
Notes on Complexity Theory Last updated: October, 2005

Handout 8

Jonathan Katz

1 Markov Chains and Random Walks on Graphs

Recall from last time that a random walk on a graph gave us an RL algorithm for the problem of
undirected graph connectivity. In this class, we also saw an RP algorithm for solving 2-SAT (see
[2, Chapter 7] for details). We now develop some of the theory behind Markov chains and random
walks on (undirected) graphs, toward a proof of the following result that was used to analyze both
of the above algorithms:

Theorem 1 Consider a random walk on an undirected, connected, non-bipartite graph G with ℓ
self-loops and m (other) edges. If there is an edge in G from vertex i to vertex j then the expected
time for a random walk, starting at i, to reach j is less than 2m + ℓ.

Let us begin with a brief introduction to (finite, time-homogeneous) Markov chains and random
walks on graphs, along with a proof of a central result in this area. (Some of the definitions and
results that follow need to be modified slightly for the case of infinite Markov chains.) For finite
state space Ω, a sequence of random variables X0, . . . on Ω is a Markov chain if there exist {pi,j}
such that, for all t > 0 and x0, . . . , xt−2, xi, xj ∈ Ω we have:

Pr[Xt = xj | X0 = x0, . . . ,Xt−2 = xt−2,Xt−1 = xi] = Pr[Xt = xj | Xt−1 = xi] = pi,j.

(From now on, we write i instead of xi for brevity.) In other words, the transition from Xt−1 to Xt

is memoryless and depends only on the value of Xt−1; furthermore, the probability of a transition
from state i to state j is time-independent. The t-step transition probabilities pt

i,j are defined in
the natural way:

pt
i,j =

{

pi,j t = 1
∑

k∈Ω pi,k · p
t−1
k,j t > 1

.

Viewing the {pi,j} as an |Ω| × |Ω| matrix P (called the transition matrix), the values {pt
i,j} corre-

spond to the matrix P t.
A finite Markov chain corresponds in the natural way to a random walk on a (possibly directed

and/or weighted) graph. Focusing on undirected and non-weighted graphs (which is all we will
ultimately be interested in for the purposes of these notes), a random walk on such a graph proceeds
as follows: if we are at a vertex v at time t, we move to a random neighbor of v at time t + 1. If Ω
are the vertices of this graph, such a random walk defines the Markov chain given by:

pi,j =

{

1/deg(i) j is a neighbor of i
0 otherwise

.

We remark that we allow self-loops in the graph. A self-loop contributes only 1 to the degree of
the incident vertex.

8-1

Let π be a probability distribution over Ω, viewed as a row vector. We say π is stationary if
π · P = π; equivalently,

for all j ∈ Ω : π(j) =
∑

i∈Ω

π(i) · pi,j .

We have the following fundamental theorem of random walks on undirected graphs (which is a
corollary of a more general result for Markov chains):

Theorem 2 Let G be an undirected, connected, non-bipartite graph on n vertices. Then:

1. There is a unique stationary distribution π = (π(1), . . . , π(n)). Furthermore, all entries in π
are non-zero.

2. For all vertices i, j, we have limt→∞ pt
i,j = π(j). Note that the limit is independent of i.

In words, this means that no matter where we start the random walk (i.e., regardless of our
starting point i) we end up in state j (for large enough t) with the same probability π(j).

3. Let hi,i denote the expected number of steps for a random walk beginning at vertex i to return
to i. Then hi,i = 1/π(i).

Note that for any undirected graph G, the conditions of the theorem can always be met by (1) re-
stricting attention to a connected component of G, and (2) adding self-loops to all vertices. We
will prove existence of a stationary distribution π as well as part 2 of the above theorem, and give
an intuitive justification for part 3 (uniqueness of the stationary distribution, and the fact that all
entries in π are non-zero, are left as exercises). Actually, we will prove a more general result for
ergodic Markov chains: a finite Markov chain is ergodic if there exists a t0 such that for all i, j and
t > t0 we have pt

i,j > 0. It is not too difficult to see that a random walk in an undirected, connected,
non-bipartite graph defines an ergodic Markov chain, and so this is indeed a more general result.
(In fact, it is not hard to see that the converse — a random walk in an undirected graph G defines
an ergodic Markov chain only if G is connected and non-bipartite — holds as well.)

Before proving the theorem, we introduce the notion of coupling and prove a lemma which will
allow us to bound the statistical difference between two random variables. For distributions µ, ν
over the same space Ω, a distribution ω on Ω × Ω is a coupling if the marginal distributions of ω
give µ and ν, respectively; i.e.,

for all x ∈ Ω: µ(x) =
∑

y∈Ω

ω(x, y)

for all y ∈ Ω: ν(y) =
∑

x∈Ω

ω(x, y).

