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Lecture 9

Jonathan Katz

1 Counting and #P

Last time we introduced the class #P and defined #P-completeness. We continue with our dis-
cussion of the hardness of computing the permanent.

1.1 Computing the Permanent is #P-Complete

The permanent of a square matrix A = {ai,j} is defined as:

∑

π∈Sn

n
∏

i=1

ai,π(i) ,

where Sn is the set of permutations on n elements. You might recognize that this formula is very
similar to the formula defining the determinant of a matrix; the difference is that in the case of the
determinant there is an extra factor of (−1)σ(π) in the sum, where σ(π) is the sign of π. Nevertheless,
although the determinant can be computed in polynomial time, computing the permanent (even of
a 0-1 matrix) is #P-complete.

We should say a word about why the problem is in #P (since it does not seem to directly
correspond to a counting problem). The reason is that computing the permanent is equivalent
to (at least) two other problems on graphs. In particular: (1) Computing the number of perfect
matchings in a bipartite graph with n vertices in each component is equivalent to computing the
permanent of the n × n matrix A = {ai,j} defined by ai,j = 1 iff there is an edge from vertex i
(in the left component) to vertex j (in the right component). (2) Computing the number of cycle
covers in an n-vertex directed graph (with self-loops) is equivalent to computing the permanent of
the adjacency matrix of the graph. (A cycle cover in an n-vertex graph is a set of edges such that
each vertex has exactly one incoming edge and one outgoing edge in the set. It is not hard to see
that any cycle cover corresponds to a permutation π on [n] such that (i, π(i)) is an edge for all i
[and hence the connection to computing the permanent].) Continuing the discussion from the last
subsection, we remark that determining existence of a perfect matching (or of a cycle cover) can
be done in polynomial time; it is counting the number of solutions that is hard.

The following result is due to Valiant [3]:

Theorem 1 Computing the permanent of a 0-1 matrix is #P-complete.

The proof is rather technical, so we will skip it. (The reader is referred to [2, Chap. 18] for a proof,
and you may also ask me for a high-level proof sketch which will help in understanding the former.)

2 Approximate Counting, and the Relation of NP to #P

#P is clearly not weaker than NP , since if we can count solutions we can certainly tell if any exist.
Although #P is (in some sense) “harder” than NP , we show that it is not too much harder in
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the following sense: any problem in #P can be probabilistically approximated in polynomial time
using an NP oracle. (This is reminiscent of the problem of reducing search to decision, except
that here we are reducing counting the number of witness to the decision problem of whether or
not a witness exists. Also, we are only obtaining an approximation, and we use randomization.)
Specifically, we focus on the #P-complete problem #SAT . Let #SAT (φ) denote the number of
satisfying assignments of a boolean formula φ. We show that for any polynomial p there exists a
ppt algorithm A such that

Pr

[

#SAT (φ) ·

(

1 −
1

p(|φ|)

)

≤ ANP(φ) ≤ #SAT (φ) ·

(

1 +
1

p(|φ|)

)]

≥ 1 − 2−|φ| ; (1)

that is, A approximates #SAT (φ) to within a factor (1 ± 1
p(|φ|)) with high probability. Our proof

of this assertion proceeds in a number of steps. We first prove that finding a constant-factor
approximation suffices:

Proposition 2 Assume there exists a ppt algorithm B such that for some constant i ≥ 0 we have

Pr
[

#SAT (φ) · 2−i ≤ BNP(φ) ≤ #SAT (φ) · 2i
]

≥ 1 − 2−|φ|.

Then for any polynomial p there exists a ppt algorithm A such that (1) holds.

Proof We prove the Proposition by describing A as if it were given oracle access to B (it is clear
that when A is given oracle access to NP it can simulate the actions of B itself). We actually prove
a slightly different result: that if B outputs a “good” approximation with probability 1, then A
outputs a “good” approximation with probability 1 as well (extending this to prove the proposition
as stated is left as an easy exercise).

Note that if i = 0 then B computes #SAT (φ) exactly and we are done. So assume i > 0 and
set q(n) = i · p(n) (which is polynomial). Construct A as follows: on input φ construct the formula

φ′ def
=

q(|φ|)
∧

i=1

φ(~xi) ,

where the ~xi denote independent sets of variables. Note that if N ′ (resp., N) is the number of
satisfying assignments of φ′ (resp., φ), then N ′ = N q(|φ|). Now, by calling B(φ′) we obtain a t such
that N ′ · 2−i ≤ t ≤ N ′ · 2i, implying:

2−i · N q(|φ|) ≤ t ≤ 2i · N q(|φ|).

