1 Space-Bounded Derandomization

We now discuss derandomization of space-bounded algorithms. Here non-trivial results can be shown without making any unproven assumptions, in contrast to what is currently known for derandomizing time-bounded algorithms. We show first that ${ }^{1} \mathcal{B P} \mathcal{L} \subseteq \operatorname{SPACE}\left(\log ^{2} n\right)$ and then improve the analysis and show that ${ }^{2} \mathcal{B P} \mathcal{L} \subseteq \operatorname{TimeSpc}\left(\operatorname{poly}(n), \log ^{2} n\right) \subseteq \mathcal{S C}$. (Note: we already know

$$
\mathcal{R L} \subseteq \mathcal{N} \mathcal{L} \subseteq \operatorname{SPACE}\left(\log ^{2} n\right)
$$

but this does not by itself imply $\mathcal{B P} \mathcal{L} \subseteq \operatorname{SPACE}\left(\log ^{2} n\right)$.)
With regard to the first result, we actually prove something more general:
Theorem 1 Any randomized algorithm (with two-sided error) that uses space $S=\Omega(\log n)$ and R random bits can be converted to one that uses space $\mathcal{O}(S \log R)$ and $\mathcal{O}(S \log R)$ random bits.

Since any algorithm using space S uses time at most 2^{S} (by our convention regarding probabilistic machines) and hence at most this many random bits, the following is an immediate corollary:

Corollary 2 For $S=\Omega(\log n)$ it holds that $\operatorname{BPSPACE}(S) \subseteq \operatorname{SPACE}\left(S^{2}\right)$.
Proof Let $L \in \operatorname{BPSPACE}(S)$. Theorem 1 shows that L can be decided by a probabilistic machine with two-sided error using $\mathcal{O}\left(S^{2}\right)$ space and $\mathcal{O}\left(S^{2}\right)$ random bits. Enumerating over all random bits and taking majority, we obtain a deterministic algorithm that uses $\mathcal{O}\left(S^{2}\right)$ space.

$2 \mathcal{B P L} \subseteq \operatorname{SPACE}\left(\log ^{2} n\right)$

We now prove Theorem 1. Let M be a probabilistic machine running in space S (and time 2^{S}), using R random bits, and deciding a language L with two-sided error. (Note that S, R are functions of the input length n, and the theorem requires $S=\Omega(\log n)$.) We will assume without loss of generality that M always uses exactly R random bits on all inputs. Fixing an input x and letting ℓ be some parameter, we will view the computation of M_{x} as a random walk on a multi-graph in the following way: the nodes of the graph correspond to all $N \stackrel{\text { def }}{=} 2^{\mathcal{O}(S)}$ possible configurations of M_{x}, and there is an edge from a to b labeled by the string $r \in\{0,1\}^{\ell}$ if and only if M_{x} moves from configuration a to configuration b after reading r as its next ℓ random bits. Computation of M_{x} is then equivalent to a random walk of length R / ℓ on this graph, beginning from the node corresponding to the initial configuration of M_{x}. if $x \in L$ then the probability that this random

[^0]walk ends up in an accepting state is at least $2 / 3$, while if $x \notin L$ then the probability that this random walk ends up in an accepting state is at most $1 / 3$.

It will be convenient to represent this process using an $N \times N$ transition matrix Q_{x}, where the entry in column i, row j is the probability that M_{x} moves from configuration i to configuration j after reading ℓ random bits. Vectors of length N whose entries are non-negative and sum to 1 correspond to probability distributions over the configurations of M_{x} in the natural way. If we let s denote the probability distribution that places probability 1 on the initial configuration of M_{x} (and 0 elsewhere), then $Q_{x}^{R / \ell} \cdot \mathbf{s}$ corresponds to the probability distribution over the final configuration of M_{x}; thus:

$$
\begin{aligned}
& x \in L \Rightarrow \sum_{i \in \text { accept }}\left(Q_{x}^{R / \ell} \cdot \mathbf{s}\right)_{i} \geq 3 / 4 \\
& x \notin L \Rightarrow \sum_{i \in \text { accept }}\left(Q_{x}^{R / \ell} \cdot \mathbf{s}\right)_{i} \leq 1 / 4 .
\end{aligned}
$$

