
Notes on Complexity Theory Last updated: August, 2011

Lecture 1

Jonathan Katz

1 Turing Machines

I assume that most students have encountered Turing machines before. (Students who have not
may want to look at Sipser’s book [3].) A Turing machine is defined by an integer k ≥ 1, a finite
set of states Q, an alphabet Γ, and a transition function δ : Q×Γk → Q×Γk−1×{L, S,R}k where:

• k is the number of (infinite, one-dimensional) tapes used by the machine. In the general case
we have k ≥ 3 and the first tape is a read-only input tape, the last is a write-once output
tape, and the remaining k−2 tapes are work tapes. For Turing machines with boolean output
(which is what we will mostly be concerned with in this course), an output tape is unnecessary
since the output can be encoded into the final state of the Turing machine when it halts.

• Q is assumed to contain a designated start state qs and a designated halt state qh. (In the
case where there is no output tape, there are two halting states qh,0 and qh,1.)

• We assume that Γ contains {0, 1}, a “blank symbol”, and a “start symbol”.

• There are several possible conventions for what happens when a head on some tape tries
to move left when it is already in the left-most position, and we are agnostic on this point.
(Anyway, by our convention, below, that the left-most cell of each tape is “marked” there is
really no reason for this to ever occur. . .).

The computation of a Turing machine M on input x ∈ {0, 1}∗ proceeds as follows: All tapes of
the Turing machine contain the start symbol followed by blank symbols, with the exception of the
input tape which contains the start symbol followed by x (and then the remainder of the input tape
is filled with blank symbols). The machine starts in state q = qs with its k heads at the left-most
position of each tape. Then, until q is a halt state, repeat the following:

1. Let the current contents of the cells being scanned by the k heads be γ1, . . . , γk ∈ Γ.

2. Compute δ(q, γ1, . . . , γk) = (q′, γ′2, . . . , γ
′
k, D1, . . . , Dk) where q′ ∈ Q and γ′2, . . . , γ

′
k ∈ Γ and

Di ∈ {L, S, R}.
3. Overwrite the contents of the currently scanned cell on tape i to γ′i for 2 ≤ i ≤ k; move head

i to the left, to the same position, or to the right depending on whether Di = L, S, or R,
respectively; and then set the current state to q = q′.

The output of M on input x, denoted M(x), is the binary string contained on the output tape
(between the initial start symbol and the trailing blank symbols) when the machine halts. (When
there is no output tape, then the output is ‘1’ if M halts in state qh,1 and the output is ‘0’ is M
halts in state qh,0.) It is also possible that M never halts when run on some input x. We return to
this point later.

1-1

The running time of a Turing machine M on input x is simply the number of “steps” M takes
before it halts; that is, the number of iterations (equivalently, the number of times δ is computed)
in the above loop. Machine M is said to run in time T (·) if for every input x the running time of
M(x) is at most T (|x|). The space used by M on input x is the number of cells written to by M on
all its work tapes1 (a cell that is written to multiple times is only counted once); M is said to use
space T (·) if for every input x the space used during the computation of M(x) is at most T (|x|).
We remark that these time and space measures are worst-case notions; i.e., even if M runs in time
T (n) for only a fraction of the inputs of length n (and uses less time for all other inputs of length n),
the running time of M is still said to be T . (Average-case notions of complexity have also been
considered, but are somewhat more difficult to reason about.)

A Turing machine M computes a function f : {0, 1}∗ → {0, 1}∗ if M(x) = f(x) for all x.
Assuming f is a total function, and so is defined on all inputs, this in particular means that M
halts on all inputs. We will focus most of our attention on boolean functions, a context in which
it is more convenient to phrase computation in terms of languages. A language is simply a subset
of {0, 1}∗. There is a natural correspondence between languages and boolean functions: for any
boolean function f we may define the corresponding language L as the set L = {x | f(x) = 1}.
Conversely, for any language L we can define the boolean function f so that f(x) = 1 iff x ∈ L. A
Turing machine M decides a language L if

x ∈ L ⇔ M(x) = 1

(we sometimes also say that M accepts L, though we will try to be careful); this is the same as
computing the boolean function f that corresponds to L.

1.1 Comments on the Model

Turing machines are not meant as a model of modern computer systems. Rather, they were
introduced (before computers were even built!) as a mathematical model of what computation is.
Explicitly, the axiom is that “any function that can be computed in the physical world, can be
computed by a Turing machine”; this is the so-called Church-Turing thesis. (The thesis cannot
be proved unless one can formally define what it means to “compute a function in the physical
world” without reference to Turing machines. In fact, several alternate notions of computation
have been defined and shown to be equivalent to computation by a Turing machine; there are no
serious candidates for alternate notions of computation that are not equivalent to computation by
a Turing machine. See [1] for further discussion.) In fact, an even stronger axiom known as the
strong Church-Turing thesis is sometimes assumed to hold: this says that “any function that can be
computed in the physical world, can be computed with at most a polynomial reduction in efficiency
by a Turing machine”. This thesis is challenged by notions of randomized computation that we
will discuss later. In the past 15 years or so, however, this axiom has been called into question
by results on quantum computing that show polynomial-time algorithms in a quantum model of
computation for problems not known to have polynomial-time algorithms in the classical setting.

There are several variant definitions of Turing machines that are often considered; none of these
contradict the strong Church-Turing thesis. (That is, any function that can be computed on any of
these variant Turing machines, including the variant defined earlier, can be computed on any other

1Note that we do not count the space used on the input or output tapes; this allows us to meaningfully speak of
sub-linear space machines (with linear- or superlinear-length output).

1-2

variant with at most a polynomial increase in time/space.) Without being exhaustive, we list some
examples (see [1, 2] for more):

• One may fix Γ to only include {0, 1} and a blank symbol.

• One may restrict the tape heads to only moving left or right, not staying in place.

• One may fix k = 3, so that there is only one work tape. In fact, one may even consider k = 1
so that there is only a single tape that serves as input tape, work tape, and output tape.

• One can allow the tapes to be infinite in both directions, or two-dimensional.

• One can allow random access to the work tapes (so that the contents of the ith cell of some
tape can be read in one step). This gives a model of computation that fairly closely matches
real-world computer systems, at least at an algorithmic level.

The upshot of all of this is that it does not matter much which model one uses, as long as one is ok
with losing polynomial factors. On the other hand, if one is concerned about “low level” time/space
complexities then it is important to fix the exact model of computation under discussion. For
example, the problem of deciding whether an input string is a palindrome can be solved in time
O(n) on a two-tape Turing machine, but requires time Ω(n2) on a one-tape Turing machine.

1.2 Universal Turing Machines and Uncomputable Functions

An important observation (one that is, perhaps, obvious nowadays but was revolutionary in its
time) is that Turing machines can be represented by binary strings. In other words, we can view
a “program” (i.e., a Turing machine) equally well as “data”, and run one Turing machine on (a
description of) another. As a powerful example, a universal Turing machine is one that can be
used to simulate any other Turing machine. We define this next.

Fix some representation of Turing machines by binary strings, and assume for simplicity that
every binary string represents some Turing machine (this is easy to achieve by mapping badly
formed strings to some fixed Turing machine). Consider the function f(M, x) = M(x). Is f
computable?

Note: Here f is a partial function, since in this context the given Turing machine M
may not halt on the given input x and we leave f undefined in that case. A partial
function f is computable if there is a Turing machine U such that for all x where f
is defined we have U(x) = f(x). When f(x) is undefined the behavior of U may be
arbitrary. An alternative is to consider the (total) function

f ′(M,x, 1t) =
{

1 if M(x) halts within t steps with output 1
0 otherwise

,

whose computability is closely linked to that of f . Another natural possibility is to
consider the (total) function

fhalt(M, x) =
{

1 if M(x) halts with output 1
0 otherwise

;

as we will see, however, fhalt is not computable.

1-3

Perhaps surprisingly, f is computable. We stress that here we require there to be a fixed Turing
machine U , with a fixed number of tapes and a fixed alphabet (not to mention a fixed set of states)
that can simulate the behavior of an arbitrary Turing machine M that may use any number of
tapes and any size alphabet. A Turing machine computing f is called a universal Turing machine.

Theorem 1 There exists a Turing machine U such that (1) U(M, x) = M(x) for all x for which
M(x) is defined; furthermore, (2) for every M there exists a constant c such that the following
holds: for all x, if M(x) halts within T steps, then U(M, x) halts within c · T log T steps.

Proof We only sketch the proof here. We consider the case where M computes a boolean
function, and so has no output tape; U will not have an output tape either. U will use 3 work
tapes, and the alphabet Γ that only includes {0, 1}, a blank symbol, and a start symbol. At a high
level, U proceeds as follows:

1. First, U applies a transformation to M that results in a description of an equivalent ma-
chine M ′ that uses only a single work tape (in addition to its input tape). This is known to
be possible, and moreover is possible in such a way that the following holds: if M(x) halts
within T steps, then M ′(x) halts within O(T log T) steps (see [2, Chap. 12] or [1, Sect. 17]).
The description of M ′ is stored on the second work tape of U (the remaining work tapes of
U are used to perform the transformation).

2. Next, U applies a transformation to M ′ that results in a description of an equivalent ma-
chine M ′′ that uses the binary alphabet (plus blank and start symbol). This is known to be
possible with only a constant-factor loss of efficiency (see [1, 2]). Thus if M(x) halts within
T steps, then M ′′(x) halts within O(T log T) steps. The description of M ′′ is stored on the
first work tape of U (the 3rd work tape of U can be used to perform the transformation).

3. Finally, U simulates the execution of M ′′ on input x. It can do this by recording the current
state of M ′′ on its second work tape (recall that the description of M ′′ itself is stored on the
first work tape of U) and using its third work tape to store the contents of the work tape
of M ′′. To simulate each step of M ′′, we have U simply scan the entire description of M ′′ until
it finds a transition rule matching the current state of M ′′, the current value being scanned
in the input x, and the current value being scanned in the work tape of M ′′. This rule is then
used by U to update the recorded state of M ′′, to move its heads on its input tape and third
work tape (which is storing the work tape of M ′′), and to rewrite the value being scanned on
the work tape of M ′′. If M ′′ halts, then U simply needs to check whether the final state of
M ′′ was an accepting state or a rejecting state, and move into the appropriate halting state
of its own.