A then outputs the value t1/q(|φ|), which lies in the range

[

2−1/p(|φ|) · N, 21/p(|φ|) · N
]

⊆

[(

1 −
1

p(|φ|)

)

· N,

(

1 +
1

p(|φ|)

)

· N

]

,

as desired. In the last step, we use the following inequalities which hold for all x ≥ 1:

(

1

2

)1/x

≥

(

1 −
1

x

)

and 21/x ≤

(

1 +
1

x

)

.
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So, we may now restrict ourselves to finding a (probabilistic) constant-factor approximation for
#SAT . Before continuing, we define the notion of a promise problem (which crops up in many
other contexts as well):

Definition 1 A promise problem is defined by disjoint sets ΠY ,ΠN , where the only requirements
for an algorithm “solving” the problem are for inputs in one of these two sets (promise problems
are therefore a generalization of languages where L = ΠY and ΠN = {0, 1}∗ \ ΠY ). For example:

• The class promise-P consists of promise problems (ΠY ,ΠN ) for which there exists a poly-time
algorithm M such that:

x ∈ ΠY ⇒ M(x) = 1 and x ∈ ΠN ⇒ M(x) = 0.

• The class promise-RP consists of promise problems (ΠY ,ΠN ) for which there exists a ppt

algorithm M such that:

x ∈ ΠY ⇒ Pr[M(x) = 1] ≥
1

2
and x ∈ ΠN ⇒ Pr[M(x) = 1] = 0.

(Note that nothing is required in either case when x 6∈ ΠY ∪ ΠN .) ♦

We show that approximating #SAT to within a constant factor can be reduced to solving the
following promise problem Gap = (ΠY ,ΠN ) regarding #SAT :

ΠY
def
= {(φ, k) | #SAT (φ) > 8k}

ΠN
def
= {(φ, k) | #SAT (φ) < k/8}.

Proposition 3 There exists a (deterministic) polynomial-time algorithm B which approximates
#SAT to within a factor of 64 given access to an oracle that solves Gap.

Proof We show how to approximate #SAT to within a factor of 64, given an oracle M solving
Gap. On input φ, run the following algorithm:

• Set i = 0.

• While M((φ, 8i)) = 1, increment i.

• Return 8i− 1

2 .

Let i∗ be the value of i at the end of the algorithm, and set α = log8 #SAT (φ). In the second
step, we know that M((φ, 8i)) outputs 1 as long as #SAT (φ) > 8i+1 or, equivalently, α > i+1. So
we end up with an i∗ satisfying i∗ ≥ α − 1. We also know that M((φ, 8i)) will output 0 whenever
i > α + 1 and so the algorithm above must stop at the first (integer) i to satisfy this. Thus,
i∗ ≤ α + 2. Putting this together, we see that our output value satisfies:

#SAT/64 < 8i∗− 1

2 < 64 · #SAT,

as desired. (Note that we assume nothing about the behavior of M when (φ, 8i) 6∈ ΠY ∪ ΠN .)

Our original problem of approximating #P using an NP oracle has thus been reduced to solv-
ing Gap using an oracle for SAT . The reductions we have shown in the previous two propositions
are deterministic, but the reduction that follows will be probabilistic. We have already discussed
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(briefly) that the proof of Proposition 2 easily generalizes when B may err. The proof of Proposi-
tion 3, however, seems (at first) to rely on the fact that the oracle solving Gap is always correct (but
in the reduction that follows, we will only solve Gap probabilistically). The key point is that as long
as the error probability of the oracle is bounded1 by a constant (say), we may use error reduction
(and repeated calls to the oracle) to reduce the probability of error to a negligible quantity. Then
applying a union bound over all the (polynomially-many) queries to the oracle, we see that with
all but negligible probability the oracle does not make any mistakes during a run of the algorithm.
Thus, we get a reduction which works with all but negligible probability.

The idea to solve Gap using an oracle for SAT is as follows: given an instance (φ, k) we know
that there are either very many (i.e., more than 8k) or very few (i.e., fewer than k/8) solutions.
If we could take a random 1/k fraction of the assignments, with high probability in the first case
there will still exist a satisfying assignment while in the second case there likely will not. We will
take a random 1/k fraction of the satisfying assignments using (what else?) pairwise-independent
hashing, relying on the following result:

Proposition 4 Let Hn,m be a family of pairwise-independent hash functions mapping {0, 1}n to
{0, 1}m, and let ε > 0. Let S ⊆ {0, 1}n be arbitrary with |S| ≥ ε−3 · 2m. Then:

Pr
h∈Hn,m

[

(1 − ε) ·
|S|

2m
≤ |{x ∈ S | h(x) = 0m}| ≤ (1 + ε) ·

|S|

2m

]

> 1 − ε.