The statistical difference between two vectors/probability distributions $\mathbf{s}, \mathbf{s}^{\prime}$ is

$$
\mathrm{SD}\left(\mathbf{s}, \mathbf{s}^{\prime}\right) \stackrel{\text { def }}{=} \frac{1}{2} \cdot\left\|\mathbf{s}-\mathbf{s}^{\prime}\right\|=\frac{1}{2} \cdot \sum_{i}\left|\mathbf{s}_{i}-\mathbf{s}_{i}^{\prime}\right| .
$$

If Q, Q^{\prime} are two transition matrices - meaning that all entries are non-negative, and the entries in each column sum to 1 - then we abuse notation and define

$$
\mathrm{SD}\left(Q, Q^{\prime}\right) \stackrel{\text { def }}{=} \max _{\mathbf{s}}\left\{\mathrm{SD}\left(Q \mathbf{s}, Q^{\prime} \mathbf{s}\right)\right\}
$$

where the maximum is taken over all \mathbf{s} that correspond to probability distributions. Note that if Q, Q^{\prime} are $N \times N$ transition matrices and $\max _{i, j}\left\{\left|Q_{i, j}-Q_{i, j}^{\prime}\right|\right\} \leq \varepsilon$, then $\operatorname{SD}\left(Q, Q^{\prime}\right) \leq N \varepsilon / 2$.

2.1 A Useful Lemma

The pseudorandom generator we construct will use a family H of pairwise-independent functions as a building block.
Definition $1 H=\left\{h_{k}:\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}\right\}$ is a family of pairwise-independent functions if for all distinct $x_{1}, x_{2} \in\{0,1\}^{\ell}$ and any $y_{1}, y_{2} \in\{0,1\}^{\ell}$ we have:

$$
\operatorname{Pr}_{h \in H}\left[h\left(x_{1}\right)=y_{1} \wedge h\left(x_{2}\right)=y_{2}\right]=2^{-2 \ell} .
$$

It is easy to construct a pairwise-independent family H whose functions map ℓ-bit strings to ℓ-bit strings and such that (1) $|H|=2^{2 \ell}$ (and so choosing a random member of H is equivalent to choosing a random 2ℓ-bit string) and (2) functions in H can be evaluated in $\mathcal{O}(\ell)$ space.

For $S \subseteq\{0,1\}^{\ell}$, define $\rho(S) \stackrel{\text { def }}{=}|S| / 2^{\ell}$. We define a useful property and then show that a function chosen from a pairwise-independent family satisfies the property with high probability.
Definition 2 Let $A, B \subseteq\{0,1\}^{\ell}, h:\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}$, and $\varepsilon>0$. We say h is (ε, A, B)-good if:

$$
\left|\operatorname{Pr}_{x \in\{0,1\}^{\ell}}[x \in A \bigwedge h(x) \in B]-\rho(A) \cdot \rho(B)\right| \leq \varepsilon .
$$

Space-Bounded Derandomization-2

Note that this is equivalent to saying that h is (ε, A, B)-good if

$$
\left|\operatorname{Pr}_{x \in A}[h(x) \in B]-\rho(B)\right| \leq \varepsilon / \rho(A) .
$$

Lemma 3 Let $A, B \subseteq\{0,1\}^{\ell}$, H be a family of pairwise-independent functions, and $\varepsilon>0$. Then:

$$
\operatorname{Pr}_{h \in H}[h \text { is } \operatorname{not}(\varepsilon, A, B)-\text { good }] \leq \frac{\rho(A) \rho(B)}{2^{\ell} \varepsilon^{2}} .
$$

Proof The proof is fairly straightforward. Consider the quantity

$$
\begin{aligned}
\mu & \stackrel{\text { def }}{=} \operatorname{Exp}_{h \in H}\left[\left(\rho(B)-\operatorname{Pr}_{x \in A}[h(x) \in B]\right)^{2}\right] \\
& =\operatorname{Exp}_{h \in H}\left[\rho(B)^{2}+\operatorname{Pr}_{x_{1} \in A}\left[h\left(x_{1}\right) \in B\right] \cdot \operatorname{Pr}_{x_{2} \in A}\left[h\left(x_{2}\right) \in B\right]-2 \rho(B) \cdot \operatorname{Pr}_{x_{1} \in A}\left[h\left(x_{1}\right) \in B\right]\right] \\
& =\rho(B)^{2}+\operatorname{Exp}_{x_{1}, x_{2} \in A ; h \in H}\left[\delta_{h\left(x_{1}\right) \in B} \cdot \delta_{h\left(x_{2}\right) \in B}-2 \rho(B) \cdot \delta_{h\left(x_{1}\right) \in B}\right],
\end{aligned}
$$

where $\delta_{h(x) \in B}$ is an indicator random variable which is equal to 1 if $h(x) \in B$ and 0 otherwise. Since H is pairwise independent, it follows that:

- For any x_{1} we have $\operatorname{Exp}_{h \in H}\left[\delta_{h\left(x_{1}\right) \in B}\right]=\operatorname{Pr}_{h \in H}\left[h\left(x_{1}\right) \in B\right]=\rho(B)$.
- For any $x_{1}=x_{2}$ we have $\operatorname{Exp}_{h \in H}\left[\delta_{h\left(x_{1}\right) \in B} \cdot \delta_{h\left(x_{2}\right) \in B}\right]=\operatorname{Exp}_{h \in H}\left[\delta_{h\left(x_{1}\right) \in B}\right]=\rho(B)$.
- For any $x_{1} \neq x_{2}$ we have $\operatorname{Exp}_{h \in H}\left[\delta_{h\left(x_{1}\right) \in B} \cdot \delta_{h\left(x_{2}\right) \in B}\right]=\operatorname{Pr}_{h \in H}\left[h\left(x_{1}\right) \in B \wedge h\left(x_{2}\right) \in B\right]=\rho(B)^{2}$.

Using the above, we obtain

$$
\mu=\rho(B)^{2}+\frac{\rho(B)}{|A|}+\frac{\rho(B)^{2}(|A|-1)}{|A|}-2 \rho(B)^{2}=\frac{\rho(B)-\rho(B)^{2}}{|A|}=\frac{\rho(B)(1-\rho(B))}{|A|} .
$$

Using Markov's inequality,

$$
\begin{aligned}
\operatorname{Pr}_{h \in H}[h \text { is not }(\varepsilon, A, B) \text {-good }] & =\operatorname{Pr}_{h \in H}\left[\left(\operatorname{Pr}_{x \in A}[h(x) \in B]-\rho(B)\right)^{2}>(\varepsilon / \rho(A))^{2}\right] \\
& \leq \frac{\mu \cdot \rho(A)^{2}}{\varepsilon^{2}}=\frac{\rho(B)(1-\rho(B)) \rho(A)}{2^{\ell} \varepsilon^{2}} \leq \frac{\rho(B) \rho(A)}{2^{\ell} \varepsilon^{2}} .
\end{aligned}
$$

2.2 The Pseudorandom Generator and Its Analysis

2.2.1 The Basic Step

We first show how to reduce the number of random bits by roughly half. Let H denote a pairwiseindependent family of functions, and fix an input x. Let Q denote the transition matrix corresponding to transitions in M_{x} after reading ℓ random bits; that is, the (i, j) th entry of Q is the
probability that M_{x}, starting in configuration i, moves to configuration j after reading ℓ random bits. So Q^{2} is a transition matrix denoting the probability that M_{x}, starting in configuration i, moves to configuration j after reading 2ℓ random bits. Fixing $h \in H$, let Q_{h} be a transition matrix where the (i, j) th entry in Q_{h} is the probability that M_{x}, starting in configuration i, moves to configuration j after reading the 2ℓ "random bits" $r \| h(r)$ (where $r \in\{0,1\}^{\ell}$ is chosen uniformly at random). Put differently, Q^{2} corresponds to taking two uniform and independent steps of a random walk, whereas Q_{h} corresponds to taking two steps of a random walk where the first step (given by r) is random and the second step (namely, $h(r)$) is a deterministic function of the first. We now show that these two transition matrices are "very close". Specifically:

Definition 3 Let Q, Q_{h}, ℓ be as defined above, and $\varepsilon \geq 0$. We say $h \in H$ is ε-good for Q if

$$
\mathrm{SD}\left(Q_{h}, Q^{2}\right) \leq \varepsilon / 2
$$

Lemma 4 Let H be a pairwise-independent function family, and let Q be an $N \times N$ transition matrix where transitions correspond to reading ℓ random bits. For any $\varepsilon>0$ we have:

$$
\operatorname{Pr}_{h \in H}[h \text { is not } \varepsilon \text {-good for } Q] \leq \frac{N^{6}}{\varepsilon^{2} 2^{\ell}} .
$$