It is not hard to see that U(M,x) = M(x) for any x for which M(x) halts. As for the claim about
the running time, we note the following: the first and second steps of U take time that depends
on M but is independent of x. In the third step of U , each step of M ′′ is simulated using some
number of steps that depends on M ′′ (and hence M) but is again independent of x. We have noted
already that if M(x) halts in T steps then M ′′(x) halts in c′′ · T log T steps for some constant c′′

that depends on M but not on x. Thus U(M, x) halts in c · T log T steps for some constant c that
depends on M but not on x.

We have shown that (the partial function) f is computable. What about (the function) fhalt?
By again viewing Turing machines as data, we can show that this function is not computable.

1-4

Theorem 2 The function fhalt is not computable.

Proof Say there is some Turing machine Mhalt computing fhalt. Then we can define the following
machine M∗:

On input (a description of) a Turing machine M , output Mhalt(M, M). If the result
is 1, output 0; otherwise output 1.

What happens when we run M∗ on itself ? Consider the possibilities for the result M∗(M∗):

• Say M∗(M∗) = 1. This implies that Mhalt(M∗,M∗) = 0. But that means that M∗(M∗) does
not halt with output 1, a contradiction.

• Say M∗(M∗) = 0. This implies that Mhalt(M∗,M∗) = 1. But that means that M∗(M∗) halts
with output 1, a contradiction.

• It is not possible for M∗(M∗) to never halt, since Mhalt(M∗,M∗) is a total function (and so
is supposed to halt on all inputs).

We have reached a contradiction in all cases, implying that Mhalt as described cannot exist.

Remark: The fact that fhalt is not computable does not mean that the halting problem cannot
be solved “in practice”. In fact, checking termination of programs is done all the time in industry.
Of course, they are not using algorithms that are solving the halting problem – this would be
impossible! Rather, they use programs that may give false negative, i.e., that may claim that some
other program does not halt when it actually does. The reason this tends to work in practice is
that the programs that people want to reason about in practice tend to have a form that makes
them amenable to analysis.

References

[1] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University
Press, 2009.

[2] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley Publishing Company, 1979.

[3] M. Sipser. Introduction to the Theory of Computation (2nd edition). Course Technology, 2005.

1-5

Notes on Complexity Theory Last updated: December, 2011

Lecture 2

Jonathan Katz

1 Review

The running time of a Turing machine M on input x is the number of “steps” M takes before it
halts. Machine M is said to run in time T (·) if for every input x the running time of M(x) is at
most T (|x|). (In particular, this means it halts on all inputs.) The space used by M on input x
is the number of cells written to by M on all its work tapes1 (a cell that is written to multiple
times is only counted once); M is said to use space T (·) if for every input x the space used during
the computation of M(x) is at most T (|x|). We remark that these time and space measures are
worst-case notions; i.e., even if M runs in time T (n) for only a fraction of the inputs of length n
(and uses less time for all other inputs of length n), the running time of M is still T . (Average-case
notions of complexity have also been considered, but are somewhat more difficult to reason about.
We may cover this later in the semester; or see [1, Chap. 18].)

Recall that a Turing machine M computes a function f : {0, 1}∗ → {0, 1}∗ if M(x) = f(x)
for all x. We will focus most of our attention on boolean functions, a context in which it is more
convenient to phrase computation in terms of languages. A language is simply a subset of {0, 1}∗.
There is a natural correspondence between languages and boolean functions: for any boolean
function f we may define the corresponding language L = {x | f(x) = 1}. Conversely, for any
language L we can define the boolean function f by f(x) = 1 iff x ∈ L. A Turing machine M
decides a language L if

x ∈ L ⇒ M(x) = 1
x 6∈ L ⇒ M(x) = 0

(we sometimes also say that M accepts L, though we will try to be careful); this is the same as
computing the boolean function f that corresponds to L. Note in particular that we require M to
halt on all inputs.

What is complexity theory about? The fundamental question of complexity theory is to un-
derstand the inherent complexity of various languages/problems/functions; i.e., what is the most
efficient algorithm (Turing machine) deciding some language? A convenient terminology for dis-
cussing this is given by introducing the notion of a class, which is simply a set of languages. Two
basic classes are:

• time(f(n)) is the set of languages decidable in time O(f(n)). (Formally, L ∈ time(f(n)) if
there is a Turing machine M and a constant c such that (1) M decides L, and (2) M runs in
time c · f ; i.e., for all x (of length at least 1) M(x) halts in at most c · f(|x|) steps.)

• space(f(n)) is the set of languages that can be decided using space O(f(n)).
1Note that we do not count the space used on the input or output tapes; this allows us to meaningfully speak of

sub-linear space machines (with linear- or superlinear-length output).

2-1

Note that we ignore constant factors in the above definitions. This is convenient, and lets us ignore
low-level details about the model of computation.2

Given some language L, then, we may be interested in determining the “smallest” f for which
L ∈ time(f(n)). Or, perhaps we want to show that space(f(n)) is strictly larger than space(f ′(n))
for some functions f, f ′; that is, that there is some language in the former that is not in the latter.
Alternately, we may show that one class contains another. As an example, we start with the
following easy result:

Lemma 1 For any f(n) we have time(f(n)) ⊆ space(f(n)).

Proof This follows from the observation that a machine cannot write on more than a constant
number of cells per move.

2 P, NP, and NP-Completeness

2.1 The Class P
We now introduce one of the most important classes, which we equate (roughly) with problems that
can be solved efficiently. This is the class P, which stands for polynomial time:

P def=
⋃

c≥1

time(nc).

That is, a language L is in P if there exists a Turing machine ML and a polynomial p such that
ML(x) runs in time p(|x|), and ML decides L.

Does P really capture efficient computation? There are debates both ways:

• For many problems nowadays that operate on extremely large inputs (think of Google’s search
algorithms), only linear-time are really desirable. (In fact, one might even want sublinear-time
algorithms, which are only possible by relaxing the notion of correctness.) This is related to
the (less extreme) complaint that an n100 algorithm is not really “efficient” in any sense.

The usual response here is that n100-time algorithms rarely occur. Moreover, when algorithms
with high running times (e.g., n8) do get designed, they tend to be quickly improved to be
more efficient.

• From the other side, one might object that P does not capture all efficiently solvable problems.
In particular, a randomized polynomial-time algorithm (that is correct with high probability)
seems to also offer an efficient way of solving a problem. Most people today would agree
with this objection, and would classify problems solvable by randomized polynomial-time
algorithms as “efficiently solvable”. Nevertheless, it may turn out that such problems all
lie in P anyway; this is currently an unresolved conjecture. (We will discuss the power of
randomization, and the possibility of derandomization, later in the semester.)

As mentioned previously, quantum polynomial-time algorithms may also be considered “effi-
cient”. It is fair to say that until general-purpose quantum computers are implemented, this
is still debatable.

2This decision is also motivated by “speedup theorems” which state that if a language can be decided in time
(resp., space) f(n) then it can be decided in time (resp., space) f(n)/c for any constant c. (This assumes that f(n)
is a “reasonable” function, but the details need not concern us here.)

2-2

Another important feature of P is that it is closed under composition. That is, if an algorithm A
(that otherwise runs in polynomial time) makes polynomially many calls to an algorithm B, and if
B runs in polynomial time, then A runs in polynomial time. See [1] for further discussion.

2.2 The Classes NP and coNP
Another important class of problems are those whose solutions can be verified efficiently. This
is the class NP. (Note: NP does not stand for “non-polynomial time”. Rather, it stands for
“non-deterministic polynomial-time” for reasons that will become clear later.) Formally, L ∈ NP
if there exists a Turing machine ML and a polynomial p such that (1) ML(x,w) runs in time3

p(|x|), and (2) x ∈ L iff there exists a w such that ML(x,w) = 1; such a w is called a witness
(or, sometimes, a proof) that x ∈ L. Compare this to the definition of P: a language L ∈ P if
there exists a Turing machine ML and a polynomial p such that (1) ML(x) runs in time p(|x|), and
(2) x ∈ L iff ML(x) = 1.

Stated informally, a language L is in P if membership in L can be decided efficiently. A language
L is in NP if membership in L can be efficiently verified (given a correct proof). A classic example
is given by the following language:

IndSet =
{

(G, k) :
G is a graph that has

an independent set of size k

}
.

We do not know an efficient algorithm for determining the size of the largest independent set in an
arbitrary graph; hence we do not have any efficient algorithm deciding IndSet. However, if we know
(e.g., through brute force, or because we constructed G with this property) that an independent
set of size k exists in some graph G, it is easy to prove that (G, k) ∈ IndSet by simply listing the
nodes in the independent set: verification just involves checking that every pair of nodes in the
given set is not connected by an edge in G, which is easy to do in polynomial time. Note further
than if G does not have an independent set of size k then there is no proof that could convince us
otherwise (assuming we are using the stated verification algorithm).

It is also useful to keep in mind an analogy with mathematical statements and proofs (though
the correspondence is not rigorously accurate). In this view, P would correspond to the set of
mathematical statements (e.g., “1+1=2”) whose truth can be easily determined. NP, on the other
hand, would correspond to the set of (true) mathematical statements that have “short” proofs
(whether or not such proofs are easy to find).

We have the following simple result, which is the best known as far as relating NP to the time
complexity classes we have introduced thus far:

Theorem 2 P ⊆ NP ⊆ ⋃
c≥1 time(2nc

).

Proof The containment P ⊆ NP is trivial. As for the second containment, say L ∈ NP. Then
there exists a Turing machine ML and a polynomial p such that (1) ML(x,w) runs in time p(|x|),
and (2) x ∈ L iff there exists a w such that ML(x,w) = 1. Since ML(x,w) runs in time p(|x|), it
can read at most the first p(|x|) bits of w and so we may assume that w in condition (2) has length
at most p(|x|). The following is then a deterministic algorithm for deciding L:

3It is essential that the running time of ML be measured in terms of the length of x alone. An alternate approach
is to require the length of w to be at most p(|x|) in condition (2).

2-3

On input x, run ML(x, w) for all strings w ∈ {0, 1}≤p(|x|). If any of these results in
ML(x,w) = 1 then output 1; else output 0.

The algorithm clearly decides L. Its running time on input x is O
(
p(|x|) · 2p(|x|)), and therefore

L ∈ time
(
2nc)

for some constant c.