We have the following lemma:

Lemma 3 Let ω be a coupling of distributions µ, ν. Then:

SD(µ, ν) ≤ Pr
(X,Y)←ω

[X 6= Y],

where SD is the statistical difference between µ and ν, defined as:

SD(µ, ν)
def
=

1

2
·
∑

x∈Ω

|µ(x) − ν(x)|.

8-2

Proof Let us first re-write the expression for SD:

SD(µ, ν) =
1

2
·
∑

x∈Ω

|µ(x) − ν(x)|

=
1

2
·

∑

x|ν(x)<µ(x)

(

µ(x) − ν(x)
)

+
∑

x|µ(x)≤ν(x)

(

ν(x) − µ(x)
)

=
1

2
·

∑

x|ν(x)<µ(x)

µ(x) −
∑

x|ν(x)<µ(x)

ν(x) +
∑

x|µ(x)≤ν(x)

ν(x) −
∑

x|µ(x)≤ν(x)

µ(x)

=
1

2
·

1 −
∑

x|µ(x)≤ν(x)

µ(x)

 −
∑

x|ν(x)<µ(x)

ν(x) +

1 −
∑

x|ν(x)<µ(x)

ν(x)

 −
∑

x|µ(x)≤ν(x)

µ(x)

= 1 −
∑

x|µ(x)≤ν(x)

µ(x) −
∑

x|ν(x)<µ(x)

ν(x).

Now, since ω is a valid coupling we know that ω(x, x) ≤ min{µ(x), ν(x)} for all x ∈ Ω. So:

Pr[X 6= Y] = 1 −
∑

z∈Ω

ω(z, z) ≥ 1 −
∑

z∈Ω

min{µ(z), ν(z)}

= 1 −
∑

z|µ(z)≤ν(z)

µ(z) −
∑

z|ν(z)<µ(z)

ν(z)

= SD(µ, ν),

as desired.

We now prove the relevant parts of Theorem 2:

Proof Given a Markov chain defined by transition matrix P , create two copies of it denoted
X0, . . . and Y0, . . . (where X0, Y0 will be chosen according to some distribution to be specified).
Create a coupling by defining random variables W0, . . . in the following way: W0 = (X0, Y0) where
X0, Y0 are distributed independently according to X0, Y0. If Wt = (xt, yt) then we choose Wt+1 =
(Xt+1, Yt+1) as follows: (1) choose Xt+1 based on xt according to P , then (2) if yt = xt, set
Yt+1 = Xt+1; otherwise, choose Yt+1 based on yt according to P . (In words: we let Xi and Yi

evolve independently until they meet; once they meet, they evolve in tandem.) Clearly Wt is a
coupling of Xt and Yt for any t.

Now, since the Markov chain is ergodic (and finite), we know there exist t∗, ε such that pt∗

i,j ≥
ε > 0 for all i, j. Therefore, for any choice of initial states x0, y0 we have

Pr[Xt∗ 6= Yt∗ | X0 = x0, Y0 = y0] ≤ 1 − ε.

Now, if Xt∗ = Yt∗ then Xt = Yt for all t ≥ t∗. On the other hand, say Xt∗ = x′0 and Yt∗ = y′0 with
x′0 6= y′0. Using memorylessness:

Pr[X2t∗ 6= Y2t∗ | Xt∗ = x′0, Yt∗ = y′0] = Pr[Xt∗ 6= Yt∗ | X0 = x′0, Y0 = y′0] ≤ 1 − ε.

Putting these observations shows that

Pr[X2t∗ 6= Y2t∗ | X0 = x0, Y0 = y0] ≤ (1 − ε)2,

8-3

and so on for any multiple kt∗. Since for t′ > t we have Xt = Yt ⇒ Xt′ = Yt′ , we see that for any
choice of initial states we have

lim
t→∞

Pr[Xt 6= Yt] = 0.

By Lemma 3, this implies that the statistical difference between Xt and Yt goes to 0 as t approaches
infinity.

Fix some y ∈ Ω and for any x define at(x) = pt
x,y. We first show: (1) at(x) converges for all x,

and (2) at(x) converges to the same value for all x. In fact, setting X0 = x1 and Y0 = x2 and
using the fact that the statistical difference between Xt and Yt goes to 0 as t approaches infinity,
condition (2) follows immediately once we show (1). But (1) follows from the observation that we
can set X0 = x and Y0 = πxP (where πx is the distribution in which x takes probability 1 and all
other states have probability 0), so that the distribution of Yt is exactly the same as the distribution
of Xt+1. It follows from the fact that SD(Xt, Yt) approaches 0 that SD(Xt,Xt+1) approaches 0;
since at(x) is bounded (it is a probability, so 0 ≤ at(x) ≤ 1), it follows that the sequence converges.

