
Notes on Complexity Theory Last updated: October, 2008

Lecture on Relativization

Jonathan Katz

1 Relativizing the P vs. NP Question

The main result of this lecture is to show the existence of oracles1 A,B such that PA = NPA while
PB 6= NPB . A fancy way of expressing this is to say that the P vs. NP question has contradictory

relativizations. This shows that the P vs. NP question cannot be solved by any proof techniques
that “relativize” (since a “relativizing” proof of P = NP , say, would by definition hold relative
to any oracle). As such, when this result was first demonstrated [2] it was taken as an indication
of the difficulty of resolving the P vs. NP question using “standard techniques”. It is important
to note, however, that various non-relativizing proof techniques are known; as one example, the
proof that PSPACE ⊆ IP does not relativize (it is known that there exists an oracle A such that
PSPACE

A 6= IP
A). See [4, Lect. 26] and [1, 3, 5] for further discussion.

An oracle A for which PA = NPA. Let A be a PSPACE-complete language. It is obvious that
PA ⊆ NPA for any A, so it remains to show that NPA ⊆ PA. We do this by showing that

NPA ⊆ PSPACE ⊆ PA.

The second inclusion is immediate (just use a Cook reduction from any language L ∈ PSPACE to the
PSPACE-complete problem A), and so we have only to prove the first inclusion. This, too, is easy:
Let L ∈ NPA and let M be a poly-time non-deterministic machine such that L(MA) = L. Then
using a deterministic PSPACE machine M ′ we simply try all possible non-deterministic choices for
M , and whenever M makes a query to A we have M ′ answer the query by itself.

An oracle B for which PB 6= NPB. This is a bit more interesting. We want to find an oracle
B such that NPB \ PB is not empty. For any oracle B, define the language LB as follows:

LB
def
= {1n | B ∩ {0, 1}n 6= ∅}.

It is immediate that LB ∈ NPB for any B. (On input 1n, guess x ∈ {0, 1}n and submit it to the
oracle; output 1 iff the oracle returns 1.) As a “warm-up” to the desired result, we show:

Claim 1 For any deterministic, polynomial-time oracle machine M , there exists a language B

such that LB 6= L(MB).

Proof Given M with polynomial running time p(·), we construct B as follows: let n be the
smallest integer such that 2n > p(n). Note that on input 1n, machine M cannot query its oracle
on all strings of length n. We exploit this by defining B in the following way:

1We associate oracles with languages; i.e., if A is a language then we also let A denote the oracle that computes

the characteristic function of A.

on Relativization-1



Run M(1n) and answer “0” to all queries of M . Let b be the output of M , and let
Q = {q1, . . .} denote all the queries of length exactly n that were made by M . Take
arbitrary x ∈ {0, 1}n \Q (we know such an x exists, as discussed above). If b = 0, then
put x in B; if b = 1, then take B to just be the empty set.

Now MB(1n) = b (since B returns 0 for every query made by M(1n)), but this answer is incorrect
by construction of B.

This claim is not enough to prove the desired result, since we need to reverse the order of
quantifiers and show that there exists a language B such that for all deterministic, poly-time M we
have LB 6= L(MB). We do this by extending the above argument. Consider an enumeration M1, . . .

of all deterministic, poly-time machines with running times p1, . . .. We will build B inductively.
Let B0 = ∅ and n0 = 1. Then in the ith iteration do the following:

• Let ni be the smallest integer such that 2ni > pi(ni) and also ni > pj(nj) for all 1 ≤ j < i.

• Run Mi(1
ni) and respond to its queries according to Bi−1. Let Q = {q1, . . .} be the queries

of length exactly ni that were made by Mi, and let x ∈ {0, 1}ni \ Q (again, we know such an
x exists). If b = 0 then set Bi = Bi−1 ∪ {x}; if b = 1 then set Bi = Bi−1 (and so Bi does not
contain any strings of length ni).

Let B = ∪iBi. We claim that B has the desired properties. Indeed, when we run Mi(1
ni) with

oracle access to Bi, we can see (following the reasoning in the previous proof) that Mi will output
the wrong answer (and thus MBi

i does not decide LBi
). But the output of Mi(1

ni) with oracle
access to B is the same as the output of Mi(1

ni) with oracle access to Bi, since all strings in B \Bi

have length greater than pi(ni) and so none of Mi’s queries (on input 1ni) will be affected by using
B instead of Bi. It follows that MB

i does not decide LB .

Bibliographic Notes

This is adapted from [4, Lecture 26]. The result presented here is due to [2].

References

[1] E. Allender. Oracles versus Proof Techniques that Do Not Relativize. SIGAL Intl. Symposium

on Algorithms, pp. 39–52, 1990.

[2] T. Baker, J. Gill, and R. Solovay. Relativizations of the P
?
= NP Question. SIAM J. Computing

4(4): 431–442, 1975.

[3] L. Fortnow. The Role of Relativization in Complexity Theory. Bulletin of the European Asso-

ciation for Theoretical Computer Science, 52: 229–243, 1994.

[4] O. Goldreich. Introduction to Complexity Theory (July 31, 1999).

[5] J. Hartmanis, R. Chang, S. Chari, D. Ranjan, and P. Rohatgi. Relativization: A Revi-
sionist Retrospective. Current Trends in Theoretical Computer Science, 1993. Available from
http://www.cs.umbc.edu/ chang/papers/revisionist/.

on Relativization-2


