
Notes on Complexity Theory Last updated: October, 2005

Handout 5

Jonathan Katz

1 An Improved Upper-Bound on Circuit Size

Here we show the result promised in the previous lecture regarding an upper-bound on
the size of circuits needed to compute any n-ary function. The key idea is to re-use prior
computations whenever possible. We begin with an observation and a definition. First, the
observation: every n-ary function f can be written as

f(x1 · · · xn) =
⊕

a1,...,an∈{0,1}

αa1···an
∧ xa1

1 ∧ · · · ∧ xan

n

for some set of binary constants {αa1···an
}, where

xai

i
def
=

{

xi if ai = 1
1 if ai = 0

.

(Note that the {αa1···an
} are simply “selector bits” which determine whether a given term

contributes to the sum.) To see this, consider the arithmetization of f over Z2: write f in
conjunctive normal form and then map x̄ to (1 − x); map C ∧ C ′ to CC ′ (where C,C ′ are
expressions); and map C ∨C ′ to 1− (1−C)(1−C ′). Expanding everything out, we obtain
a sum over all possible monomials. The above is known as the ring-sum expansion of f .

Now, the definition: given a set of n-ary functions F , let S(F) be the size of the smallest
circuit C such that for each f ∈ F there is some gate in C computing the function f . For
simplicity in what follows, we will work over the basis {0, 1,∧,⊕} (and so S(·) is defined
over this basis).

Lemma 1 Given any collection F of n-ary functions and arbitrary p ≥ 1, we have

S(F) ≤ 2n +

⌈

2n

p

⌉

· 2p +
|F | · 2n

p
.

Proof Label the inputs x = x1, . . . , xn. We first compute the terms xa1

1 ∧ · · · ∧xan

n for all
possible values a1, . . . an ∈ {0, 1}. Say such a term has length ℓ if the number of non-zero
ai-values is exactly ℓ. By computing all terms of length ℓ−1 before moving on to the terms
of length ℓ, we can compute each additional term using only a single gate. It follows that
we can compute all such terms using 2n gates (this is actually a slight over-estimate).

Next, partition these terms into q = ⌈2n

p ⌉ sets {Ci}q
i=1, each containing at most p terms.

Within each set Ci = {ti,1, . . . , ti,p∗} (with p∗ ≤ p), compute the ⊕ of all possible subsets

of the terms in Ci; i.e., for each S ⊆ [p∗], compute Di
S

def
=

⊕

j∈S ti,j. As before, we can
compute each value using one additional gate; thus, we can compute all such values, over
all sets {Ci}, using (at most) q · 2p gates.

5-1

Relying on the observation made earlier, we can represent the value f(x) for any function
f ∈ F as

q
⊕

i=1

Di
Si

,

for some sets {Si}q
i=1. This requires at most (q − 1) gates for each f ∈ F , and so at most

|F | · 2n

p additional gates. Adding everything up gives the result of the lemma.

With the above in mind, we can prove the following theorem due to Lupanov:

Theorem 2 Every n-ary function can be computed by circuits with 2n

n + o
(

2n

n

)

gates (over
the basis {0, 1,∧,⊕}).

Proof We first prove the following claim:

Claim 3 Given any n-ary function f , and for any p ≥ 1 and 0 ≤ m ≤ n, there is a circuit
computing f of size

3 · 2n−m + 2m +

⌈

2m

p

⌉

· 2p +
2n

p
.

This claim implies the theorem by setting m = ⌈√n ⌉ and p = n − m − ⌈log n⌉.
To prove the claim, we construct a circuit of the stated size computing f . First compute

each of the terms x
am+1

m+1 ∧ · · · ∧ xan

n for all am+1, . . . , an ∈ {0, 1}. As in the proof of the
previous lemma, this can be done using at most 2n−m ∧-gates. Next, observe that f can
be written as

f(x1 · · · xn) =
⊕

am+1,...,an∈{0,1}

ham+1···an
(x1 · · · xm) ∧ x

am+1

m+1 ∧ · · · ∧ xan

n , (1)

for some set of 2n−m m-ary functions {ham+1···an
(·)}. By the previous lemma, we can

compute all of these functions using

2m +

⌈

2m

p

⌉

· 2p +
2n−m · 2m

p
= 2m +

⌈

2m

p

⌉

· 2p +
2n

p

gates. We then need (at most) an additional 2n−m ∧-gates and (2n−m − 1) ⊕-gates to
compute f using Eq. (1). Adding everything up proves the claim.