The “classical” definition of NP is in terms of non-deterministic Turing machines. Briefly, the
model here is the same as that of the Turing machines we defined earlier, except that now there are
two transition functions δ0, δ1, and at each step we imagine that the machine makes an arbitrary
(“non-deterministic”) choice between using δ0 or δ1. (Thus, after n steps the machine can be in
up to 2n possible configurations.) Machine M is said to output 1 on input x if there exists at
least one sequence of choices that would lead to output 1 on that input. (We continue to write
M(x) = 1 in this case, though we stress again that M(x) = 1 when M is a non-deterministic
machine just means that M(x) outputs 1 for some set of non-deterministic choices.) M decides L
if x ∈ L ⇔ M(x) = 1. A non-deterministic machine M runs in time T (n) if for every input x and
every sequence of choices it makes, it halts in time at most T (|x|). The class ntime(f(n)) is then
defined in the natural way: L ∈ ntime(f(n)) if there is a non-deterministic Turing machine ML

such that ML(x) runs in time O(f(|x|)), and ML decides L. Non-deterministic space complexity
is defined similarly: non-deterministic machine M uses space T (n) if for every input x and every
sequence of choices it makes, it halts after writing on at most T (|x|) cells of its work tapes. The
class nspace(f(n)) is then the set of languages L for which there exists a non-deterministic Turing
machine ML such that ML(x) uses space O(f(|x|)), and ML decides L.

The above leads to an equivalent definition of NP paralleling the definition of P:

Claim 3 NP =
⋃

c≥1 ntime(nc).

This is a good exercise; a proof can be found in [1].
The major open question of complexity theory is whether P ?= NP; in fact, this is one of the

outstanding questions in mathematics today. The general belief is that P 6= NP, since it seems
quite “obvious” that non-determinism is stronger than determinism (i.e., verifying should be easier
than solving, in general), and there would be many surprising consequences if P were equal to NP.
(See [1] for a discussion.) But we have had no real progress toward proving this belief.

Conjecture 4 P 6= NP.

A (possibly feasible) open question is to prove that non-determinism is even somewhat stronger
than determinism. It is known that ntime(n) is strictly stronger than time(n) (see [2, 3, 4] and
references therein), but we do not know, e.g., whether time(n3) ⊆ ntime(n2).

2.2.1 The Class coNP
For any class C, we define the class coC as coC def=

{
L | L̄ ∈ C}, where L̄

def= {0, 1}∗ \ L is the
complement of L. Applied to the class NP, we get the class coNP of languages where non-
membership can be efficiently verified. In other words, L ∈ coNP if there exists a Turing machine
ML and a polynomial p such that (1) ML(x, w) runs in time4 p(|x|), and (2) x ∈ L iff for all w we
have ML(x,w) = 1. Note why this (only) implies efficiently verifiable proofs of non-membership:

4See footnote 3.

2-4

a single w where ML(x,w) = 0 is enough to convince someone that x 6∈ L, but a single w where
ML(x,w) = 1 means nothing.

A coNP language is easily obtained by taking the complement of any language in NP. So, for
example, the complement of IndSet is the language

NoIndSet =
{

(G, k) :
G does not have

an independent set of size k

}
.

Let us double-check that this is in coNP: we can prove that (G, k) 6∈ NoIndSet by giving a set of k
vertices that do form an independent set in G (this assumes the obvious verification algorithm); note
that (assuming we use the obvious verification algorithm) we can never be “fooled” into believing
that (G, k) is not in NoIndSet when it actually is.

As another example of languages in NP and coNP, consider the satisfiability problem which
asks whether a boolean formula in conjunctive normal form is satisfiable (see [1] for a formal
definition if you have not encountered these terms before). That is,

SAT = {φ | φ has a satisfying assignment} .

Then SAT consists of boolean formulae with no satisfying assignment. We have SAT ∈ NP and
SAT ∈ coNP. As another example, consider the language TAUT of tautologies:

TAUT = {φ : φ is satisfied by every assignment}.

TAUT is also in coNP.
The class coNP can also be defined in terms of non-deterministic Turing machines. This is left

as an exercise.
Note that P ⊆ NP ∩ coNP. (Why?) Could it be that NP = coNP? Once again, we don’t

know the answer but it would be surprising if this were the case. In particular, there does not seem
to be any way to give an efficiently verifiable proof that, e.g., a boolean formula does not have any
satisfying assignment (which is what would be implied by SAT ∈ NP).

Conjecture 5 NP 6= coNP.

2.3 NP-Completeness

2.3.1 Defining NP-Completeness

What does it mean for one language L′ to be harder5 to decide than another language L? There
are many possible answers to this question, but one way to start is by capturing the intuition that
if L′ is harder than L, then an algorithm for deciding L′ should be useful for deciding L. We can
formalize this idea using the concept of a reduction. Various types of reductions can be defined; we
start with one of the most central:

Definition 1 A language L is Karp reducible (or many-to-one reducible) to a language L′ if there
exists a polynomial-time computable function f such that x ∈ L iff f(x) ∈ L′. We express this by
writing L ≤p L′.

5Technically speaking, I mean “at least as hard as”.

2-5

The existence of a Karp reduction from L to L′ gives us exactly what we were looking for.
Say there is a polynomial-time Turing machine (i.e., algorithm) M ′ deciding L′. Then we get a
polynomial-time algorithm M deciding L by setting M(x) def= M ′(f(x)). (Verify that M does,
indeed, run in polynomial time.) This explains the choice of notation L ≤p L′. We state some basic
properties, all of which are straightforward to prove.

Claim 6 We have:

1. (Transitivity) If A ≤p B and B ≤p C then A ≤p C.

2. If A ≤p B and B ∈ P then A ∈ P.

3. If A ≤p B and B ∈ NP then A ∈ NP.

A problem is NP-hard if it is “at least as hard to solve” as any problem in NP. It is NP-
complete if it is NP-hard and also in NP. Formally:

Definition 2 Language L′ is NP-hard if for every L ∈ NP it holds that L ≤p L′. Language L′ is
NP-complete if L′ ∈ NP and L′ is NP-hard.

Note that if L is NP-hard and L ≤p L′, then L′ is NP-hard as well.
coNP-completeness is defined analogously: a language L′ is coNP-hard if for every L ∈ coNP

it holds that L ≤p L′; language L′ is coNP-complete if L′ is coNP-hard and L′ ∈ coNP.

2.3.2 Existence of NP-Complete Problems

A priori, it is not clear that there should be any NP-complete problems. One of the surprising re-
sults from the early 1970s is that NP-complete problems exist. Soon after, it was shown that many
important problems are, in fact, NP-complete. Somewhat amazingly, we now know thousands of
NP-complete problems arising from various disciplines.

Here is a trivial NP-complete language:

L =
{
(M,x, 1t) : ∃w ∈ {0, 1}t s.t. M(x,w) halts within t steps with output 1.

}
.

Next time we will show more natural NP-complete languages

References

[1] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University
Press, 2009.

[2] R. Kannan. Towards separating nondeterminisn from determinisn. Math. Systems Theory 17(1):
29–45, 1984.

[3] W. Paul, N. Pippenger, E. Szemeredi, and W. Trotter. On determinism versus non-determinisn
and related problems. FOCS 1983.

[4] R. Santhanam. On separators, segregators, and time versus space. IEEE Conf. Computational
Complexity 2001.

2-6

Notes on Complexity Theory Last updated: October, 2011

Lecture 3

Jonathan Katz

1 Natural NP-Complete Problems

Last time we saw a “non-natural” NP-complete language. Other important NP-complete lan-
guages are SAT (satisfiable boolean formulae in conjunctive normal form) and 3-SAT (satisfiable
boolean formulae in conjunctive normal form, where each clause contains at most 3 literals). Besides
being more “natural” languages, they are useful for proving NP-completeness of other languages.

Theorem 1 (Cook-Levin Theorem) SAT is NP-complete.

Proof We give a detailed proof sketch. (Note that the proof we give here is different from the
one in [1]; in particular, we do not rely on the existence of oblivious Turing machines.)

Let L be a language in NP. This means there is a Turing machine M and a polynomial
p such that (1) M(x,w) runs in time p(|x|), and (2) x ∈ L if and only if there exists a w for
which M(x,w) = 1. Note that we may assume that any such w, if it exists, has length exactly
p(|x|)− |x| − 1. We also assume for simplicity (and without loss of generality) that M has a single
tape (that is used as both its input tape and work tape) and a binary alphabet.

A simple observation is that we can represent the computation of M(x,w) (where |x| = n) by a
tableau of p(n) + 1 rows, each O(p(n)) bits long. Each row corresponds to the entire configuration
of M at some step during its computation; there are p(n) + 1 rows since M always halts after at
most p(n) steps. (If M(x,w) halts before p(n) steps, the last rows may be duplicates of each other.
Or we may assume that M(x,w) always runs for exactly p(|x|) steps.) Each row can be represented
using O(p(n)) bits since a configuration contains (1) the contents of M ’s tape (which can be stored
in O(p(n)) bits — recall that space(p(n)) ⊆ time(p(n))); (2) the location of M ’s head on its tape
(which can be stored in p(n) bits1); and (3) the value of M ’s state (which requires O(1) bits).

Moreover, given a tableau that is claimed to correspond to an accepting computation of M(x,w),
it is possible to verify this via a series of “local” checks. (This notion will become more clear below.)
Specifically, letting p = p(n) and assuming we are given some tableau, do:

1. Check that the first row is formed correctly. (The tape should contain x, followed by a space
and then a sequence of bits representing w; M ’s head should be in the left-most position; and
M should be in its start state.)

2. Number the rows from 0 to T , and recall that these correspond to time steps of M ’s execution.
Let ti,j denote the value written in cell j at time i. Then for i = 1, . . . , T and j = 1, . . . , T ,
check that ti,j has the correct value given ti−1,j−1, ti−1,j , and ti−1,j+1 and the value of the
state at time i − 1. We also need to check that the state at time i takes the correct value;
this is discussed in detail below.

3. Check that the state in the final row is the accepting state.
1In fact, O(log p(n)) bits suffice, but for this proof it is somewhat simpler to use a more wasteful representation.

3-1

Each of these checks involves looking at only a small (in fact, constant) part of the tableau. This is
important, as it implies that each check can be represented as a constant-size CNF formula. Then
correctness of the entire tableau can be represented as a conjunction of a polynomial number of
these formulae. We give further details below.

