
Notes on Complexity Theory Last updated: October, 2008

Lecture Space-Bounded Derandomization

Jonathan Katz

1 Space-Bounded Derandomization

We now discuss derandomization of space-bounded algorithms. Here non-trivial results can be
shown without making any unproven assumptions, in contrast to what is currently known for deran-
domizing time-bounded algorithms. We show first that1 BPL ⊆ SPACE(log2 n) and then improve
the analysis and show that2 BPL ⊆ TimeSpc(poly(n), log2 n) ⊆ SC. (Note: we already know

RL ⊆ NL ⊆ SPACE(log2 n)

but this does not by itself imply BPL ⊆ SPACE(log2 n).)
With regard to the first result, we actually prove something more general:

Theorem 1 Any randomized algorithm (with two-sided error) that uses space S = Ω(log n) and R
random bits can be converted to one that uses space O(S log R) and O(S log R) random bits.

Since any algorithm using space S uses time at most 2S (by our convention regarding probabilistic
machines) and hence at most this many random bits, the following is an immediate corollary:

Corollary 2 For S = Ω(log n) it holds that BPSPACE(S) ⊆ SPACE(S2).

Proof Let L ∈ BPSPACE(S). Theorem 1 shows that L can be decided by a probabilistic machine
with two-sided error using O(S2) space and O(S2) random bits. Enumerating over all random bits
and taking majority, we obtain a deterministic algorithm that uses O(S2) space.

2 BPL ⊆ SPACE(log2 n)

We now prove Theorem 1. Let M be a probabilistic machine running in space S (and time 2S),
using R random bits, and deciding a language L with two-sided error. (Note that S, R are functions
of the input length n, and the theorem requires S = Ω(log n).) We will assume without loss of
generality that M always uses exactly R random bits on all inputs. Fixing an input x and letting
` be some parameter, we will view the computation of Mx as a random walk on a multi-graph in
the following way: the nodes of the graph correspond to all N

def= 2O(S) possible configurations
of Mx, and there is an edge from a to b labeled by the string r ∈ {0, 1}` if and only if Mx moves
from configuration a to configuration b after reading r as its next ` random bits. Computation
of Mx is then equivalent to a random walk of length R/` on this graph, beginning from the node
corresponding to the initial configuration of Mx. if x ∈ L then the probability that this random

1BPL is the two-sided-error version of RL.
2SC stands for “Steve’s class”, and captures computation that simultaneously uses polynomial time and polylog-

arithmic space.

Space-Bounded Derandomization-1

walk ends up in an accepting state is at least 2/3, while if x 6∈ L then the probability that this
random walk ends up in an accepting state is at most 1/3.

It will be convenient to represent this process using an N ×N transition matrix Qx, where the
entry in column i, row j is the probability that Mx moves from configuration i to configuration j
after reading ` random bits. Vectors of length N whose entries are non-negative and sum to 1
correspond to probability distributions over the configurations of Mx in the natural way. If we let s
denote the probability distribution that places probability 1 on the initial configuration of Mx (and
0 elsewhere), then Q

R/`
x · s corresponds to the probability distribution over the final configuration

of Mx; thus:

x ∈ L ⇒
∑

i∈accept

(
QR/`

x · s
)

i
≥ 3/4

x 6∈ L ⇒
∑

i∈accept

(
QR/`

x · s
)

i
≤ 1/4.

The statistical difference between two vectors/probability distributions s, s′ is

SD(s, s′) def=
1
2
· ∥∥s− s′

∥∥ =
1
2
·
∑

i

|si − s′i|.

If Q,Q′ are two transition matrices — meaning that all entries are non-negative, and the entries in
each column sum to 1 – then we abuse notation and define

SD(Q,Q′) def= maxs{SD(Qs, Q′s)},

where the maximum is taken over all s that correspond to probability distributions. Note that if
Q,Q′ are N ×N transition matrices and maxi,j{|Qi,j −Q′

i,j |} ≤ ε, then SD(Q,Q′) ≤ Nε/2.

2.1 A Useful Lemma

The pseudorandom generator we construct will use a family H of pairwise-independent functions
as a building block.

Definition 1 H = {hk : {0, 1}` → {0, 1}`} is a family of pairwise-independent functions if for all
distinct x1, x2 ∈ {0, 1}` and any y1, y2 ∈ {0, 1}` we have:

Pr
h∈H

[h(x1) = y1 ∧ h(x2) = y2] = 2−2`.

