
Notes on Complexity Theory Last updated: October, 2005

Handout 7

Jonathan Katz

1 More on Randomized Complexity Classes

Reminder: so far we have seen RP , coRP , and BPP . We introduce two more time-bounded
randomized complexity classes: ZPP and PP .

1.1 ZPP

ZPP may be defined in various ways; we will pick one arbitrarily and state the others (and
their equivalence) as claims.

Definition 1 Class ZPP consists of languages L for which there exists a ppt machine M
which is allowed to output “1”, “0”, or “?” and such that, for all x:

Pr [M(x) = “?”] ≤
1

2
and Pr [M(x) = χL(x) ∨ M(x) = “?”] = 1.

That is, M always outputs either the correct answer or a special symbol “?” denoting “don’t
know”, and it outputs “don’t know” with probability at most half. ♦

Claim 1 ZPP = RP ∩ coRP and hence ZPP ⊆ BPP.

Claim 2 ZPP consists of languages L for which there exists a machine M running in
expected polynomial time and for which:

Pr[M(x) = χL(x)] = 1.

(A machine runs in expected polynomial time if there exists a polynomial p such that for all
x, the expected running time of M(x) is at most p(|x|).)

Summarizing what we have so far: P ⊆ ZPP ⊆ RP ⊆ BPP. However (somewhat
surprisingly), it is currently believed that P = BPP .

1.2 PP

RP , coRP ,BPP , and ZPP represent possibly-useful relaxations of deterministic polynomial-
time computation. The next class does not, as we will see.

Definition 2 L ∈ PP if there exists a ppt machine M such that:

Pr[M(x) = χL(x)] >
1

2
.

♦

7-1

Note that requiring only Pr[M(x) = χL(x)] ≥ 1
2 makes the definition trivial, as it can be

achieved by flipping a random coin. Note also that error reduction does not apply to PP ,
since to increase the “gap” between acceptance and rejection to an inverse polynomial we
might have to run our original algorithm an exponential number of times (and so we would
no longer have a ppt algorithm).

Claim 3 BPP ⊆ PP ⊆ PSPACE.

The first inclusion follows immediately from the definitions. The second inclusion follows
since, given a ppt Turing machine M , we may enumerate all coins (and take a majority
vote) in PSPACE.

The following shows that PP is too lax a definition:

Claim 4 NP ⊆ PP .

Proof Let L ∈ NP , and assume that inputs x ∈ L have witnesses of size exactly p(|x|)
(by padding, this is w.l.o.g.). Consider the following PP algorithm for L on input x: with
probability 1/2 − 2−p(|x|)/4, accept. Otherwise, choose a string w ∈ {0, 1}p(|x|) at random
and accept iff w is a witness for x. Clearly, if x 6∈ L then the probability that this algorithm
accepts is less than 1/2. On the other hand, if x ∈ L then there is at least one witness and
so the probability of acceptance is at least:

1

2
− 2−p(|x|)/4 + 2−p(|x|)/2 >

1

2
.

2 BPP in Relation to Deterministic Complexity Classes

BPP is currently considered to be the “right” notion of what is “efficiently computable.”
It is therefore of interest to see exactly how powerful this class is.

2.1 BPP ⊆ P/poly

We claimed in an earlier lecture that P/poly provides an upper bound to efficient compu-
tation. We show that this is true with regard to BPP.

Theorem 5 BPP ⊆ P/poly.

Proof Let L ∈ BPP . We know that there exists a probabilistic polynomial-time Turing
machine M and a polynomial p such that M uses a random tape of length p(|x|) and
Prr[M(x; r) 6= χL(x)] < 2−2|x|2 . An equivalent way of looking at this is that for any n and
each x ∈ {0, 1}n there is a set of “bad” coins for x (for which M(x) returns the wrong
answer), but the size of this “bad” set is smaller than 2p(n) · 2−2n2

. Taking the union of
these “bad” sets over all x ∈ {0, 1}n, we find that the total number of random coins which
are “bad” for some x ∈ {0, 1}n is at most 2p(n) · 2n−2n2

< 2p(n). In particular, for each n
there exists at least one random tape r∗n ∈ {0, 1}p(n) which is “good” for every x ∈ {0, 1}n

(in fact, there are many such random tapes). If we let the sequence of “advice strings” be
exactly these {r∗n}n∈N, we obtain the result of the theorem.

7-2

2.2 BPP is in the Polynomial Hierarchy

We noted earlier that it is not known whether BPP ⊆ NP . However, we can place BPP
in the polynomial hierarchy. Here, we give two different proofs that BPP ⊆ Σ2 ∩ Π2.

2.2.1 Lautemann’s Proof

We first prove some easy propositions. For S ⊆ {0, 1}m, say S is large if |S| ≥ (1− 1
m

) · 2m.