Let π(y)
def
= limt→∞ pt

x,y (by what we have just proved, the choice of x does not matter). We
want to show that π is stationary. For any y ∈ Ω we have:

∑

x∈Ω

π(x) · px,y =
∑

x∈Ω

(

lim
t→∞

pt
x0,x

)

· px,y

= lim
t→∞

∑

x∈Ω

pt
x0,x · px,y

= lim
t→∞

pt+1
x0,y = π(y) ,

as claimed (in the above, x0 ∈ Ω \ {x} is an arbitrary state).

1.1 Hitting Times

Given a Markov chain/random walk on a graph, we are often interested in the expected number
of steps to go from vertex i to vertex j; this is known as the hitting time and is denoted hi,j . In
particular, hi,i represents the expected time to walk from vertex i back to itself. We now heuris-
tically argue — without giving a formal proof — that if the Markov chain has unique stationary
distribution π, then hi,i = 1/π(i) (this is part 3 of Theorem 2). To see this, consider a random walk
X0, . . . starting from an arbitrary vertex, and look at the long-term behavior of the walk. We know
that for all t large enough we have Pr[Xt = i] = π(i). Let δi(t) be an indicator random variable
which is 1 iff Xt = i. Then for t large enough we have

Exp

[

δi(t) + δi(t + 1) + · · · + δi(t + n − 1)

n

]

=
1

n
·

n−1
∑

k=0

Exp[δi(t + k)] = π(i);

in other words, the expected frequency with which we are at vertex i is π(i). It follows that, for t
large enough, the expected time between visits to i is 1/π(i). Since the random walk is memoryless,
this actually holds at all times (and not just for t large enough).

Finally, we come to the main result of interest for these notes (this is a slightly stronger version
of Theorem 1):

8-4

Theorem 4 Consider a random walk on an undirected, connected, non-bipartite graph G with ℓ
self-loops and m (other) edges. If there is an edge in G from vertex i to vertex j then hi,j + hj,i ≤
2m + ℓ and, in particular, hi,j < 2m + ℓ.

Proof Define deg(i) as the number of edges incident to vertex i, counting self-loops only once.
We can prove the theorem in two ways: looking at either the vertices or the edges.

First approach. Consider the Markov chain in which the vertices are the states, and transition
probabilities are defined in the natural way. It can be checked by a simple calculation that π(v) =
deg(v)
2m+ℓ

is a stationary distribution. It follows that, for any vertex v, we have hv,v = 2m+ℓ
deg(v) . If

there is a self-loop at v then, since the graph is connected, deg(v) ≥ 2 and so hv,v ≤ 2m+ℓ
2 and

hv,v + hv,v ≤ 2m + ℓ. This proves the theorem for the case i = j. More generally, we have:

2m + ℓ

deg(v)
= hv,v =

1

deg(v)
·

∑

u∈N(v)

(1 + hu,v) ,

where N(v) are the neighbors of v (the above assumes that v has no self-loops, but the analysis is
the same either way). It follows that if there is an edge connecting (distinct) vertices u0, v, then
hu0,v < 2m + ℓ. (That hu0,v + hv,u0

≤ 2m + ℓ is left as an exercise, but see the next part.)

Second approach. Consider a Markov chain in which we have 2m + ℓ states E′ corresponding
to the edges in our graph, taking direction into account (except for self-loops where the direction
is irrelevant). When we take a step from vertex i to vertex j in our random walk, we view this as
being in the “state” (i, j). Thus, we have a transition matrix defined by:

p(i,j),(j′,k′) =

{

1/deg(j) j = j′

0 otherwise
.

(Note that, viewing this [in the natural way] as a new graph in which vertices correspond to edges
[with direction] in our original graph, the resulting graph is ergodic). One can check that the
uniform distribution over E′ is stationary. It follows that the expected time to re-visit the edge
(j, i) is |E′| = 2m + ℓ. But re-visiting edge (j, i) corresponds to a one-step transition from j to i,
re-visiting j, and then following edge (j, i) again. By the memorylessness of the random walk, this
means that, beginning at i, the expected number of steps to visit j and then follow edge (j, i) is
|E′|. But this gives the desired upper bound on the expected value of hi,j + hj,i.

2 Counting and #P

2.1 Introduction

Let R be a polynomial-time1 (and polynomially-bounded) relation on pairs of elements. R of course
defines the NP language LR = {x | ∃y : (x, y) ∈ R}. But in addition to asking about existence of
witnesses, we can also ask about the number of witnesses. With that in mind, define:

fR(x)
def
= |{y | (x, y) ∈ R}| .