It is easy to construct a pairwise-independent family H whose functions map `-bit strings to `-bit
strings and such that (1) |H| = 22` (and so choosing a random member of H is equivalent to
choosing a random 2`-bit string) and (2) functions in H can be evaluated in O(`) space.

For S ⊆ {0, 1}`, define ρ(S) def= |S|/2`. We define a useful property and then show that a
function chosen from a pairwise-independent family satisfies the property with high probability.

Definition 2 Let A, B ⊆ {0, 1}`, h : {0, 1}` → {0, 1}`, and ε > 0. We say h is (ε,A, B)-good if:
∣∣∣∣ Pr
x∈{0,1}`

[
x ∈ A

∧
h(x) ∈ B

]
− ρ(A) · ρ(B)

∣∣∣∣ ≤ ε.

Space-Bounded Derandomization-2

Note that this is equivalent to saying that h is (ε, A,B)-good if
∣∣∣∣ Pr
x∈A

[h(x) ∈ B]− ρ(B)
∣∣∣∣ ≤ ε/ρ(A).

Lemma 3 Let A,B ⊆ {0, 1}`, H be a family of pairwise-independent functions, and ε > 0. Then:

Pr
h∈H

[h is not (ε,A, B)-good] ≤ ρ(A)ρ(B)
2`ε2

.

Proof The proof is fairly straightforward. Consider the quantity

µ
def= Exph∈H

[(
ρ(B)− Pr

x∈A
[h(x) ∈ B]

)2
]

= Exph∈H

[
ρ(B)2 + Pr

x1∈A
[h(x1) ∈ B] · Pr

x2∈A
[h(x2) ∈ B]− 2ρ(B) · Pr

x1∈A
[h(x1) ∈ B]

]

= ρ(B)2 + Expx1,x2∈A; h∈H

[
δh(x1)∈B · δh(x2)∈B − 2ρ(B) · δh(x1)∈B

]
,

where δh(x)∈B is an indicator random variable which is equal to 1 if h(x) ∈ B and 0 otherwise.
Since H is pairwise independent, it follows that:

• For any x1 we have Exph∈H [δh(x1)∈B] = Prh∈H [h(x1) ∈ B] = ρ(B).

• For any x1 = x2 we have Exph∈H [δh(x1)∈B · δh(x2)∈B] = Exph∈H [δh(x1)∈B] = ρ(B).

• For any x1 6= x2 we have Exph∈H [δh(x1)∈B ·δh(x2)∈B] = Prh∈H [h(x1) ∈ B∧h(x2) ∈ B] = ρ(B)2.

Using the above, we obtain

µ = ρ(B)2 +
ρ(B)
|A| +

ρ(B)2(|A| − 1)
|A| − 2ρ(B)2 =

ρ(B)− ρ(B)2

|A| =
ρ(B)(1− ρ(B))

|A| .

Using Markov’s inequality,

Pr
h∈H

[h is not (ε, A,B)-good] = Pr
h∈H

[(
Pr
x∈A

[h(x) ∈ B]− ρ(B)
)2

> (ε/ρ(A))2
]

≤ µ · ρ(A)2

ε2
=

ρ(B)(1− ρ(B))ρ(A)
2`ε2

≤ ρ(B)ρ(A)
2`ε2

.

2.2 The Pseudorandom Generator and Its Analysis

2.2.1 The Basic Step

We first show how to reduce the number of random bits by roughly half. Let H denote a pairwise-
independent family of functions, and fix an input x. Let Q denote the transition matrix corre-
sponding to transitions in Mx after reading ` random bits; that is, the (i, j)th entry of Q is the

Space-Bounded Derandomization-3

probability that Mx, starting in configuration i, moves to configuration j after reading ` random
bits. So Q2 is a transition matrix denoting the probability that Mx, starting in configuration i,
moves to configuration j after reading 2` random bits. Fixing h ∈ H, let Qh be a transition matrix
where the (i, j)th entry in Qh is the probability that Mx, starting in configuration i, moves to
configuration j after reading the 2` “random bits” r‖h(r) (where r ∈ {0, 1}` is chosen uniformly
at random). Put differently, Q2 corresponds to taking two uniform and independent steps of a
random walk, whereas Qh corresponds to taking two steps of a random walk where the first step
(given by r) is random and the second step (namely, h(r)) is a deterministic function of the first.
We now show that these two transition matrices are “very close”. Specifically:

Definition 3 Let Q, Qh, ` be as defined above, and ε ≥ 0. We say h ∈ H is ε-good for Q if

SD(Qh, Q2) ≤ ε/2 .