We begin with the following claim:

Claim 2 Any function f : {0, 1}` → {0, 1} can be expressed as a CNF formula of size at most ` ·2`.

Proof Let x = (x1, . . . , x`) denote the input variables of f . For some fixed string y ∈ {0, 1}`, we
can express the predicate “neqy(x) def= [x 6= y]” as

(x1 6= y1) ∨ · · · ∨ (x` 6= y`);

remembering that y is fixed, this is just a disjunctive clause in the ` variables x1, . . . , x`. If we let
Y ⊆ {0, 1}` denote the set of inputs on which f evaluates to 0, then we can express the predicate
“f(x) = 1” by ∧

y∈Y neqy(x1, . . . , x`),

which is a CNF formula of size at most ` · 2`.

To prove the theorem, we need to show a polynomial-time transformation f that outputs CNF
formula with the property that x ∈ L iff f(x) ∈ SAT. Our transformation f will output a CNF
formula corresponding to the verification of an accepting tableau of the computation of M(x,w)
for some w. For a given x of length n = |x|, let p = p(n); then f(x) does as follows:

• Create variables {ti,j} for i = 0 to p and j = 1 to p. Each ti,j represents the value written in
cell j at time i. (Each ti,j will actually be two bits, since we need two bits to represent the 0,
1, start symbol, and space character.)

• Create variables ui,j for i = 0 to p and j = 1 to p. Each ui,j is a single bit indicating whether
the head is in position j at time i.

• Create variables ~si
def= (si,1, . . . , si,q) for i = 1 to p and some constant q that depends on the

number of states that M uses. (Namely, if the set of states is Q then q = dlog |Q|e.)
• Create the following CNF formulae:

– χ0 checks that row 0 is correct: namely, that t0,1, . . . , t0,p contains a start symbol,
followed by x1, . . . , x`, followed by a blank, and then {0, 1} in the remaining positions;
furthermore, u0,1 = 1 and u0,j = 0 for all j > 1, and ~s0 encodes the start state of M .
Even though χ0 involves O(p) variables, it is easy to see that it can be expressed as a
CNF formula of size O(p).

– For i, j = 1 to p, let φi,j be a CNF formula that checks correctness of cell j at time i.
This is a formula in the variables ti,j , ui,j , the three2 cells in the neighborhood of

cell j at the previous time period (namely, Ni−1,j
def= {ti−1,j−1, ui−1,j−1, ti−1,j , ui−1,j ,

ti−1,j+1, ui−1,j+1}), and the current and previous states ~si, ~si−1. This formula encodes
the following predicate:

2Of course, if j = 1 or j = p then the cell has only two neighbors.

3-2

ti,j , ui,j contain the correct values given Ni−1,j and ~si−1.
and

if ui,j = 1, then ~si contains the correct value given Ni−1,j and ~si−1.

The above can be a complicated predicate, but it involves only a constant (i.e., independent
of n) number of variables, and hence (by Claim 2) can be encoded by a CNF formula of
constant size.

• χp simply checks that ~sp encodes the accepting state of M .

• The output of f is Φ = χ0 ∧
(∧

i,j φi,j

)
∧ χp.

One can, somewhat tediously, convince oneself that Φ is satisfiable if and only if there is some
w for which M(x,w) = 1.

To show that 3-SAT is NP-complete, we show a reduction from any CNF formula to a CNF
formula with (at most) 3 literals per clause. We illustrate the idea by showing how to transform
a clause involving 4 literals to two clauses involving 3 literals each: given clause a ∨ b ∨ c ∨ d we
introduce the auxiliary variable z and then output (a ∨ b ∨ z) ∧ (z̄ ∨ c ∨ d); one can check that the
latter is satisfiable iff the former is satisfiable.

1.1 Other NP-Complete Problems

SAT and 3-SAT are useful since they can be used to prove many other problems NP-complete.
Recall that we can show that some language L is NP-complete by demonstrating a Karp reduction
from 3-SAT to L. As an example, consider IndSet (see [1] for more details): Given a formula φ
with n variables and m clauses, we define a graph G with 7m vertices. There will be 7 vertices
for each clause, corresponding to 7 possible satisfying assignments. G contains edges between all
vertices that are inconsistent (including those in the same cluster). One can check that there is an
independent set of size m iff φ has a satisfying assignment.

2 Self-Reducibility and Search vs. Decision

We have so far been talking mainly about decision problems, which can be viewed as asking whether
a solution exists. But one often wants to solve the corresponding search problem, namely to find a
solution (if one exists). For many problems, the two have equivalent complexity.

Let us define things more formally. Say L ∈ NP. Then there is some polynomial-time Turing
machine M such that x ∈ L iff ∃w : M(x,w) = 1. The decision problem for L is: given x, determine
if x ∈ L. The search problem for L is: given x ∈ L, find w such that M(x,w) = 1. (Note that
we should technically speak of the search problem for L relative to M since there can be multiple
non-deterministic Turing machines deciding L, and each such machine will define its own set of
“solutions”. Nevertheless, we stick with the inaccurate terminology and hope things will be clear
from the context.) The notion of reducibility we want in this setting is Cook-Turing reducibility. We
define it for decision problems, but can apply it to search problems via the natural generalization.

Definition 1 Language L is Cook-Turing reducible to L′ if there is a poly-time Turing machine M
such that for any oracle O′ deciding L′, machine MO′(·) decides L. (I.e., MO′(·)(x) = 1 iff x ∈ L.)

3-3

Note that if L is Karp-reducible to L′, then there is also a Cook-Turing reduction from L
to L′. In general, however, the converse is not belied to hold. Specifically, any language in coNP
is Cook-Turing reducible to any NP-complete language, but there is no Karp-reduction from a
coNP-complete language to a language in NP unless coNP = NP.

Returning to the question of search vs. decision, we have:

Definition 2 A language L ∈ NP is self-reducible if there is a Cook-Turing reduction from the
search problem for L to the decision problem for L. Namely, there is polynomial-time Turing
machine M such that for any oracle OL deciding L, and any x ∈ L we have (x,MOL(·)(x)) ∈ RL.

(One could also ask about reducing the decision problem to the search problem. For languages in
NP, however, such a reduction always exists.)

Theorem 3 SAT is self-reducible.

Proof Assume we have an oracle that tells us whether any CNF formula is satisfiable. We show
how to use such an oracle to find a satisfying assignment for a given (satisfiable) CNF formula φ.
Say φ is a formula on n variables x1, . . . , xn. If b1, . . . , b` ∈ {0, 1} (with ` ≤ n), then by φ|b1,...,b`

we mean the CNF formula on the variables x`+1, . . . , xn obtained by setting x1 = b1, . . . , x` = b`

in φ. (φ|b1,...,b`
is easily computed given φ and b1, . . . , b`.) The algorithm proceeds as follows:

• For i = 1 to n do:

– Set bi = 0.

– If φb1,...,bi is not satisfiable, set bi = 1. (Note: we determine this using our oracle for SAT.)

• Output b1, . . . , bn.

We leave it to the reader to show that this always returns a satisfying assignment (assuming φ is
satisfiable to begin with).

The above proof can be generalized to show that every NP-complete language is self-reducible.

Theorem 4 Every NP-complete language L is self-reducible.

Proof The idea is similar to above, with one new twist. Let M be a polynomial-time non-
deterministic Turing machine such that

L = {x | ∃w : M(x, w) = 1}.

We first define a new language L′:

L′ = {(x, b) | ∃w′ : M(x, bw′) = 1}.

I.e., (x, b) ∈ L′ iff there exists a w with prefix b such that M(x,w) = 1. Note that L′ ∈ NP; thus,
there is a Karp reduction f such that x ∈ L′ iff f(x) ∈ L. (Here is where we use the fact that L is
NP-complete.)

Assume we have an oracle deciding L; we design an algorithm that, given x ∈ L, finds w with
M(x,w) = 1. Say the length of w (given x) is n = poly(|x|). The algorithm proceeds as follows:

• For i = 1 to n do:

3-4

– Set bi = 0.

– If f((x, b1, . . . , bi)) 6∈ L, set bi = 1. (We run this step using our oracle for L.)

• Output b1, . . . , bn.

We leave it to the reader to show that this algorithm gives the desired result.

Other languages in NP (that are not NP-complete) may be self-reducible as well. An example
is given by graph isomorphism, a language that is not known (or believed) to be in P or NP-
complete. On the other hand, it is believed that not all languages in NP are self-reducible. One
conjectured example is the natural relation derived from factoring: although compositeness can be
decided in polynomial time, we do not believe that polynomial-time factoring algorithms exist.

References

[1] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University
Press, 2009.

3-5

Notes on Complexity Theory Last updated: September, 2011

Lecture 4

Jonathan Katz

1 Diagonalization

In this lecture and the next one, we discuss two types of results that are related by the technique
used in their proofs. Both kinds of results are also fundamental in their own right.

The common proof technique is called diagonalization. It is somewhat difficult to formally define
the term, but roughly the idea is that we want to show the existence of some language L (with
certain properties) that cannot be decided by any Turing machine within some set S = {M1, . . .}.1
We do so by starting with some L0 (with the property we want) and then, for i = 1, . . . changing
Li−1 to Li such that none of M1, . . . , Mi decide Li. Of course part of the difficulty is to make sure
that Li has the property we want also.

Actually, one can also prove the existence of an undecidable language using this technique
(though not quite as explicitly as stated above). Consider an enumeration x1, . . . of all binary
strings, and an enumeration M1, . . . of all Turing machines.2 Define L as follows: xi 6∈ L iff
Mi(xi) = 1. (A picture really helps here. For those who have seen it before, this is exactly
analogous to the proof that there is no bijection from the integers to the reals. In fact, that
gives a 1-line proof of the existence of undecidable languages: the set of languages is uncountable,
while the set of Turing machines is countable.) Say some machine M decides L, and let i be such
that M = Mi. But then consider xi: if M(xi) = 1 then xi 6∈ L and so M is wrong; if M(xi) rejects
or doesn’t halt then xi ∈ L and M is again wrong!

1.1 Hierarchy Theorems

It is natural to wonder whether additional resources actually give additional power. We show that
this is the case (at least to a certain extent) for space and time. We first give a definitions of
“well-behaved” functions.