Say S is small if |S| < 2m

m
. Finally, for a string z ∈ {0, 1}m define S ⊕ z

def
= {s ⊕ z | s ∈ S}.

We first prove:

Proposition 6 Let S ⊆ {0, 1}m be small. Then for all z1, . . . , zm ∈ {0, 1}m we have
⋃m

i=1(S ⊕ zi) 6= {0, 1}m.

This follows easily by counting. On the one hand, |{0, 1}m| = 2m. On the other hand, for
any z1, . . . , zm we have

∣

∣

∣

∣

∣

m
⋃

i=1

(S ⊕ zi)

∣

∣

∣

∣

∣

≤
m

∑

i=1

|S ⊕ zi|

= m · |S| < 2m.

Furthermore:

Proposition 7 If S is large, then:

Pr
z1,...,zm∈{0,1}m

[

m
⋃

i=1

(S ⊕ zi) = {0, 1}m

]

> 1 −

(

2

m

)m

.

To see this, consider first the probability that some fixed y is not in
⋃

i(S ⊕ zi). This is
given by:

Pr
z1,...,zm∈{0,1}m

[y 6∈
⋃

i

(S ⊕ zi)] =

m
∏

i=1

Pr
zi∈{0,1}m

[y 6∈ S ⊕ zi]

≤

(

1

m

)m

.

Applying a union bound over all y ∈ {0, 1}m, we see that the probability that there exists
a y ∈ {0, 1}m which is not in

⋃

i(S ⊕ zi) is at most 2m

mm . The proposition follows.
Given L ∈ BPP, there exist a polynomial m and an algorithm M such that M uses

m(|x|) random coins and errs with probability less than 1/m(|x|). For any x ∈ {0, 1}n, let
Sx ⊆ {0, 1}m(|x|) denote the set of random coins for which M(x; r) outputs 1. Thus, if x ∈ L
(and letting m = m(|x|)) we have |Sx| ≥ (1 − 1

m
) · 2m while if x 6∈ L then |Sx| < 2m

m
. This

leads to the following Σ2 characterization of L:

x ∈ L ⇔ ∃z1, . . . , zm ∈ {0, 1}m ∀y ∈ {0, 1}m : y ∈
m
⋃

i=1

(Sx ⊕ zi).

7-3

Note that the desired condition can be efficiently verified by checking whether

∨

i

M(x; y ⊕ zi).

We conclude that BPP ⊆ Σ2.
Using the fact that BPP is closed under complement gives the claimed result.

2.2.2 The Sipser-Gács Proof

The proof in the previous section is a bit easier than the one we present here, but the
technique here is quite useful. First, some notation. Let h : {0, 1}m → R be a function, let
S ⊆ {0, 1}m, and let s ∈ S. We say that h isolates s if h(s′) 6= h(s) for all s′ ∈ S \ {s}.

We say a collection of functions H
def
= {h1, . . . , hℓ} isolates s if there exists an hi ∈ H which

isolates s. Finally, we say H isolates S if H isolates every element of S.

Proposition 8 Let H be a family of pairwise-independent hash functions mapping {0, 1}m

to some set R. Let S ⊆ {0, 1}m. Then

• If |S| > m|R| then:

Pr
h1,...,hm∈H

[{h1, . . . , hm} isolates S] = 0.

• If |S|m+1 ≤ |R|m then:

Pr
h1,...,hm∈H

[{h1, . . . , hm} isolates S] > 0.

Proof For the first part of the proposition, note that each hash function hi can isolate
at most |R| elements. So m hash functions can isolate at most m|R| elements. Since
|S| > m|R|, the claim follows.

For the second part, assume S is non-empty (if S is empty then the theorem is trivially
true). Consider the probability that a particular s ∈ S is not isolated:

Pr
h1,...,hm∈H

[{h1, . . . , hm} does not isolate s] =

(

Pr
hi∈H

[hi does not isolate s]

)m

≤

∑

s′∈S\{s}

Pr
h

[h(s′) = h(s)]

m

<

(

|S|

|R|

)m

.

Summing over all s ∈ S, we see that the probability that S is not isolated is less than
|S|m+1

|R| ≤ 1. This gives the stated result.

Let L ∈ BPP . Then there exists a machine M using m(|x|) random coins which errs
with probability less than 1/4m(|x|). Let x ∈ {0, 1}n, set m = m(|x|), and define Sx as in
the previous section. Set |R| = 2m/2m. Note that if x ∈ L then |Sx| ≥ 3·2m/4 > m·|R|. On

7-4

the other hand, if x 6∈ L then |Sx| < 2m/4m and so |Sx|m+1

|R|m < 1/4m. The above proposition
thus leads to the following Π2 characterization of L:

x ∈ L ⇔ ∀h1, . . . , hm ∈ H ∃s, s1, . . . , sm :
∧

i

((s 6= si) ∧ (hi(s) = hi(si)) ∧ (s, si ∈ Sx))

(note that membership in Sx can be verified in polynomial time, as in the previous section).
Closure of BPP under complement gives the stated result.