Lemma 4 Let H be a pairwise-independent function family, and let Q be an N × N transition
matrix where transitions correspond to reading ` random bits. For any ε > 0 we have:

Pr
h∈H

[h is not ε-good for Q] ≤ N6

ε22`
.

Proof For i, j ∈ [N] (corresponding to configurations in Mx), define

Bi,j
def= {x ∈ {0, 1}` | x takes Q from i to j}.

For fixed i, j, k, we know from Lemma 3 that the probability that h is not (ε/N2, Bi,j , Bj,k)-good is
at most N4ρ(Bi,j)/ε22`. Applying a union bound over all N3 triples i, j, k ∈ [N], and noting that
for any i we have

∑
j ρ(Bi,j) = 1, we have that h is (ε/N2, Bi,j , Bj,k)-good for all i, j, k except with

probability at most N6/ε22`.
We show that whenever h is (ε/N2, Bi,j , Bj,k)-good for all i, j, k, then h is ε-good for Q. Consider

the (i, k)th entry in Qh; this is given by:
∑

j∈[N] Pr[r ∈ Bi,j ∧ h(r) ∈ Bj,k]. On the other hand, the
(i, k)th entry in Q2 is:

∑
j∈[N] ρ(Bi,j) · ρ(Bj,k). Since h is (ε/N2, Bi,j , Bj,k)-good for every i, j, k,

the absolute value of their difference is
∣∣∣∣∣∣
∑

j∈[N]

(
Pr[r ∈ Bi,j ∧ h(r) ∈ Bj,k]− ρ(Bi,j) · ρ(Bj,k)

)
∣∣∣∣∣∣

≤
∑

j∈[N]

∣∣∣ Pr[r ∈ Bi,j ∧ h(r) ∈ Bj,k]− ρ(Bi,j) · ρ(Bj,k)
∣∣∣

≤
∑

j∈[N]

ε/N2 = ε/N.

It follows that SD(Qh, Q2) ≤ ε/2 as desired.

The lemma above gives us a pseudorandom generator that reduces the required randomness by
(roughly) half. Specifically, define a pseudorandom generator G1 : {0, 1}2`+R/2 → {0, 1}R via:

G1(r1, . . . , rR/2`; h) = r1 ‖h(r1) ‖ · · · ‖ rR/2` ‖h(rR/2`), (1)

Space-Bounded Derandomization-4

where h ∈ H (so |h| = 2`) and ri ∈ {0, 1}`. Assume h is ε-good for Q. Running Mx using the
output of G1(h, · · ·) as the “random tape” generates the probability distribution

R/2`︷ ︸︸ ︷
Qh · · ·Qh ·s

for the final configuration, where s denotes the initial configuration of Mx (i.e., s is the probability
distribution that places probability 1 on the initial configuration of Mx, and 0 elsewhere). Running
Mx on a truly random tape generates the probability distribution

R/2`︷ ︸︸ ︷
Q2 · · ·Q2 ·s

for the final configuration. Letting k = R/2` we have

2 · SD
(k︷ ︸︸ ︷

Qh · · ·Qh ·s,
k︷ ︸︸ ︷

Q2 · · ·Q2 ·s
)

=
∥∥∥
(k︷ ︸︸ ︷

Qh · · ·Qh−
k︷ ︸︸ ︷

Q2 · · ·Q2
)
· s

∥∥∥

=
∥∥∥

k−1∑

i=0

(k−i︷ ︸︸ ︷
Qh · · ·Qh

i︷ ︸︸ ︷
Q2 · · ·Q2−

k−i−1︷ ︸︸ ︷
Qh · · ·Qh

i+1︷ ︸︸ ︷
Q2 · · ·Q2

)
· s

∥∥∥

≤
k−1∑

i=0

∥∥∥
(k−i︷ ︸︸ ︷

Qh · · ·Qh

i︷ ︸︸ ︷
Q2 · · ·Q2−

k−i−1︷ ︸︸ ︷
Qh · · ·Qh

i+1︷ ︸︸ ︷
Q2 · · ·Q2

)
· s

∥∥∥

=
k−1∑

i=0

∥∥∥
k−i−1︷ ︸︸ ︷

Qh · · ·Qh ·(Qh −Q2) ·
i︷ ︸︸ ︷

Q2 · · ·Q2 ·s
∥∥∥

≤ k · ε.

