1 Relativizing the P vs. NP Question

The main result of this lecture is to show the existence of oracles A, B such that $P^A = NP^A$ while $P^B \neq NP^B$. A fancy way of expressing this is to say that the P vs. NP question has contradictory relativizations. This shows that the P vs. NP question cannot be solved by any proof techniques that “relativize” (since a “relativizing” proof of $P = NP$, say, would by definition hold relative to any oracle). As such, when this result was first demonstrated [2] it was taken as an indication of the difficulty of resolving the P vs. NP question using “standard techniques”. It is important to note, however, that various non-relativizing proof techniques are known; as one example, the proof that $PSPACE \subseteq IP$ does not relativize (it is known that there exists an oracle A such that $PSPACE^A \neq IP^A$). See [4, Lect. 26] and [1, 3, 5] for further discussion.

An oracle A for which $P^A = NP^A$. Let A be a $PSPACE$-complete language. It is obvious that $P^A \subseteq NP^A$ for any A, so it remains to show that $NP^A \subseteq P^A$. We do this by showing that $NP^A \subseteq PSPACE \subseteq P^A$.

The second inclusion is immediate (just use a Cook reduction from any language $L \in PSPACE$ to the $PSPACE$-complete problem A), and so we have only to prove the first inclusion. This, too, is easy: Let $L \in NP^A$ and let M be a poly-time non-deterministic machine such that $L(M^A) = L$. Then using a deterministic $PSPACE$ machine M' we simply try all possible non-deterministic choices for M, and whenever M makes a query to A we have M' answer the query by itself.

An oracle B for which $P^B \neq NP^B$. This is a bit more interesting. We want to find an oracle B such that $NP^B \setminus P^B$ is not empty. For any oracle B, define the language L_B as follows:

$$L_B \overset{\text{def}}{=} \{1^n \mid B \cap \{0,1\}^n \neq \emptyset\}.$$

It is immediate that $L_B \in NP^B$ for any B. (On input 1^n, guess $x \in \{0,1\}^n$ and submit it to the oracle; output 1 if the oracle returns 1.) As a “warm-up” to the desired result, we show:

\textbf{Claim 1} For any deterministic, polynomial-time oracle machine M, there exists a language B such that $L_B \neq L(M^B)$.

\textbf{Proof} Given M with polynomial running time $p(\cdot)$, we construct B as follows: let n be the smallest integer such that $2^n > p(n)$. Note that on input 1^n, machine M cannot query its oracle on all strings of length n. We exploit this by defining B in the following way:

1We associate oracles with languages; i.e., if A is a language then we also let A denote the oracle that computes the characteristic function of A.

Run $M(1^n)$ and answer “0” to all queries of M. Let b be the output of M, and let $Q = \{q_1, \ldots\}$ denote all the queries of length exactly n that were made by M. Take arbitrary $x \in \{0, 1\}^n \setminus Q$ (we know such an x exists, as discussed above). If $b = 0$, then put x in B; if $b = 1$, then take B to just be the empty set.

Now $M^B(1^n) = b$ (since B returns 0 for every query made by $M(1^n)$), but this answer is incorrect by construction of B.

This claim is not enough to prove the desired result, since we need to reverse the order of quantifiers and show that there exists a language B such that for all deterministic, poly-time M we have $L_B \neq L(M^B)$. We do this by extending the above argument. Consider an enumeration M_1, \ldots of all deterministic, poly-time machines with running times p_1, \ldots. We will build B inductively.

Let $B_0 = \emptyset$ and $n_0 = 1$. Then in the ith iteration do the following:

- Let n_i be the smallest integer such that $2^{n_i} > p_i(n_i)$ and also $n_i > p_j(n_j)$ for all $1 \leq j < i$.
- Run $M_i(1^{n_i})$ and respond to its queries according to B_{i-1}. Let $Q = \{q_1, \ldots\}$ be the queries of length exactly n_i that were made by M_i, and let $x \in \{0, 1\}^{n_i} \setminus Q$ (again, we know such an x exists). If $b = 0$ then set $B_i = B_{i-1} \cup \{x\}$; if $b = 1$ then set $B_i = B_{i-1}$ (and so B_i does not contain any strings of length n_i).

Let $B = \cup_i B_i$. We claim that B has the desired properties. Indeed, when we run $M_i(1^{n_i})$ with oracle access to B, we can see (following the reasoning in the previous proof) that M_i will output the wrong answer (and thus M_i^B does not decide L_B). But the output of $M_i(1^{n_i})$ with oracle access to B is the same as the output of $M_i(1^{n_i})$ with oracle access to B_i, since all strings in $B \setminus B_i$ have length greater than $p_i(n_i)$ and so none of M_i’s queries (on input 1^{n_i}) will be affected by using B instead of B_i. It follows that M_i^B does not decide L_B.

Bibliographic Notes

This is adapted from [4, Lecture 26]. The result presented here is due to [2].

References

on Relativization-2