Definition 1 A function f : N → N is space constructible if it is non-decreasing and there exists
a Turing machine that on input 1n outputs the binary representation of f(n) using O(f(n)) space.
Note that if f is space constructible, then there exists a Turing machine that on input 1n marks off
exactly f(n) cells on its work tapes (say, using a special symbol) without ever exceeding O(f(n))
space.

For space bounds, it is often assumed that f(n) ≥ log n as well. We will make this assumption
throughout this class, unless explicitly stated otherwise. Note that non-trivial algorithms using
sub-logarithmic space do exist; in particular, space(1) is a proper subset of space(log log n) (see
[2, Lecture 4]). Nevertheless, sub-logarithmic space causes difficulties because there is not even
enough space to store a counter indicating the position of the input-tape head.

1Note that the set of all Turing machines is countably infinite, and so S is countable.
2An efficiently computable enumeration is obtained by letting Mi denote the Turing machine represented by the

binary representation of i.

4-1

Definition 2 A function f : N → N with f(n) ≥ n for all n is time constructible if it is non-
decreasing and there exists a Turing machine that on input 1n outputs the binary representation of
f(n) in O(f(n)) steps. Note that if f is time constructible, then there exists a Turing machine that
on input 1n runs for O(f(n)) steps and then halts.

All functions you would “normally encounter” are space and time constructible; functions that
aren’t are specifically constructed counterexamples.

We first show that more space gives more power.

Theorem 1 (Space hierarchy theorem) Let G(n) ≥ log n be space constructible, and g(n) =
o(G(n)). Then space(g(n)) is a proper subset of space(G(n)).

Proof We show the existence of a language L such that L ∈ space(G(n)) but L 6∈ space(g(n)).
We define L by describing a Turing machine ML, using space O(G(n)), that decides it. ML does
the following on input w = (M, y) of length |w| = n:

1. Run M(w) with at most G(n) space and for at most 22G(n) steps (these bounds are imposed
on M), using space at most 3 ·G(n).

2. If M(w) accepts within the given time and space bounds, then reject. Otherwise, accept.

In step 1, we can use the fact that G is space constructible to mark off exactly G(n) tape cells for
M to use. We can similarly mark off an additional 2G(n) cells to use as a counter for checking the
number of steps M makes, and one last set of G(n) cells to use for any remaining computation. By
construction, ML uses space G̃(n) = 4 ·G(n).

We need to show that no machine using space O(g(n)) can decide L. Assume the contrary.
Then there exists a machine M ′

L deciding L and using space g̃(n) = O(g(n)). Choose k large
enough so that g̃(k) < G(k), so that3 M ′

L makes fewer than 2G(k) steps on inputs of length k, and
so that4 the simulation of M ′

L on inputs of length k can be performed in G(k) space. Consider the
input w = (M ′

L, 1k). If we run ML(w) then (1) ML has enough time and space to simulate the
entire execution of M ′

L(w), and thus (2) ML(w) outputs the opposite of whatever M ′
L(w) outputs.

We conclude that ML and M ′
L do not decide the same language.

We have a completely analogous time hierarchy theorem, though the result is quantitatively
(slightly) weaker.

Theorem 2 (Time hierarchy theorem) Let G be time constructible. If g(n) log g(n) = o(G(n)),
then time(g(n)) is a proper subset of time(G(n)).

Proof The high-level structure of the proof is the same as in the proof of the previous theorem.
We define L by giving a Turing machine ML, using time O(G(n)), that decides it. ML does the
following on input w = (M, y) of length |w| = n:

1. Run M(w) using at most c ·G(n) steps for some fixed constant c (see below).

2. If M(w) accepts within the given time bound, then reject. Otherwise, accept.

3This condition is achievable because M ′
L runs in time at most O(n2O(g(n))) (something we will show later in the

course), which is asymptotically smaller than 22G(n).
4This condition is achievable because universal simulation with constant space overhead is possible.

4-2

We can implement step 1 using the fact that G is time constructible: in alternating steps, simulate
M(w) and run a Turing machine that is guaranteed to stop within O(G(n)) steps; halt the entire
computation once the latter machine halts. We thus have that ML runs in time O(G(n)).

We need to show that no machine using time O(g(n)) can decide L. Assume the contrary. Then
there exists a machine M ′

L deciding L in time O(g(n)). Consider an input of the form w = (M ′
L, 1k).

If we run ML(w) then, for k large enough, ML has enough time to simulate the entire execution
of M ′

L(w). (Here we use the fact that universal simulation is possible with logarithmic overhead.)
But then, for k large enough, ML(w) outputs the opposite of whatever M ′

L(w) outputs. We conclude
that ML and M ′

L do not decide the same language.

The barrier to getting a tighter time hierarchy theorem is the logarithmic time overhead in
universal simulation. If a better simulation were possible, we would obtain a tighter separation.

There is a non-deterministic time hierarchy as well; the details are more complicated because
it is not possible to simply “flip” the output of a non-deterministic machine. (Do you see why?)

Theorem 3 (Non-deterministic time hierarchy theorem) Let g, G be time constructible. If
g(n + 1) = o(G(n)), then ntime(g(n)) is a proper subset of ntime(G(n)).

Proof We sketch a proof different from the one in the book. We will also rely on the fact that
non-deterministic universal simulation with only constant time overhead is possible.

Once again, we define a language L by describing a machine that decides it. Consider the
non-deterministic machine ML that on input w = (M, 1k, y) of length |w| = n, where M is now
interpreted as a non-deterministic Turing machine, does:

1. If |y| < G(|M |+ k) then run M(M, 1k, y0) and M(M, 1k, y1) for at most G(n) steps (each),
and accept iff they both accept.

2. If |y| ≥ G(|M |+k) then accept iff M(M, 1k, ε) rejects when using non-deterministic choices y.
(Here ε denotes the empty string.) Note that if M does not halt on this computation path
(e.g., because y is not long enough), then ML rejects.

By what we have said before regarding universal simulation of non-deterministic Turing machines,
and using the conditions of the theorem, ML runs in time O(G(n)).

Say there exists a non-deterministic machine M ′
L running in time g̃(n) = O(g(n)) and decid-

ing L. Consider an input of the form w = (M ′
L, 1k, ε) for k sufficiently large. We have

w ∈ L ⇔ M ′
L(M ′

L, 1k, 0) = M ′
L(M ′

L, 1k, 1) = 1 Definition of ML

⇔ (M ′
L, 1k, 0), (M ′

L, 1k, 1) ∈ L M ′
L decides L

⇔ M ′
L(M ′

L, 1k, 00) = M ′
L(M ′

L, 1k, 01) = 1
M ′

L(M ′
L, 1k, 10) = M ′

L(M ′
L, 1k, 11) = 1 Definition of ML

Let t be the smallest integer with t ≥ G(|M ′
L|+ k). Continuing the above line of reasoning we get

w ∈ L ⇔ ∀y ∈ {0, 1}t : M ′
L(M ′

L, 1k, y) = 1 As above. . .
⇔ ∀y ∈ {0, 1}t : (M ′

L, 1k, y) ∈ L M ′
L decides L

⇔ ∀y ∈ {0, 1}t : M ′
L(M ′

L, 1k, ε) rejects
on computation path y Definition of ML

⇔ M ′
L(M ′

L, 1k, ε) = 0 Definition of non-determinism
⇔ w 6∈ L M ′

L decides L

This is a contradiction, so we conclude that no such M ′
L can exist.

4-3

Bibliographic Notes

The proof of the non-deterministic time hierarchy theorem given here is due to [1].

References

[1] L. Fortnow and R. Santhanam. Robust Simulations and Significant Separations. ICALP (1),
2011. Available at http://arxiv.org/abs/1012.2034.

[2] O. Goldreich. Introduction to Complexity Theory (July 31, 1999).

4-4

Notes on Complexity Theory Last updated: September 14, 2011

Lecture 5

Jonathan Katz

1 Diagonalization, Continued

1.1 Ladner’s Theorem

We know that there existNP-complete languages. Assuming P 6= NP, any NP-complete language
lies in NP \ P. Are there languages that are neither in P nor NP-complete? Ladner’s theorem
tells us that there are.

As some intuition for Ladner’s theorem, take some language L ∈ NP \ P. Using padding, we
will make L “easy enough” so that it can’t be NP-complete, while keeping it “hard enough” so
it is not in P either. Say the best algorithm for deciding L runs in time nlog n for concreteness.
(The same argument, though messier, works as long as the best algorithm deciding L requires
super-polynomial time.) Define

L′ = {(x, y) | x ∈ L and |x|+ |y| = |x|log log |x|}.
If L′ ∈ P, then L would be decidable in time nO(log log n), a contradiction. On the other hand,
L′ is decidable in time N log N where N is such that N log log N = n (the input length). We have
N = no(1), and so L′ is decidable in time no(log log(no(1)). If L were Karp-reducible to L′, then L
would be solvable in time no(log n), a contradiction. The main challenge in making the above formal
is that it is hard to pin down the “best” algorithm for deciding some language L, or that algorithm’s
exact running time.

Theorem 1 Assuming P 6= NP, there exists a language A ∈ NP \ P which is not NP-complete.

Note: We did not cover the proof of Ladner’s theorem in class, but one is included here for
completeness.

Proof The high-level intuition behind the proof is that we construct A by taking anNP-complete
language and “blowing holes” in it in such a way that the language is no longer NP-complete yet
not in P either. The specific details are quite involved.

Let M1, . . . denote an enumeration of all polynomial-time Turing machines with boolean output;
formally, this can be achieved by considering an enumeration1 of M× Z (where M is the set of
Turing machines), and defining Mi as follows: if the ith item in this enumeration is (M, j), then
Mi(x) runs M(x) for at most |x|j steps. We remark that M1, . . . also gives an enumeration of
languages in P (with languages appearing multiple times). In a similar way, let F1, . . . denote an
enumeration of polynomial-time Turing machines without the restriction of their output length.
Note that this gives an enumeration of functions computable in polynomial time.

Define language A as follows:

A = {x | x ∈ SAT ∧ f(|x|) is even},
1Since both M and Z are countable, it follows that M× Z is countable.