This means that the behavior of Mx when run using the output of the pseudorandom generator
is very close to the behavior of Mx when run using a truly random tape: in particular, if x 6∈ L
then Mx in the former case accepts with probability at most

Pr[accepts ∧ h is ε-good for Q] + Pr[h is not ε-good for Q] ≤ (1/4 + kε/2) + N6/ε22`;

similarly, if x ∈ L then Mx in the former case accepts with probability at least 3/4−kε/2−N6/ε22`.
Summarizing (and slightly generalizing):

Corollary 5 Let H be a pairwise-independent function family, let Q be an N×N transition matrix
where transitions correspond to reading ` random bits, let k > 0 be an integer, and let ε > 0. Then
except with probability at most N6/ε22` over choice of h ∈ H we have:

SD
(k︷ ︸︸ ︷

Qh · · ·Qh,

k︷ ︸︸ ︷
Q2 · · ·Q2

)
≤ kε/2.

Space-Bounded Derandomization-5

2.2.2 Recursing

Fixing h1 ∈ H, note that Qh1 is a transition matrix and so we can apply Corollary 5 to it as
well. Moreover, if Q uses R random bits then Qh1 uses R/2 random bits (treating h1 as fixed).

Continuing in this way for I
def= log(R/2`) + 1 = log(R/`) iterations, we obtain a transition matrix

Qh1,...,hI
. Say all hi are ε-good if h1 is ε-good for Q, and for each i > 1 it holds that hi is ε-good

for Qh1,...,hi−1 . By Corollary 5 we have:

• All hi are ε-good except with probability at most N6I/ε22`.

• If all hi are ε-good then

SD(Qh1,...,hI
,

R/2`︷ ︸︸ ︷
Q2 · · ·Q2) ≤ ε

2
·

I∑

i=1

R

2i`
=

ε

2
·
(

R

`
− 1

)
.

Equivalently, we obtain a pseudorandom generator

GI(r; h1, . . . , hI)
def= GI−1(r; h1, . . . , hI−1) ‖GI−1(hI(r);h1, . . . , hI−1),

where G1 is as in Equation (1).

2.2.3 Putting it All Together

We now easily obtain the desired derandomization. Recall N = 2O(s). Set ε = 2−S/10, and set
` = Θ(S) so that N6S

ε22` ≤ 1/20. Then the number of random bits used (as input to GI from the
previous section) is O(` · log(R/`) + `) = O(S log R) and the space used is bounded by that as
well (using the fact that each h ∈ H can be evaluated using space O(`) = O(S)). All hi are good
except with probability at most N6 log(R/`)/ε22` ≤ N6S/ε22` ≤ 1/20; assuming all hi are good,
the statistical difference between an execution of the original algorithm and the algorithm run with
a pseudorandom tape is bounded by 2−S/20 ·R ≤ 1/20. Theorem 1 follows easily.

3 BPL ⊆ SC
A deterministic algorithm using space O(log2 n) might potentially run for 2O(log2 n) steps; in fact,
as described, the algorithm from the proof of Corollary 2 uses this much time. For the particular
pseudorandom generator we have described, however, it is possible to do better. The key observation
is that instead of just choosing the h1, . . . , hI at random and simply hoping that they are all ε-good,
we will instead deterministically search for h1, . . . , hI which are each ε-good. This can be done in
polynomial time (when S = O(log n)) because: (1) for a given transition matrix Qh1,...,hi−1 and
candidate hi, it is possible to determine in polynomial time and polylogarithmic space whether hi is
ε-good for Qh1,...,hi−1 (this relies on the fact that the number of configurations N is polynomial in n);
(2) there are only a polynomial number of possibilities for each hi (since ` = Θ(S) = O(log n)).

Once we have found the good {hi}, we then cycle through all possible choices of the seed
r ∈ {0, 1}` and take majority (as before). Since there are a polynomial number of possible seeds,
the algorithm as a whole runs in polynomial time.

Space-Bounded Derandomization-6

(For completeness, we discuss the case of general S = Ω(log n) assuming R = 2S . Checking
whether a particular hi is ε-good requires time 2O(S). There are 2O(S) functions to search through
at each stage, and O(S) stages altogether. Finally, once we obtain the good {hi} we must then
enumerate through 2O(S) seeds. The end result is that BPSPACE(S) ⊆ TimeSpc(2O(S), S2).)

Bibliographic Notes

The results described here are due to [2, 3], both of which are very readable. See also [1, Lecture 16]
for a slightly different presentation.

References

[1] O. Goldreich. Introduction to Complexity Theory (July 31, 1999).

[2] N. Nisan. Pseudorandom Generators for Space-Bounded Computation. STOC ’90.

[3] N. Nisan. RL ⊆ SC. Computational Complexity 4: 1–11, 1994. (Preliminary version in
STOC ’92.)

Space-Bounded Derandomization-7