Proof For $i, j \in[N]$ (corresponding to configurations in M_{x}), define

$$
B_{i, j} \stackrel{\text { def }}{=}\left\{x \in\{0,1\}^{\ell} \mid x \text { takes } Q \text { from } i \text { to } j\right\} .
$$

For fixed i, j, k, we know from Lemma 3 that the probability that h is not $\left(\varepsilon / N^{2}, B_{i, j}, B_{j, k}\right)$-good is at most $N^{4} \rho\left(B_{i, j}\right) / \varepsilon^{2} 2^{\ell}$. Applying a union bound over all N^{3} triples $i, j, k \in[N]$, and noting that for any i we have $\sum_{j} \rho\left(B_{i, j}\right)=1$, we have that h is $\left(\varepsilon / N^{2}, B_{i, j}, B_{j, k}\right)$-good for all i, j, k except with probability at most $N^{6} / \varepsilon^{2} 2^{\ell}$.

We show that whenever h is $\left(\varepsilon / N^{2}, B_{i, j}, B_{j, k}\right)$-good for all i, j, k, then h is ε-good for Q. Consider the (i, k) th entry in Q_{h}; this is given by: $\sum_{j \in[N]} \operatorname{Pr}\left[r \in B_{i, j} \wedge h(r) \in B_{j, k}\right]$. On the other hand, the (i, k) th entry in Q^{2} is: $\sum_{j \in[N]} \rho\left(B_{i, j}\right) \cdot \rho\left(B_{j, k}\right)$. Since h is $\left(\varepsilon / N^{2}, B_{i, j}, B_{j, k}\right)$-good for every i, j, k, the absolute value of their difference is

$$
\begin{aligned}
& \left|\sum_{j \in[N]}\left(\operatorname{Pr}\left[r \in B_{i, j} \wedge h(r) \in B_{j, k}\right]-\rho\left(B_{i, j}\right) \cdot \rho\left(B_{j, k}\right)\right)\right| \\
& \quad \leq \sum_{j \in[N]}\left|\operatorname{Pr}\left[r \in B_{i, j} \wedge h(r) \in B_{j, k}\right]-\rho\left(B_{i, j}\right) \cdot \rho\left(B_{j, k}\right)\right| \\
& \quad \leq \sum_{j \in[N]} \varepsilon / N^{2}=\varepsilon / N .
\end{aligned}
$$

It follows that $\mathrm{SD}\left(Q_{h}, Q^{2}\right) \leq \varepsilon / 2$ as desired.
The lemma above gives us a pseudorandom generator that reduces the required randomness by (roughly) half. Specifically, define a pseudorandom generator $G_{1}:\{0,1\}^{2 \ell+R / 2} \rightarrow\{0,1\}^{R}$ via:

$$
\begin{equation*}
G_{1}\left(r_{1}, \ldots, r_{R / 2 \ell} ; h\right)=r_{1}\left\|h\left(r_{1}\right)\right\| \cdots\left\|r_{R / 2 \ell}\right\| h\left(r_{R / 2 \ell}\right), \tag{1}
\end{equation*}
$$

where $h \in H$ (so $|h|=2 \ell$) and $r_{i} \in\{0,1\}^{\ell}$. Assume h is ε-good for Q. Running M_{x} using the output of $G_{1}(h, \cdots)$ as the "random tape" generates the probability distribution

$$
\overbrace{Q_{h} \cdots Q_{h}}^{R / 2 \ell} \cdot s
$$

for the final configuration, where \mathbf{s} denotes the initial configuration of M_{x} (i.e., \mathbf{s} is the probability distribution that places probability 1 on the initial configuration of M_{x}, and 0 elsewhere). Running M_{x} on a truly random tape generates the probability distribution