5-1

for some function f that remains to be defined. Note that as long as we ensure that f is computable
in polynomial time, then A ∈ NP. We define f by a polynomial-time Turing machine Mf that
computes it. Let MSAT be a machine that decides SAT (not in polynomial time, of course. . .), and
let f(0) = f(1) = 2. On input 1n (with n > 1), Mf proceeds in two stages, each lasting for exactly
n steps:

1. During the first stage, Mf computes f(0), f(1), . . . until it runs out of time. Suppose the last
value of f it was able to compute was f(x) = k. The output of Mf will be either k or k + 1,
to be determined by the next stage.

2. Then:

• If k = 2i is even, then Mf tries to find a z ∈ {0, 1}∗ such that Mi(z) outputs the “wrong”
answer as to whether z ∈ A. (That is, Mf tries to find z such that either z ∈ A but
Mi(z) = 0, or the opposite.) This is done by computing Mi(z),MSAT(z), and f(|z|) for
all strings z in lexicographic order. If such a string is found within the allotted time,
the output of Mf is k + 1. Otherwise, the output of Mf is k.

• If k = 2i− 1 is odd, then Mf tries to find a string z such that Fi(z) is an incorrect Karp
reduction from SAT to A. (That is, Mf tries to find a z such that either z ∈ SAT but
Fi(z) 6∈ A, or the opposite.) This is done by computing Fi(z), MSAT(z), MSAT(Fi(z)),
and f(|Fi(z)|). If such a string is found within the allotted time, then the output of Mf

is k + 1; otherwise, the output is k.

By its definition, Mf runs in polynomial time. Note also that f(n + 1) ≥ f(n) for all n.
We claim that A 6∈ P. Suppose the contrary. Then A is decided by some Mi. In this case,

however, the second stage of Mf with k = 2i will never find a z satisfying the desired property,
and so f is eventually a constant function and in particular f(n) is odd for only finitely-many n.
But this implies that A and SAT coincide except for finitely-many strings. But this implies that
SAT ∈ P, a contradiction to our assumption that P 6= NP.

Similarly, we claim that A is not NP-complete. Suppose the contrary. Then there is a
polynomial-time function Fi which gives a Karp reduction from SAT to A. Now f(n) will be even
for only finitely-many n, implying that A is a finite language. But then A ∈ P, a contradiction to
our assumption that P 6= NP.

As an addendum to the theorem, we note that (assuming P 6= NP, of course) there are no
“natural” languages provably in NP \P that are not NP-complete. However, there are a number
of languages conjectured to fall in this category, including graph isomorphism and essentially all
languages derived from cryptographic assumptions (e.g., factoring).

1.2 Relativizing the P vs. NP Question

We conclude by showing some limitations of the diagonalization technique. (Interestingly, these
limitations are proven by diagonalization!). Informally, diagonalization relies on the following
properties of Turing machines:

1. The fact that Turing machines can be represented by finite strings.

2. The fact that one Turing machine can simulate another (without much overhead).

5-2

Any proof that relies only on these facts is essentially treating Turing machines as black boxes
(namely, looking only at their input/output), without caring much about the details of how they
work. In that case, the proof should apply just as well to oracle Turing machines.

An oracle is just a functionO : {0, 1}∗ → {0, 1}, and of course for anyO we have a corresponding
language L. Fixing O, an oracle Turing machine MO is given the ability to make “queries” to O and
obtain the result in a single time step.2 (We have already seen this notation when we talked about
Cook-Turing reductions.) Fixing some O, we say L ∈ PO if there exists a polynomial-time Turing
machine M such that x ∈ L ⇔ MO(x) = 1. Similarly, L ∈ NPO if there exists a polynomial-time
Turing machine M such that x ∈ L ⇔ ∃w : MO(x, w) = 1. More generally, for any class C defined
in terms of Turing machines deciding languages in that class, we can define the class CO in the
natural way.

Given a result about two complexity classes C1, C2, we can ask whether that same result holds
about CO1 , CO2 for any oracles O. If so, then the result relativizes. Any result proved via diagonaliza-
tion, as defined above, relativizes. As examples: the result about universal simulation relativizes,
as does the time-hierarchy theorem.

We now show that the P vs. NP question does not relativize. We demonstrate this by showing
that there exists oracles A,B such that

PA = NPA but PB 6= NPB.

When this result was first demonstrated [3], it was taken as an indication of the difficulty of resolving
the P vs. NP question using “standard techniques”. It is important to note, however, that various
non-relativizing results are known. As one important example, the proof that SAT is NP-complete
does not relativize. (This is not the best example, since SAT is a problem and not a class.) See [5,
Lect. 26] and [2, 4, 6] for further discussion.

An oracle A for which PA = NPA. Recall that EXP = ∪ctime(2nc
). Let A be an EXP-complete

language. It is obvious that PA ⊆ NPA for any A, so it remains to show that NPA ⊆ PA. We do
this by showing that

NPA ⊆ EXP ⊆ PA.

The second inclusion is immediate (just use a Karp reduction from any language L ∈ EXP to
the EXP-complete problem A), and so we have only to prove the first inclusion. This, too, is
easy: Let L ∈ NPA and let M be a polynomial-time non-deterministic machine such that MA

decides L. Then using a deterministic exponential-time machine M ′ we simply try all possible
non-deterministic choices for M , and whenever M makes a query to A we have M ′ answer the
query by itself.

An oracle B for which PB 6= NPB. This is a bit more interesting. We want to find an oracle B
such that NPB \PB is not empty. For any oracle (i.e., language) B, define language LB as follows:

LB
def= {1n | B ∩ {0, 1}n 6= ∅}.

It is immediate that LB ∈ NPB for any B. (On input 1n, guess x ∈ {0, 1}n and submit it to the
oracle; output 1 iff the oracle returns 1.) As a “warm-up” to the desired result, we show:

2There are subtleties in dealing with space-bounded oracle machines. We only discuss time-bounded oracle ma-
chines here.

5-3

Claim 2 For any deterministic, polynomial-time oracle machine M , there exists a language B
such that MB does not decide LB.

Proof Given M with polynomial running time p(·), we construct B as follows: let n be the
smallest integer such that 2n > p(n). Note that on input 1n, machine M cannot query its oracle
on all strings of length n. We exploit this by defining B in the following way:

Run M(1n) and answer “0” to all queries of M . Let b be the output of M , and let
Q = {q1, . . .} denote all the queries of length exactly n that were made by M . Take
arbitrary x ∈ {0, 1}n \Q (we know such an x exists, as discussed above). If b = 0, then
put x in B; if b = 1, then take B to just be the empty set.

Now MB(1n) = b (since B returns 0 for every query made by M(1n)), but this answer is incorrect
by construction of B.

This claim is not enough to prove the desired result, since we need to reverse the order of
quantifiers and show that there exists a language B such that for all deterministic, polynomial-time
M we have that MB does not decide LB. We do this by extending the above argument. Consider
an enumeration M1, . . . of all deterministic, polynomial-time machines with running times p1,
We will build B inductively. Let B0 = ∅ and n0 = 1. Then in the ith iteration do the following:

• Let ni be the smallest integer such that 2ni > pi(ni) and also ni > pj(nj) for all 1 ≤ j < i.

• Run Mi(1ni) and respond to its queries according to Bi−1. Let Q = {q1, . . .} be the queries
of length exactly ni that were made by Mi, and let x ∈ {0, 1}ni \Q (again, we know such an
x exists). If b = 0 then set Bi = Bi−1 ∪ {x}; if b = 1 then set Bi = Bi−1 (and so Bi does not
contain any strings of length ni).

Let B =
⋃

i Bi. We claim that B has the desired properties. Indeed, when we run Mi(1ni) with
oracle access to Bi, we can see (following the reasoning in the previous proof) that Mi will output
the wrong answer (and thus MBi

i does not decide LBi). But the output of Mi(1ni) with oracle
access to B is the same as the output of Mi(1ni) with oracle access to Bi, since all strings in B \Bi

have length greater than pi(ni) and so none of Mi’s queries (on input 1ni) will be affected by using
B instead of Bi. It follows that MB

i does not decide LB.

2 Space Complexity

Recall that for space complexity (in both the deterministic and non-deterministic cases) we measure
the number of cells used on the work tape only. This allows us to talk meaningfully of sublinear-
space algorithms, and algorithms whose output may be longer than the space used.

Note also that in the context of space complexity we may assume without loss of generality that
machines have only a single work tape. This is so because we can perform universal simulation of
a k-tape Turing machine on a Turing machine with just a single work tape, with only a constant
factor blowup in the space complexity.

When we talk about non-deterministic space complexity we refer to our original notion of non-
deterministic Turing machines, where there are two transition functions and at every step the
machine makes a non-deterministic choice as to which one to apply. It turns out that, just as
we did in the case of NP, we can give a “certificate-based” definition of non-deterministic space

5-4

classes as well, though we need to be a little careful since the length of the certificate may exceed
the space-bound of the machine. In particular, we imagine a (deterministic) machine with an input
tape and work tape as usual, and also a special certificate tape. When measuring the space used
by this machine, we continue to look at the space on the work tape only. The certificate tape (like
the input tape) is a read-only tape; moreover (and unlike the input tape), we restrict the Turing
machine so that it may only move its certificate-tape head from left to right (or stay in place).
This gives a definition equivalent to the definition in terms of non-deterministic Turing machines;
in particular:

Claim 3 L ∈ nspace(s(n)) iff there exists a (deterministic) Turing machine with a special “read-
once” certificate tape as described above that uses space O(s(n)), and such that x ∈ L iff there
exists a certificate w such that M(x,w) = 1.

If the certificate-tape head is allowed to move back-and-forth across its tape, this gives the machine
significantly more power; in fact, if we consider log-space machines that move freely on their
certificate tape we get the class NP! See [5, Chap. 5] for further discussion regarding the above.

Bibliographic Notes

The intuition before the proof of Ladner’s theorem is due to Russell Impagliazzo (personal com-
munication).

References

[1] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University
Press, 2009.

[2] E. Allender. Oracles versus Proof Techniques that Do Not Relativize. SIGAL Intl. Symposium
on Algorithms, pp. 39–52, 1990.

[3] T. Baker, J. Gill, and R. Solovay. Relativizations of the P ?= NP Question. SIAM J. Computing
4(4): 431–442, 1975.

[4] L. Fortnow. The Role of Relativization in Complexity Theory. Bulletin of the European Asso-
ciation for Theoretical Computer Science, 52: 229–243, 1994.

[5] O. Goldreich. Introduction to Complexity Theory (July 31, 1999).