3 Randomized Space Classes

An important note regarding randomized space classes is that we do not allow the machine
to store its previous random coin flips “for free” (it can, if it chooses, write its random
choice(s) on its work tape). If we consider the model in which a randomized Turing machine
is simply a Turing machine with access to a random tape, this implies that we allow only
unidirectional access to the random tape.

There is an additional subtlety regarding the definition of randomized space classes: we
need to also bound the running time. In particular, we will define rspace(s(n)) as follows:

Definition 3 A language L is in rspace(s(n)) if there exists a randomized Turing machine
M using s(n) space and 2O(s(n)) time and such that

x ∈ L ⇒ Pr[M(x) = 1] ≥
1

2
and x 6∈ L ⇒ Pr[M(x) = 0] = 1.

♦

Without the time restriction, we get a class which is too powerful:

Proposition 9 Define rspace
′ as above, but without the time restriction. Then for any

space-constructible s(n) ≥ log n we have rspace
′(s(n)) = nspace(s(n)).

Proof (Sketch) Showing that rspace
′(s(n)) ⊆ nspace(s(n)) is easy. We turn to the

other direction. The basic idea is that, given a language L ∈ nspace(s(n)), we construct a
machine which on input x guesses valid witnesses for x (where a witness here is an accepting
computation of the non-deterministic machine on input x). Since there may only be a single
witness, we guess a doubly-exponential number of times. This is where the absence of a
time bound makes a difference.

In more detail, given L as above we know that any x ∈ L has a witness (i.e., an accepting
computation) of length at most ℓ(n) = 2O(s(n)). Assuming such a witness exists, we can
guess it with probability at least 2−ℓ(n) (and verify whether we have a witness or not using
space O(s(n))). Equivalently, the expected number of times until we guess the witness is
2ℓ(n). The intuition is that if we guess 2ℓ(n) witnesses, we have a good chance of guessing a
correct one. Looking at it in that way, the problem boils down to implementing a counter
that can count up to 2ℓ(n). The naive idea of using a standard ℓ(n)-bit counter will not
work, since ℓ(n) is exponential in s(n)! Instead, we use a randomized counter: each time
after guessing a witness, flip ℓ(n) coins and if they are all 0 stop; otherwise, continue. This
can be done using a counter of size log ℓ(n) = O(s(n)).

7-5

Note that the Turing machine thus defined may run for infinite time; however, the
probability that it does so is 0. In any case, it never uses more than s(n) space, as required.
Furthermore (using the fact that infinite runs occur with probability 0) the machine satisfies

x ∈ L ⇒ Pr[M(x) = 1] ≥
1

2
and x 6∈ L ⇒ Pr[M(x) = 0] = 1.

3.1 RL

Define RL = rspace(log n). We show that undirected graph connectivity is in RL (here,
we are given an undirected graph and vertices s, t and asked to decide whether there is a
path from s to t). This follows easily from the following result:

Theorem 10 Let G be an n-vertex undirected graph, and s an arbitrary vertex in G. A
random walk of length 4n3 beginning at s visits all vertices in the connected component of s
with probability at least 1/2.

Proof In the next lecture we will discuss Markov chains and random walks on undirected
graphs, and will show that if G is non-bipartite then for any edge (u, v) in the connected
component containing s, the expected time to move from vertex u to vertex v is at most
2|E| + n ≤ n2. (Note that if G is bipartite, we can make it non-bipartite by “mentally”
adding n self-loops; the expected time to move from u to v is then at most 2|E| + n as
claimed. But taking a random walk in the actual graph (without self-loops) can only result
in a lower expected time to move from u to v.)

Consider any spanning tree of the connected component containing s; this will contain
n− 1 edges. Considering any traversal of this spanning tree (which traverses fewer than 2n
edges), we see that the expected time to reach every vertex in the connected component is
at most 2n ·n2 = 2n3. Taking a random walk for twice this many steps means we will reach
the entire component with probability at least half.

We remark that the analogous result does not hold for directed graphs. (If it did, we
would have RL = NL which is considered unlikely. To be clear: it is possible that some
other algorithm can solve directed connectivity in RL, but the above algorithm does not.)

Next time, we will see another application of random walks to solving 2-SAT.

Bibliographic Notes

Sections 1 and 3 are adapted from [2, Lecture 7], and Section 2.2 from [1, Lectures 19–20].

References

[1] J.-Y. Cai. Scribe notes for CS 810: Introduction to Complexity Theory. 2003.

[2] O. Goldreich. Introduction to Complexity Theory (July 31, 1999).

7-6