$$
\overbrace{Q^{2} \cdots Q^{2}}^{R / 2 \ell} \cdot \mathbf{s}
$$

for the final configuration. Letting $k=R / 2 \ell$ we have

$$
\begin{aligned}
& 2 \cdot \mathrm{SD}(\overbrace{Q_{h} \cdots Q_{h}}^{k} \cdot \mathbf{s}, \overbrace{Q^{2} \cdots Q^{2}}^{k} \cdot \mathbf{s})=\|(\overbrace{Q_{h} \cdots Q_{h}}^{k}-\overbrace{Q^{2} \cdots Q^{2}}^{k}) \cdot \mathbf{s}\|^{k} \\
&=\| \sum_{i=0}^{k-1}(\overbrace{Q_{h} \cdots Q_{h}}^{k-i} \overbrace{Q^{2} \cdots Q^{2}}^{i} \\
& i \overbrace{Q_{h} \cdots Q_{h}}^{k-i-1} \\
&\overbrace{Q^{2} \cdots Q^{2}}^{i+1}) \cdot \mathbf{s} \| \\
& \leq \sum_{i=0}^{k-1} \|(\overbrace{Q_{h} \cdots Q_{h}}^{k-i} \overbrace{Q^{2} \cdots Q^{2}}^{i} \\
& \overbrace{Q_{h} \cdots Q_{h}}^{k-i-1}\overbrace{Q^{2} \cdots Q^{2}}^{i+1}) \cdot \mathbf{s} \| \\
&=\sum_{i=0}^{k-1}\|\overbrace{Q_{h} \cdots Q_{h}}^{k-i-1} \cdot\left(Q_{h}-Q^{2}\right) \cdot \overbrace{Q^{2} \cdots Q^{2}}^{i} \cdot \mathbf{s}\| \\
& \leq k \cdot \varepsilon .
\end{aligned}
$$

This means that the behavior of M_{x} when run using the output of the pseudorandom generator is very close to the behavior of M_{x} when run using a truly random tape: in particular, if $x \notin L$ then M_{x} in the former case accepts with probability at most

$$
\operatorname{Pr}[\text { accepts } \wedge h \text { is } \varepsilon \text {-good for } Q]+\operatorname{Pr}[h \text { is not } \varepsilon \text {-good for } Q] \leq(1 / 4+k \varepsilon / 2)+N^{6} / \varepsilon^{2} 2^{\ell} ;
$$

similarly, if $x \in L$ then M_{x} in the former case accepts with probability at least $3 / 4-k \varepsilon / 2-N^{6} / \varepsilon^{2} 2^{\ell}$. Summarizing (and slightly generalizing):

Corollary 5 Let H be a pairwise-independent function family, let Q be an $N \times N$ transition matrix where transitions correspond to reading ℓ random bits, let $k>0$ be an integer, and let $\varepsilon>0$. Then except with probability at most $N^{6} / \varepsilon^{2} 2^{\ell}$ over choice of $h \in H$ we have:

$$
\mathrm{SD}(\overbrace{Q_{h} \cdots Q_{h}}^{k}, \overbrace{Q^{2} \cdots Q^{2}}^{k}) \leq k \varepsilon / 2 .
$$

2.2.2 Recursing

Fixing $h_{1} \in H$, note that $Q_{h_{1}}$ is a transition matrix and so we can apply Corollary 5 to it as well. Moreover, if Q uses R random bits then $Q_{h_{1}}$ uses $R / 2$ random bits (treating h_{1} as fixed). Continuing in this way for $I \stackrel{\text { def }}{=} \log (R / 2 \ell)+1=\log (R / \ell)$ iterations, we obtain a transition matrix $Q_{h_{1}, \ldots, h_{I}}$. Say all h_{i} are ε-good if h_{1} is ε-good for Q, and for each $i>1$ it holds that h_{i} is ε-good for $Q_{h_{1}, \ldots, h_{i-1}}$. By Corollary 5 we have:

- All h_{i} are ε-good except with probability at most $N^{6} I / \varepsilon^{2} 2^{\ell}$.
- If all h_{i} are ε-good then

$$
\mathrm{SD}(Q_{h_{1}, \ldots, h_{I}}, \overbrace{Q^{2} \cdots Q^{2}}^{R / 2 \ell}) \leq \frac{\varepsilon}{2} \cdot \sum_{i=1}^{I} \frac{R}{2^{i} \ell}=\frac{\varepsilon}{2} \cdot\left(\frac{R}{\ell}-1\right) .
$$

Equivalently, we obtain a pseudorandom generator

$$
G_{I}\left(r ; h_{1}, \ldots, h_{I}\right) \stackrel{\text { def }}{=} G_{I-1}\left(r ; h_{1}, \ldots, h_{I-1}\right) \| G_{I-1}\left(h_{I}(r) ; h_{1}, \ldots, h_{I-1}\right),
$$

where G_{1} is as in Equation (1).