[6] J. Hartmanis, R. Chang, S. Chari, D. Ranjan, and P. Rohatgi. Relativization: A Revi-
sionist Retrospective. Current Trends in Theoretical Computer Science, 1993. Available from
http://www.cs.umbc.edu/ chang/papers/revisionist.

5-5

Notes on Complexity Theory Last updated: September, 2011

Lecture 6

Jonathan Katz

1 Space Complexity

We define some of the important space-complexity classes we will study:

Definition 1

PSPACE
def=

⋃
c space(nc)

NPSPACE
def=

⋃
c nspace(nc)

L
def= space(log n)

NL
def= nspace(log n).

We have seen that time(t(n)) ⊆ ntime(t(n)) ⊆ space(t(n)). What can we say in the other
direction? To study this we look at configurations of a Turing machine, where a configuration
consists of all the information necessary to describe the Turing machine at some instant in time.
We have the following easy claim.

Claim 1 Let M be a (deterministic or non-deterministic) machine using space s(n). The number
of configurations CM (n) of M on any fixed input of length n is bounded by:

CM (n) ≤ |QM | · n · s(n) · |ΣM |s(n), (1)

where QM are the states of M and ΣM is the alphabet of M . In particular, when s(n) ≥ log n we
have CM (n) = 2Θ(s(n)).

Proof The first term in Eq. (1) comes from the number of states, the second from the possible
positions of the input head, the third from the possible positions of the work-tape head, and the
last from the possible values stored on the work tape. (Note that since the input is fixed and the
input tape is read-only, we do not need to consider all possible length-n strings that can be written
on the input tape.)

We can use this to obtain the following relationship between space and time:

Theorem 2 Let s(n) be space constructible with s(n) ≥ log n. Then space(s(n)) ⊆ time(2O(s(n)))
and nspace(s(n)) ⊆ ntime(2O(s(n))).

Proof Let L ∈ space(s(n)), and let M be a machine using space O(s(n)) and deciding L.
Consider the computation of M(x) for some input x of length n. There are at most CM (n) = 2Θ(s(n))

configurations of M on x, but if M(x) ever repeats a configuration then it would cycle and never
halt. Thus, the computation of M(x) must terminate in at most CM (n) = 2Θ(s(n)) steps.

6-1

Let L ∈ nspace(s(n)). Then there is a non-deterministic Turing machine M deciding L and
using space O(s(n)) on every computation path (i.e., regardless of the non-deterministic choices it
makes). Consider a machine M ′ that runs M but only for at most 2O(s(n)) ≥ CM (n) steps (and
rejects if M has not halted by that point); this can be done using a counter of length O(s(n)) and so
M ′ still uses O(s(n)) space. We claim that M ′ still decides L. Clearly if M(x) = 0 then M ′(x) = 0.
If M(x) = 1, consider the shortest computation path on which M(x) accepts. If this computation
path uses more than CM (|x|) steps, then some configuration of M must repeat. But then there
would be another sequence of non-deterministic choices that would result in a shorter accepting
computation path, a contradiction. We conclude that M(x) has an accepting computation path of
length at most CM (|x|), and so if M(x) accepts then so does M ′(x).

The theorem above may seem to give a rather coarse bound for space(s(n)), but intuitively it
does appear that space is more powerful than time since space can be re-used while time cannot. In
fact, it is known that time(s(n)) is a strict subset of space(s(n)) (for space constructible s(n) ≥ n),
but we do not know much more than that. We conjecture that space is much more powerful than
time; in particular, we believe:

Conjecture 3 P 6= PSPACE.

Note that P = PSPACE would, in particular, imply P = NP.

1.1 PSPACE and PSPACE-Completeness

As in our previous study of NP, it is useful to identify those problems that capture the essence
of PSPACE in that they are the “hardest” problems in that class. We can define a notion of
PSPACE-completeness in a manner exactly analogous to NP-completeness:

Definition 2 Language L′ is PSPACE-hard if for every L ∈ PSPACE it holds that L ≤p L′. Language
L′ is PSPACE-complete if L′ ∈ PSPACE and L′ is PSPACE-hard.

Note that if L is PSPACE-complete and L ∈ P, then P = PSPACE.
As usual, there is a “standard” (but unnatural) complete problem; in this case, the following

language is PSPACE-complete:

L
def= {(M, x, 1s) | M(x) accepts using space at most s} .

For a more natural PSPACE-complete problem we turn to a variant of SAT. Specifically, we consider
the language of totally quantified boolean formulae (denoted TQBF) which consists of quantified
formulae of the form:

∃x1∀x2 · · ·Qnxn φ(x1, . . . , xn),

where φ is a boolean formula, and Qi = ∃ and Qi+1 = ∀ alternate (it does not matter which is
first). An expression of the above form is in TQBF if it is true: that is, if it is the case that “for
all x1 ∈ {0, 1}, there exists an x2 ∈ {0, 1} . . . such that φ(x1, . . . , xn) evaluates to true”. More
generally, if M is a polynomial-time Turing machine then any statement of the form

∃x1 ∈ {0, 1}poly(n)∀x2 ∈ {0, 1}poly(n) · · ·Qnxn ∈ {0, 1}poly(n) M(x1, . . . , xn) = 1,

can be converted to a totally quantified boolean formula.

6-2

Theorem 4 TQBF is PSPACE-complete.

Proof It is not too difficult to see that TQBF ∈ PSPACE, since in polynomial space we can try
all settings of all the variables and keep track of whether the quantified expression is true.

We next show that TQBF is PSPACE-complete. Given a PSPACE machine M deciding some
language L, we reduce the computation of M(x) to a totally quantified boolean formula. Since M
uses space nk for some constant k, we may encode configurations of M on some input x of length n
using O(nk) bits. Given an input x, we construct (in polynomial time) a sequence of totally
quantified boolean formulae ψ0(a, b), . . ., where ψi(a, b) is true iff there is a path (i.e., sequence
of steps of M) of length at most 2i from configuration a to configuration b. We then output
ψnk(start, accept), where start denotes the initial configuration of M(x), and accept is the (unique)
accepting configuration of M . Note that M(x) = 1 iff ψnk(start, accept) is true (using Theorem 2).

We need now to construct the {ψi}. Constructing ψ0 is easy: to evaluate ψ0(a, b) we simply test
whether a = b or whether configuration b follows from configuration a in one step. (Recalling the
proof that SAT is NP-complete, it is clear that this can be expressed as a polynomial-size boolean
formula.) Now, given ψi we construct ψi+1. The “obvious” way of doing this would be to define
ψi+1(a, b) as:

∃c : ψi(a, c) ∧ ψi(c, b).

While this is correct, it would result in a formula ψnk of exponential size! (To see this, note that
the size of ψi+1 is roughly double the size of ψi.) Also, we have not made use of any universal
quantifiers. Instead, we proceed a bit more cleverly and “encode” ψi(a, c) ∧ ψi(c, b) in a smaller
expression. Define ψi+1(a, b) as:

∃c∀x, y :
((

(x, y) = (a, c)
) ∨ (

(x, y) = (c, b)
)) ⇒ ψi(x, y);

it is easy to see that constructing ψi+1 from ψi can be done efficiently. (A technical point: although
the quantifiers of ψi are “buried” inside the expression for ψi1 , it is easy to see that the quantifiers
of ψi can be migrated to the front without changing the truth of the overall expression.) The key
point is that whereas previously the size of ψi+1 was double the size of ψi, here the size of ψi+1 is
only an O(nk) additive factor larger than ψi and so the size of ψnk will be polynomial.

A very observant reader may note that everything about the above proof applies to NPSPACE
as well, and so the above implies that TQBF is NPSPACE-complete and PSPACE = NPSPACE! We
will see another proof of this later.

Playing games. The class TQBF captures the existence of a winning strategy for a certain player
in bounded-length perfect-information games (that can be played in polynomial time). Specifically,
consider a two-player game where players alternate making moves for a total of n turns. Given
moves p1, . . . , pn by the players, let M(p1, . . . , pn) = 1 iff player 1 has won the game. (Note that
M can also encode a check that every player made a legal move; a player loses if it makes the first
non-legal move.) Then player 1 has a winning strategy in the game iff there exists a move p1 that
player 1 can make such that for every possible response p2 of player 2 there is a move p3 for player 1,
. . . , such that M(p1, . . . , pn) = 1. Many popular games have been proven to be PSPACE-complete.
(For this to be made formal, the game must be allowed to grow without bound.)

6-3

2 Configuration Graphs and the Reachability Method

In this section, we will see several applications of the so-called reachability method. The basic idea
is that we can view the computation of a non-deterministic machine M on input x as a directed
graph (the configuration graph of M(x)) with vertices corresponding to configurations of M(x)
and an edge from vertex i to vertex j if there is a one-step transition from configuration i to
configuration j. Each vertex in this graph has out-degree at most 2. (We can construct such
a graph for deterministic machines as well. In that case the graph has out-degree 1 and is less
interesting.) If M uses space s(n) ≥ log n, then vertices in the configuration graph of M(x) can
be represented using O(s(n)) bits.1 If we assume, without loss of generality, that M has only a
single accepting state, then the question of whether M(x) accepts is equivalent to the question of
whether there is a path from the initial configuration of M(x) to the accepting configuration. We
refer to this as the reachability problem in the graph of interest.

2.1 NL and NL-Completeness

We further explore the connection between graphs and non-deterministic computation by looking
at the class NL. As usual, we can try to understand NL by looking at the “hardest” problems in
that class. Here, however, we need to use a more refined notion of reducibility:

Definition 3 L is log-space reducible to L′ if there is a function f computable in space O(log n)
such that x ∈ L ⇔ f(x) ∈ L′.

Note that if L is log-space reducible to L′ then L is Karp-reducible to L′ (by Theorem 2); in general,
however, we don’t know whether the converse is true.

Definition 4 L is NL-complete if (1) L ∈ NL, and (2) for all L′ ∈ NL it holds that L′ is log-space
reducible to L.

Log-space reducibility is needed2 for the following result:

Lemma 5 If L is log-space reducible to L′ and L′ ∈ L (resp., L′ ∈ NL) then L ∈ L (resp., L ∈ NL).