Proof Define for each x ∈ S an indicator random variable δx such that δx = 1 iff h(x) = 0m

(and 0 otherwise). Note that the δx are pairwise independent random variables with expectation

2−m and variance 2−m · (1 − 2−m). Let Y
def
=

∑

x∈S δx = |{x ∈ S | h(x) = 0m}|. The expectation

of Y is |S|/2m, and its variance is |S|
2m · (1 − 2−m) (using pairwise independent of the δx). Using

Chebychev’s inequality, we obtain:

Pr [(1 − ε) ·Exp[Y ] ≤ Y ≤ (1 + ε) ·Exp[Y ]] = Pr [|Y −Exp[Y ]| ≤ ε ·Exp[Y ]]

≥ 1 −
Var[Y ]

(ε · Exp[Y ])2

= 1 −
(1 − 2−m) · 2m

ε2 · |S|
,

which is greater than 1 − ε for |S| as stated in the proposition.

We now show the main result of this section:

Theorem 5 There exists a ppt algorithm G which probabilistically solves Gap = (ΠY ,ΠN ) given
access to an oracle for SAT . Specifically, G satisfies:

(φ, k) ∈ ΠY ⇒ Pr
[

GSAT (φ, k) = 1
]

>
1

2

(φ, k) ∈ ΠN ⇒ Pr
[

GSAT (φ, k) = 1
]

<
1

4
.

Proof We describe G on input (φ, k). First note that if k = 1 then a reduction to SAT is
immediate (since φ is unsatisfiable iff (φ, 1) ∈ ΠN ). So, assume k > 1 and set m = blog kc. Let φ

1This is for the case of one-sided error. For two-sided error we need the “gap” in acceptance probabilities to be

bounded by, e.g., a constant.
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have n variables. Choose a random h from a family of pairwise-independent hash functions Hn,m

and let φ′(~x) denote the proposition φ(~x) ∧ (h(~x) = 0m) (this can either be Karp-reduced to a
SAT formula, or can be directly converted to one when specific hash families are used). Finally, G
queries φ′ to its SAT oracle and outputs 1 iff φ′ is satisfiable.

We claim that if (φ, k) ∈ ΠY then φ′ is satisfiable with “high” probability, while if (φ, k) ∈ ΠN

then φ′ is satisfiable with “low” probability:

Case 1: #SAT (φ) > 8k. Let Sφ = {~x | φ(~x) = 1}. Then |Sφ| > 8k ≥ 8 · 2m. So:

Pr
[

φ′ ∈ SAT
]

= Pr
[

{~x ∈ Sφ : h(~x) = 0m} 6= ∅
]

≥ Pr
[

|{~x ∈ Sφ : h(~x) = 0m}| ≥ 4
]

≥
1

2
,

which we obtain by applying Proposition 4 with ε = 1
2 .

Case 2: #SAT (φ) < k/8. Let Sφ be as before. Now |Sφ| < k/8 ≤ 2m/4. So:

Pr
[

φ′ ∈ SAT
]

= Pr
[

{x ∈ Sφ : h(~x) = 0m} 6= ∅
]

≤
∑

~x∈Sφ

Pr [h(~x) = 0m]

<
2m

4
· 2−m =

1

4
,

where we have applied a union bound in the second step.

The above — showing that we can solve Gap (and thus approximate #SAT ) using an oracle
for SAT — is the main result of this section. However, it is also interesting to note that we can
solve SAT using an oracle for Gap, by relying on the following lemma:

Lemma 6 There is a (deterministic) polynomial-time machine M which takes as input a boolean
formula φ and outputs a boolean formula φ′, such that:

#SAT (φ′) = 15 · #SAT (φ).

Specifically, if φ is satisfiable then φ′ has at least 15 solutions.

Proof Introduce new variables x1, x2, x3, x4 (not in φ), and set φ′ = φ
∧

(x1 ∨ x2 ∨ x3 ∨ x4).

3 Reducing SAT to Unique SAT

In the spirit of the final paragraph of the previous section (noting that SAT can be reduced to
an oracle solving Gap), we further explore the idea of reducing SAT to ever-weaker oracles solving
promise problems. Along the way we will also address the following question: does it become any
easier to decide whether a formula φ is satisfiable if we are guaranteed that φ has at most one
solution? Equivalently,2 does it become any easier to find a solution if we are guaranteed that φ
has exactly3 one solution? Toward this end, define the promise problem uniqueSAT as follows:

ΠY
def
= {φ : #SAT (φ) = 1}

ΠN
def
= {φ : #SAT (φ) = 0}.