1From now one, when we say that R is a polynomial-time relation we mean also that it is polynomially-bounded.
Equivalently, membership of (x, y) in R can be decided in time polynomial in |x| alone.

8-5

We want to measure the complexity of computing fR. But fR is a function and we like to speak in
terms of languages. Given a relation R, define the language

#R
def
= {(x, k) | fR(x) ≥ k} .

We justify soon that the following definition of the counting class #P captures what we want:

Definition 1 We say L ∈ #P if there exists a polynomial-time relation R such that L = #R. ♦

It should be clear that the class NP is Karp-reducible to #P, and it is not too hard to see that
#P ⊆ PSPACE.

Before continuing, one remark is due. For any language L ∈ NP, there are multiple possible
relations R such that L = LR. So, technically, the counting problem corresponding to a language L
is not well-defined (instead, as we have done, we need to specify the counting problem corresponding
to an NP relation R). Nevertheless, sometimes we abuse terminology and say “#L” when what
we really mean is “#R for the natural relation R corresponding to L.”

Why is Definition 2.1 given in terms of “≥” rather than equality? One justification for the
definition (as promised. . .) follows.

Proposition 5 Lee R be a polynomial-time relation. Then deciding membership in #R and com-
puting fR are Cook reducible to each other.

Proof Clearly, if we can compute fR efficiently we can then efficiently decide membership in
#R. For the other direction, given an efficient procedure to decide membership in #R we can use
binary search to compute fR.

As further justification for Definition 2.1, note that for any relation R:

x ∈ LR ⇔ (x, 1) ∈ #R.

This matches our intuition that counting solutions is at least as hard as determining existence of
solutions. (Note that it would no longer be true if we defined #R using equality.)

2.2 #P-Completeness

We define #P-completeness in the natural way:

Definition 2 L is #P-complete if: (1) L ∈ #P, and (2) every L′ ∈ #P is Karp-reducible to L. ♦

(Note: #P-completeness is also sometimes defined via Cook reductions.) As one natural way to
find #P-complete problems, we will look for an NP-complete language LR defined via a poly-
time relation R and having the following additional property: For any poly-time relation Q (and
associated language LQ ∈ NP), there exists a parsimonious Karp reduction f from LQ to LR, by
which we mean that there exists a polynomial-time computable function f such that

fQ(x) = fR(f(x)).

Note that such an f immediately implies a Karp reduction from #Q to #R since:

(x, k) ∈ #Q ⇔ (f(x), k) ∈ #R.

One can verify (by examining the proofs) that the Karp reductions we have already shown for the
“trivial” NP-complete language (i.e., bounded halting), the circuit satisfiability problem, and SAT
are all parsimonious. The implication is that, e.g., #SAT is #P-complete.

The above approach is not the only way to obtain #P-complete problems. In fact:

8-6

Proposition 6 There exists a poly-time relation R such that #R is #P-complete, but LR ∈ P.

Proof The counterexample is rather silly, but illustrative. Let R be any poly-time relation such
that #R is #P-complete (say, #SAT). Define the following poly-time relation R′:

(x, y′) ∈ R′ ⇔ (y′ = 0) or (y′ = 1y and (x, y) ∈ R).

Note that LR′ = {0, 1}∗ ∈ P; however, #R′ is still clearly #P-complete (why?).

The above problem is not very natural. However, there are examples of natural problems which
give the same result. We discuss one prominent example next.

2.3 Computing the Permanent is #P-Complete

The permanent of a square matrix A = {ai,j} is defined as:

∑

σ∈Sn

n
∏

i=1

ai,σ(i) ,

where Sn is the set of permutations on n elements. You might recognize that this formula is very
similar to the formula defining the determinant of a matrix; the difference is that in the case
of the determinant there is an extra factor of (−1)sign(σ) in the sum, where sign(σ) is the sign
of σ. Nevertheless, although the determinant can be computed in polynomial time, computing
the permanent (even of a 0-1 matrix) is #P-complete. We will say more about this problem next
lecture.

Bibliographic Notes

Section 1 was written using [3, Lecture 2] and [2, Chapter 7] as references. Sections 2.1 and 2.2 are
largely based on [1, Lect. 10].

References

[1] O. Goldreich. Introduction to Complexity Theory (July 31, 1999).

[2] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algorithms and Prob-
abilistic Analysis. Cambridge University Press, 2005.

[3] E. Vigoda. Lecture notes for CS37101-1: Markov Chain Monte Carlo Methods (Autumn 2003).
Available at http://www.cc.gatech.edu/~vigoda/MCMC_Course/index.html.

8-7