2 Randomized Computation

There are multiple ways to define a randomized model of computation. The first is via
Turing machines with a probabilistic transition function (this is called the “online” model);
the second is by augmenting Turing machines with an additional (read-only) random tape
populated with infinitely-many random bits. For the latter approach, one can consider either
one-way or two-way random tapes. The difference between these models is unimportant for
randomized time complexity classes, but is important for randomized space classes. (In fact,
the various models described above are exactly analogous to the various models we discussed

5-2

in the case of non-deterministic space classes. As there, the difference is immaterial when
our complexity measure is time, but becomes important when out complexity measure is
space.) We denote by M(x) a random computation of M on input x, and by M(x; r) the
deterministic computation of M on input x using random tape r.

We now define some randomized complexity classes. In the following, ppt stands for
“probabilistic, polynomial time.”

2.1 RP and coRP

Definition 1 Class RP consists of languages L for which there exists a ppt machine M
such that:

x ∈ L ⇒ Pr[M(x) = 1] ≥ 1

2
and x 6∈ L ⇒ Pr[M(x) = 0] = 1.

♦
When running an RP algorithm for a language L on an input x, if M(x) outputs “1” we
are sure that x ∈ L; however, if M(x) outputs “0” we cannot make any definitive claim.

Definition 2 Class coRP consists of languages L for which L̄ ∈ RP . Alternately, L ∈ coRP
if there exists a ppt machine M such that:

x ∈ L ⇒ Pr[M(x) = 1] = 1 and x 6∈ L ⇒ Pr[M(x) = 0] ≥ 1

2
.

♦
It is left as an exercise to prove that the two definitions of coRP given above are indeed
equivalent. Note that when running a coRP algorithm for a language L on an input x, if
M(x) outputs “0” we are sure that x 6∈ L, but if M(x) outputs “1” we cannot make any
definitive claim.

A simple observation is that RP ⊆ NP , since a random tape r for which M(x; r) = 1
(which is guaranteed to exist if x ∈ L) serves as a witness that x ∈ L. One can also think
about this directly in terms of the “computation tree” of the machine M : an NP algorithm
for a language is only required to have a single accepting computation path, whereas an
RP machine deciding the same language is guaranteed to have “many” accepting paths.

2.1.1 Error Reduction

Another straightforward observation is that the constant 1/2 in the above definitions is
arbitrary, and can be replaced with any fraction f satisfying 1

p(|x|) ≤ f(|x|) ≤ 1 − e−q(|x|)

for polynomials p, q. In particular:

Lemma 4 Fix a language L. If there exists a ppt machine M such that:

x ∈ L ⇒ Pr[M(x) = 1] ≥ 1

p(|x|) and x 6∈ L ⇒ Pr[M(x) = 0] = 1

for some polynomial p, then for any polynomial q there exists a ppt machine M∗ such that:

x ∈ L ⇒ Pr[M∗(x) = 1] ≥ 1 − e−q(|x|) and x 6∈ L ⇒ Pr[M∗(x) = 0] = 1

(here, e is the base of natural logarithms).

5-3

Proof M∗(x) is defined as follows: run M(x) at most t(|x|) = p(|x|) · q(|x|) times,
using independent random coins; output “1” iff one or more of the runs of M output “1”.
Note that t is polynomial, so M∗ is still a ppt algorithm. No matter how large t is,
Pr[M∗(x) = 0] = 1 when x 6∈ L. On the other hand, for x ∈ L we have:

Pr[M∗(x) = 0] =
(

Pr[M(x) = 0]
)t(|x|)

≤
(

1 − 1

p(|x|)

)p(|x|)q(|x|)

< e−q(|x|).

This concludes the proof.

The above is an example of what is called error reduction. One natural question is
whether we can do better. There are two measures of interest here: how many random
bits we use, and how many invocations of the original algorithm M are needed. Let us fix
(arbitrarily) p = 1/2 in the above, and assume M uses m random coins. Then the total
number of random coins used to obtain error probability e−q(|x|) is O(q ·m), and we run M
for O(q) times. Another option — which uses fewer random coins but more invocations of M
— is to use pairwise-independent random coins. (In class we discussed finite fields, pairwise
independence, and a construction of pairwise independent random variables.) Namely,
consider the algorithm M∗ which runs M for a total of q′ times using pairwise-independent
random coins, and outputs 1 iff one or more of the executions of M output 1. When x 6∈ L

things are as above. When x ∈ L define the indicator random variables {Xi}q′

i=1 such that
Xi = 1 iff the ith execution of M outputs 1. Note that Pr[Xi = 1] ≥ 1/2 and the {Xi} are

pairwise independent. Let X
def
=

∑q′

i=1 Xi. Using Chebyshev’s inequality, we have:

Pr[M∗ outputs 0] < Pr

[

|X − Exp[X]| ≥ q′

4

]

≤ Var[X]

(q′/4)2

=
q′ ·Var[X1]

(q′/4)2

≤ (q′/4)

(q′/4)2
=

4

q′
,

where Var[
∑

i Xi] =
∑

i Var[Xi] = q′ · Var[X1] follows from pairwise independence of the
{Xi} and the fact that they are identically distributed. So, to achieve error e−q we need to
set q′ = O(2q) and so we are running M many more times! But the randomness needed is
just O(max{q,m}).