2.2.3 Putting it All Together

We now easily obtain the desired derandomization. Recall $N=2^{\mathcal{O}(s)}$. Set $\varepsilon=2^{-S} / 10$, and set $\ell=\Theta(S)$ so that $\frac{N^{6} S}{\varepsilon^{2} 2^{\ell}} \leq 1 / 20$. Then the number of random bits used (as input to G_{I} from the previous section) is $\mathcal{O}(\ell \cdot \log (R / \ell)+\ell)=\mathcal{O}(S \log R)$ and the space used is bounded by that as well (using the fact that each $h \in H$ can be evaluated using space $\mathcal{O}(\ell)=\mathcal{O}(S)$). All h_{i} are good except with probability at most $N^{6} \log (R / \ell) / \varepsilon^{2} 2^{\ell} \leq N^{6} S / \varepsilon^{2} 2^{\ell} \leq 1 / 20$; assuming all h_{i} are good, the statistical difference between an execution of the original algorithm and the algorithm run with a pseudorandom tape is bounded by $2^{-S} / 20 \cdot R \leq 1 / 20$. Theorem 1 follows easily.

$3 \quad \mathcal{B P} \mathcal{L} \subseteq \mathcal{S C}$

A deterministic algorithm using space $\mathcal{O}\left(\log ^{2} n\right)$ might potentially run for $2^{\mathcal{O}\left(\log ^{2} n\right)}$ steps; in fact, as described, the algorithm from the proof of Corollary 2 uses this much time. For the particular pseudorandom generator we have described, however, it is possible to do better. The key observation is that instead of just choosing the h_{1}, \ldots, h_{I} at random and simply hoping that they are all ε-good, we will instead deterministically search for h_{1}, \ldots, h_{I} which are each ε-good. This can be done in polynomial time (when $S=\mathcal{O}(\log n)$) because: (1) for a given transition matrix $Q_{h_{1}, \ldots, h_{i-1}}$ and candidate h_{i}, it is possible to determine in polynomial time and polylogarithmic space whether h_{i} is ε-good for $Q_{h_{1}, \ldots, h_{i-1}}$ (this relies on the fact that the number of configurations N is polynomial in n); (2) there are only a polynomial number of possibilities for each h_{i} (since $\left.\ell=\Theta(S)=\mathcal{O}(\log n)\right)$.

Once we have found the good $\left\{h_{i}\right\}$, we then cycle through all possible choices of the seed $r \in\{0,1\}^{\ell}$ and take majority (as before). Since there are a polynomial number of possible seeds, the algorithm as a whole runs in polynomial time.
(For completeness, we discuss the case of general $S=\Omega(\log n)$ assuming $R=2^{S}$. Checking whether a particular h_{i} is ε-good requires time $2^{\mathcal{O}(S)}$. There are $2^{\mathcal{O}(S)}$ functions to search through at each stage, and $\mathcal{O}(S)$ stages altogether. Finally, once we obtain the good $\left\{h_{i}\right\}$ we must then enumerate through $2^{\mathcal{O}(S)}$ seeds. The end result is that $\operatorname{BPSPACE}(S) \subseteq \operatorname{TimeSpc}\left(2^{\mathcal{O}(S)}, S^{2}\right)$.)

Bibliographic Notes

The results described here are due to [2, 3], both of which are very readable. See also [1, Lecture 16] for a slightly different presentation.

References

[1] O. Goldreich. Introduction to Complexity Theory (July 31, 1999).
[2] N. Nisan. Pseudorandom Generators for Space-Bounded Computation. STOC '90.
[3] N. Nisan. RL \subseteq SC. Computational Complexity 4: 1-11, 1994. (Preliminary version in STOC '92.)

[^0]: ${ }^{1} \mathcal{B P} \mathcal{L}$ is the two-sided-error version of $\mathcal{R L}$.
 ${ }^{2} \mathcal{S C}$ stands for "Steve's class", and captures computation that simultaneously uses polynomial time and polylogarithmic space.