2Equivalence is left as an exercise.
3As is the case, e.g., for Sudoku.
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The questions introduced above can then be re-phrased as asking whether uniqueSAT is easier
than SAT . We will show now that the answer is “no,” in the sense that an oracle for uniqueSAT
can be used to (probabilistically) solve SAT .

We first show that if we can solve uniqueSAT (and thus distinguish formulae having no solution
and those having one solution) then we can also distinguish between formulae having no solution
and those having “few” solutions.

Lemma 7 Define the promise problem fewSAT as follows:

ΠY
def
= {φ : 1 ≤ #SAT (φ) < 100}

ΠN
def
= {φ : #SAT (φ) = 0}.

There is a deterministic polynomial-time algorithm to solve fewSAT given access to an oracle for
uniqueSAT . The algorithm can additionally output #SAT (φ) when φ ∈ ΠY . (The constant 100 in
the above is arbitrary, and could be replaced with any polynomial function of |φ|.)

Proof On input a formula φ we construct, for 1 ≤ i < 100, a formula φi such that:

• If φ has fewer than i solutions, then φi is unsatisfiable.

• If φ has exactly i solutions, then φi has a unique solution.

We can then solve fewSAT by calling our oracle for uniqueSAT on each of the φi (and outputting 1
iff any the answers are 1). The number of solutions to φ (assuming we indeed output 1) is simply
the largest i for which our oracle outputs 1.

It remains to describe the construction of φi: In words, take i independent copies of φ (with
independent variable sets {~xj}) and require that the solutions be ordered lexicographically; i.e.,

φi
def
=





i
∧

j=1

φ(~xj)



 ∧





i−1
∧

j=1

~xj <lex ~xj+1



 .

With the above in place we may now easily prove the following result:

Theorem 8 (Valiant-Vazirani [4]) There exists a ppt algorithm U which probabilistically solves
SAT given access to an oracle for uniqueSAT , That is:

φ ∈ SAT ⇒ Pr[UuniqueSAT (φ) = 1] ≥
1

2

φ 6∈ SAT ⇒ Pr[UuniqueSAT (φ) = 1] = 0.

Thus, if uniqueSAT is solvable in polynomial time then NP ⊆ RP.

Proof Given formula φ, algorithm U proceeds as follows:

1. Let n denote the number of variables in φ. Guess a value i ∈ {0, . . . , n − 1}. We will view
this as a guess that (assuming φ is satisfiable)

2i ≤ #SAT (φ) ≤ 2i+1.

Note that if φ is satisfiable then this guess is indeed correct with probability at least 1/n.
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2. If we guess i ≤ 3 then we are guessing that there are a constant number of solutions to φ,
and we can proceed as in Lemma 7 to reduce the problem to uniqueSAT .

3. Otherwise, i > 3. As in the proof of Theorem 5, choose at random a hash function h ∈ Hn′,i−3

and set
φ′(~x) = φ(~x) ∧ (h(~x) = 0i−3)

(where ~x denotes the variables in φ). Next, proceed as in Lemma 7 assuming that φ ′ has
between 4 and 24 solutions, inclusive.

Note that if the original φ is not satisfiable, then we never output 1. Thus, we need only to show
that when φ is satisfiable we output 1 with inverse polynomial probability (we can then increase our
chances of acceptance by iterating the algorithm). Recall that our guess i is correct with probability
at least 1/n. When our guess is correct and i ≤ 3, we always output 1. When our guess is correct
and i > 3, let N (resp., N ′) denote the number of solutions to φ (resp., φ′). Proposition 4 (with
ε = 1/2) tells us that with probability greater than 1/2 (over choice of h) we have:

1

2
·

N

2i−3
≤ N ′ ≤

3

2
·

N

2i−3
.

Since our guess i is correct, we know 2i ≤ N ≤ 2i+1; if the above holds, then 4 ≤ N ′ ≤ 24 (and we
will indeed output 1). We conclude that when our guess is correct U outputs 1 with probability at
least 1/2; putting everything together, when φ is satisfiable U outputs 1 with probability at least
1/2n. Applying (one-sided) error reduction gives the result of the theorem.

Examining the proof, we see the theorem holds even if uniqueSAT is solvable by an RP algorithm
(which may sometimes output 0 when φ ∈ ΠY , but never outputs 1 when φ ∈ ΠN ). Thus:

Corollary 9 If uniqueSAT ∈ promise-RP then NP ⊆ RP.

By modifying the proof we can show that uniqueSAT ∈ promise-BPP implies NP ⊆ BPP . (We
remark that NP ⊆ BPP implies NP ⊆ RP.)
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