Can we get the best of both worlds (i.e., low randomness and few invocations of M)?
Later in the semester, we may see a method based on expander graphs that achieves this.

2.2 BPP
RP and coRP are classes of languages that can be decided with one-sided error. BPP is
the class of languages that can be decided with two-sided error.

Definition 3 Class BPP consists of languages L for which there exists a ppt machine M
such that:

x ∈ L ⇒ Pr[M(x) = 1] ≥ 2

3
and x 6∈ L ⇒ Pr[M(x) = 0] ≥ 2

3
.

5-4

In other words: Pr[M(x) = χL(x)] ≥ 2
3 , where χL(x) is the characteristic function of L

(i.e., χL(x) = 1 if x ∈ L and 0 otherwise). ♦
Note that RP ⊆ BPP (and also coRP ⊆ BPP), so BPP is potentially a more “powerful”
complexity class. As in the case of RP , the constant 2/3 in the definition of BPP is arbi-
trary. All we require is a noticeable (i.e., polynomially-bounded) “gap” between acceptance
probabilities for strings in and out of the language. Specifically:1

Lemma 5 Fix L, and say there exists a ppt machine M such that

x ∈ L ⇒ Pr[M(x) = 1] ≥ 1

2
+

1

p(|x|) and x 6∈ L ⇒ Pr[M(x) = 1] <
1

2
− 1

p(|x|)

for some polynomial p. Then L ∈ BPP.

Proof We construct ppt machine M∗ such that

x ∈ L ⇒ Pr[M(x) = 1] ≥ 2

3
and x 6∈ L ⇒ Pr[M(x) = 1] <

1

3
.

This will complete the proof. In designing the algorithm, we rely on a version of the Chernoff
bound stated here for convenience (see [2, Chap. 4]):

Claim 6 Let X1, . . . ,Xn be independent 0-1 random variables with Pr[Xi = 1] = ρ for all i.
Let X =

∑n
i=1 Xi and µ = Exp[X] = ρ · n. Then for 0 < ε < µ:

Pr[X ≤ µ − ε] ≤ e−ε2/2n.

We define M∗ as follows: on input x, it runs M(x) a total of t(|x|) = 2p2(|x|) ln 4 times
with independent random inputs (note that t is polynomial). M∗ outputs “1” iff the fraction
of 1’s output by these various executions of M is greater than 1/2.

Consider the execution of M∗ on input x. Let Xi be an indicator random variable
which is equal to 1 iff the ith execution of M(x) outputs the correct answer χL(x). Let

ρ
def
= Pr[Xi = 1]. Note that ρ ≥ 1

2 + 1
p(|x|) and so

Pr[M∗(x) 6= χL(x)] ≤ Pr

t(|x|)
∑

i=1

Xi ≤
t(|x|)

2

≤ Pr

t(|x|)
∑

i=1

Xi ≤ ρ · t(|x|) − t(|x|)
p(|x|)

 ≤ e−t(|x|)/2p2(|x|) =
1

4
.

The theorem follows.

Exactly analogous to the case of RP discussed earlier, we can also assume that if L ∈
BPP there is an algorithm M such that Pr[M(x) = χL(x)] ≥ 1 − e−q(|x|) for any desired
polynomial q. The error reduction technique using pairwise independence also applies to
BPP algorithms (although the analysis is slightly more technical).

Some miscellaneous comments about BPP follow:
1Actually, even the constant 1/2 in the lemma is arbitrary. See [1, Lect. 7].

5-5

1. BPP seems to represent the class of “efficiently-solvable” problems (at least until
quantum computers become practical. . .). Clearly P ⊆ BPP , and it was originally
thought that P 6= BPP and so randomness was a way to help solve problems outside
of P. More recently, the consensus seems to be that P = BPP (this has not yet been
proven to hold unconditionally, but it has been shown to hold based on what seem to
be reasonable assumptions).

2. Notwithstanding the above, we do not currently even know whether BPP ⊆ NP or
vice versa.

3. BPP is easily seen to be closed under union, intersection, and complement.

Bibliographic Notes

Section 1 is from [3, Section 1.5.2]. Section 2 is adapted from [1, Lecture 7].

References

[1] O. Goldreich. Introduction to Complexity Theory (July 31, 1999).

[2] M. Mitzenmacher and E. Upfal. Probablity and Computing: Randomized Algorithms and
Probabilistic Analysis. Cambridge University Press, 2005.

[3] H. Vollmer. Introduction to Circuit Complexity. Springer, 1999.

5-6

