path(s, t, n)). It is
easy to see that the algorithm we gave earlier for conn extends for the case of arbitrary i.
Algorithm path is a yes/no algorithm using O(log n) space2 which sometimes outputs “yes”
if t is reachable from s in at most i steps (and sometimes outputs “no” in this case), but
always outputs “no” if t is not reachable from s in at most i steps.

Using path as a sub-routine, we design a yes/no/abort algorithm isReachable with dif-
ferent guarantees: if t is reachable from s within i steps it sometimes outputs “yes” (but
never outputs “no”), and if t is not reachable from s within i steps it sometimes outputs
“no” (but never outputs “yes”). The rest of the time it aborts. (I.e., when it does not abort
its answer is correct.) However, there is a caveat: this algorithm takes as additional input
the number of vertices c within i − 1 steps of s (and correctness is only guaranteed when
this input is correct). Nevertheless, this algorithm will form a crucial building block for our
main algorithm. Algorithm isReachable(s, t, i, c) proceeds as follows:

ctr = 0
for each vertex v:

if (path(s, v, i − 1)):
increment ctr

if v = t or there is an edge from v to t output “yes” and stop
if ctr = c output “no”
if ctr 6= c abort

Let us analyze the behavior of the above assuming c is the number of vertices within
distance i − 1 of s: if t is reachable from s within i steps, then either t is within distance
i − 1 of s, or there exists some vertex v∗ within distance i − 1 of s for which there is an
edge from v∗ to t. In either case, path will sometimes output “yes” for this vertex v∗, and
isReachable will output “yes” in such a case. We claim that isReachable cannot output “no”.
The only way it could possibly do so is if ctr = c. But in this case the algorithm has found
every vertex within distance i − 1 of s (including v∗), in which case we would have already
output “yes”.

Considering the other case: if t is not reachable from s within i steps, then there is
certainly no way we can output “yes”. On the other hand, we will output “no” as long as
we happen to find all vertices within distance i − 1 of s.

Finally, the space used by isReachable is the space to store ctr, v, and to run path. Since
ctr ≤ n we see that the algorithm uses space O(log n).

Now we are ready to give our main algorithm notReachable(s, t). The intuition is as
follows: let ci denote the number of vertices within distance i of s (including s itself). Setting
c0 = 1 (since only s itself is within distance 0), we then iteratively compute c1, . . . , cn−1. We
then call isReachable(s, t, n, cn−1) and accept iff the answer is “no” (note that if t is reachable

2We assume path is always called with i ≤ n, as there is no reason to do otherwise.

3-7

from s, then it is reachable in at most n steps). If any of the sub-routines of isReachable

abort, the entire algorithm simply rejects immediately. (Note: in the algorithm, we save
space by not storing all of c0, . . . cn−1 but instead only storing the values we need.)

i = 0, ccur = 1
for i = 1 to n − 1:

cnext = 0
for each vertex v:

if (isReachable(s, v, i, ccur)) increment cnext

ccur = cnext // (ccur now holds ci)
if isReachable(s, t, n, ccur) outputs “no”, accept
otherwise, reject

Let’s see why the above algorithm is correct (it is not hard to see that it takes space
O(log n)). Note first that every time we call isReachable we are calling it with a correct final
argument. (This is because if any invocation of isReachable aborts, the entire algorithm
halts immediately; if all invocations of isReachable do not abort then the correct answer
was always returned and so the value stored by ccur is correct.) Now, we need to show that
if there is no path from s to t then the algorithm sometimes accepts, and if there is a path
from s to t then the algorithm never accepts. If there is no path from s to t and none of the
calls to isReachable abort (which is certainly possible), then — as we said above — in the
last line of the algorithm we call isReachable with a correct value of ccur = cn−1; it returns
the correct answer, and we accept as desired. On the other hand, if there is a path from s

to t there are two cases: either some call to isReachable aborts, or not. In the first case we
are fine (since we reject anyway in this case). In the second case, we again call isReachable

with a correct value of ccur = cn−1 in the last line of the algorithm; it returns the correct
answer, and we reject. This is exactly what we needed to show.

Finally coming to the proof of the theorem statement itself, we use the same idea as in the
proof that conn is NL-complete. Namely, given L ∈ nspace(s(n)) and non-deterministic
machine ML which accepts L using space O(s(n)), we consider the function f which takes
an input x and outputs the adjacency matrix corresponding to configurations of ML on
input x. The space required to do so is O(s(n) + log n) = O(s(n)), and we end up with a
graph on 2O(s(n)) vertices. We then run algorithm notReachable on this graph (setting s to
be the initial configuration and t to be the unique accepting configuration), which requires
space O(log 2O(s(n))) = O(s(n)). (A subtlety is that — exactly as in the case of Lemma 2
— we never store the entire adjacency matrix at any time, but instead implicitly decide (as
needed) whether there is an edge between some two given vertices.)

Bibliographic Notes

The proof of the translation lemma is from [1, Lect. 5].

References

[1] O. Goldreich. Introduction to Complexity Theory (July 31, 1999).

3-8