Proof Let f be a function computable in log space such that x ∈ L iff f(x) ∈ L′. The “trivial”
way of trying to prove this lemma (namely, on input x computing f(x) and then determining
whether f(x) ∈ L′) does not work: the problem is that |f(x)| may potentially have size ω(log |x|)
in which case this trivial algorithm uses superlogarithmic space. Instead, we need to be a bit more
clever. The basic idea is as follows: instead of computing f(x), we simply compute the ith bit
of f(x) whenever we need it. In this way, although we are wasting time (in re-computing f(x)
multiple times), we never uses more than logarithmic space.

1Note that x is fixed, so need not be stored as part of a configuration. Whenever we construct an algorithm M ′

that operates on the configuration graph of M(x), the input x itself will be written on the input tape of M ′ and so
M ′ will not be “charged” for storing x.

2In general, to study completeness in some class C we need to use a notion of reducibility computable within C.

6-4

Notes on Complexity Theory Last updated: September, 2011

Lecture 7

Jonathan Katz

1 Configuration Graphs and the Reachability Method

1.1 NL and NL-Completeness

Coming back to problems on graphs, consider the problem of directed connectivity (denoted conn).
Here we are given a directed graph on n-vertices (say, specified by an adjacency matrix) and two
vertices s and t, and want to determine whether there is a directed path from s to t.

Theorem 1 conn is NL-complete.

Proof To see that it is in NL, we need to show a non-deterministic algorithm using log-space
that never accepts if there is no path from s to t, and that sometimes accepts if there is a path
from s to t. The following simple algorithm achieves this:

if s = t accept
set vcurrent := s
for i = 1 to n:

guess a vertex vnext

if there is no edge from vcurrent to vnext, reject
if vnext = t, accept
vcurrent := vnext

if i = n and no decision has yet been made, reject

The above algorithm needs to store i (using log n bits), and at most the labels of two vertices
vcurrent and vnext (using O(log n) bits).

To see that conn is NL-complete, assume L ∈ NL and let ML be a non-deterministic log-space
machine deciding L. Our log-space reduction from L to conn takes input x ∈ {0, 1}n and outputs a
graph (represented as an adjacency matrix) in which the vertices represent configurations of ML(x)
and edges represent allowed transitions. (It also outputs s = start and t = accept, where these
are the starting and accepting configurations of M(x), respectively.) Each configuration can be
represented using O(log n) bits, and the adjacency matrix (which has size O(n2)) can be generated
in log-space as follows:

For each configuration i:
for each configuration j:

Output 1 if there is a legal transition from i to j, and 0 otherwise
(if i or j is not a legal state, simply output 0)

Output start, accept

The algorithm requires O(log n) space for i and j, and to check for a legal transition.

7-1

We can now easily prove the following:

Theorem 2 For s(n) ≥ log n a space-constructible function, nspace(s(n)) ⊆ time(2O(s(n))).

Proof We can solve conn in linear time (in the number of vertices) using breadth-first search,
and so conn ∈ P. By the previous theorem, this means NL ⊆ P (a special case of the theorem).

In the general case, let L ∈ nspace(s(n)) and let M be a non-deterministic machine deciding L
using O(s(n)) space. We construct a deterministic machine running in time 2O(s(n)) that decides L
by solving the reachability problem on the configuration graph of M(x), specifically, by determining
whether the accepting state of M(x) (which we may assume unique without loss of generality) is
reachable from the start state of M(x). This problem can be solved in time linear in the number
of vertices in the configuration graph.

Corollary 3 NL ⊆ P.

Summarizing what we know,

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP.

By the hierarchy theorems (and Savitch’s theorem, below) we know NL is a strict subset of PSPACE,
and P is a strict subset of EXP. But we cannot prove that any of the inclusions above is strict.

1.2 Savitch’s Theorem

In the case of time complexity, we believe that non-determinism provides a huge (exponential?)
benefit. For space complexity, this is surprisingly not the case:

Theorem 4 (Savitch’s Theorem) Let s(n) ≥ log n be a space-constructible function. Then
nspace(s(n)) ⊆ space(s(n)2).

Proof This is another application of the reachability method. Let L ∈ nspace(s(n)). Then there
is a non-deterministic machine M deciding L and using space O(s(n)). Consider the configuration
graph GM of M(x) for some input x of length n, and recall that (1) vertices in GM can be
represented using O(s(n)) bits, and (2) existence of an edge in GM from some vertex i to another
vertex j can be determined using O(s(n)) space.

We may assume without loss of generality that M has a single accepting configuration (e.g., M
erases its work tape and moves both heads to the left-most cell of their tapes before accepting).
M(x) accepts iff there is a directed path in GM from the starting configuration of M(x) (called
start) to the accepting configuration of M(x) (called accept). There are V = 2O(s(n)) vertices in
GM , and the crux of the proof comes down to showing that reachability on a general V -node graph
can be decided in deterministic space O(log2 V).

Turning to that general problem, we define a (deterministic) recursive algorithm Path with the
property that Path(a, b, i) outputs 1 iff there is a path of length at most 2i from a to b in a given
graph G; the algorithm only needs the ability to enumerate the vertices of G and to test for directed
edges between any two vertices i, j in this graph. The algorithm proceeds as follows:

7-2

Path(a, b, i):

• If i = 0, output “yes” if a = b or if there is an edge from a to b. Otherwise, output “no”.

• If i > 0 then for each vertex v:

– If Path(a, v, i− 1) and Path(v, b, i− 1), return “yes” (and halt).

• Return “no”.

Let S(i) denote the space used by Path(a, b, i). We have S(i) = O(log V) + S(i − 1) and S(0) =
O(log V). This solves to S(i) = O(i · log V).

We solve our original problem by calling Path(start, accept, log V) using the graph GM , where
GM has V = 2O(s(n)) vertices. This uses space O(log2 V) = O(s(n)2), as claimed.

We have seen the next result before, but it also follows as a corollary of the above:

Corollary 5 PSPACE = NPSPACE.

Is there a better algorithm for directed connectivity than what Savitch’s theorem implies? Note
that the algorithm implies by Savitch’s theorem uses polylogarithmic space but superpolynomial
time (specifically, time 2O(log2 n)). On the other hand, we have linear -time algorithms for solving
directed connectivity but these require linear space. The conjecture is that L 6= NL, in which case
directed connectivity does not have a log-space algorithm, though perhaps it would not be earth-
shattering if this conjecture were proven to be false. Even if L 6= NL, we could still hope for an
algorithm solving directed connectivity in O(log2 n) space and polynomial time.

1.3 The Immerman-Szelepcsényi Theorem

As yet another example of the reachability method, we will show the somewhat surprising result
that non-deterministic space is closed under complementation.

Theorem 6 conn ∈ NL.

Proof Recall that

conn
def=

{
(G, s, t) :

G is a directed graph in which
there is no path from vertex s to vertex t

}
.

Let V denote the number of vertices in the graph G under consideration. We show that conn ∈ NL
using the certificate-based definition of non-deterministic space complexity. Thus, we will show a
(deterministic) machine M using space O(log V) such that the following holds: if there is no directed
path in G from s to t, then there exists a certificate that will make M(G, s, t) accept. On the other
hand if there is a directed path in G from s to t, then no certificate can make M(G, s, t) accept.
Note the difficulty here: it is easy to give a proof (verifiable in space O(log V)) proving the existence
of a path — the certificate is just the path itself. But how does one construct a proof (verifiable in
space O(log V)) proving non-existence of a path?

We build our certificate from a number of ‘primitive’ certificates. Fix (G, s, t), let Ci denote the
set of vertices reachable from s in at most i steps, and let ci = |Ci|. We want to prove that t 6∈ CV .
We already know that we can give a certificate Pathi(s, v) (verifiable in logarithmic space) proving
that there is a path of length at most i from s to v. Now consider the following:

7-3

• Assuming ci−1 is known, we can construct a certificate noPathi(s, v) (verifiable in logarithmic
space) proving that there is no path of length at most i from s to v. (I.e., v 6∈ Ci.) The
certificate is

v1, Pathi−1(s, v1), . . . , vci−1 , Pathi−1(s, vci−1),

for v1, . . . , vci−1 ∈ Ci−1 in ascending order. This certificate is verified by checking that (1) the
number of vertices listed is exactly ci−1, (2) the vertices are listed in ascending order, (3) none
of the listed vertices is equal to v or is a neighbor of v, and (4) each certificate Pathi−1(s, vj)
is correct. This can all be done in O(log V) space with read-once access to the certificate.

• Assuming ci−1 is known, we can construct a certificate Sizei(k) (verifiable in logarithmic
space) proving that ci = k. The certificate is simply the list of all the vertices v1, . . . in G
(in ascending order), where each vertex is followed by either Pathi(s, v) or noPathi(s, v),
depending on whether v ∈ Ci or not. This certificate can be verified by checking that (1) all
vertices are in the list, in ascending order, (2) each certificate Pathi(s, v) or noPathi(s, v) is
correct, and (3) the number of vertices in Ci is exactly k.

(Note that the verifier only needs the ability to detect edges between two given vertices of G.)
Observing that the size of C0 = {s} is already known, the certificate that (G, s, t) ∈ conn is just

Size1(c1), Size2(c2), . . . ,SizeV−1(cV−1), noPathV (s, t).

Each certificate Sizei(ci) can be verified in logarithmic space, and after each such verification the
verifier only needs to store ci. Thus the entire certificate above is verifiable in logarithmic space.

Corollary 7 If s(n) ≥ log n is space constructible, then nspace(s(n)) = conspace(s(n)).

Proof This is just an application of the reachability method. Let L ∈ conspace(s(n)). Then
there is a non-deterministic machine M using space s(n) and with the following property: if x ∈ L
then M(x) accepts on every computation path, while if x 6∈ L then there is some computation
path on which M(x) rejects. Considering the configuration graph GM of M(x) for some input x
of length n, we see that x ∈ L iff there is no directed path in GM from the starting configuration
to the rejecting configuration. Since GM has V = 2O(s(n)) vertices, and the existence of an edge
between two vertices i and j can be determined in O(s(n)) = O(log V) space, we can apply the
previous theorem to get a non-deterministic algorithm deciding L in space O(log V) = O(s(n)).

Corollary 8 NL = coNL.

7-4

Notes on Complexity Theory Last updated: September, 2011

Lecture 8

Jonathan Katz

1 The Polynomial Hierarchy

We have seen the classes NP and coNP, which are defined as follows:

L ∈ NP if there is a (deterministic) Turing machine M running in time polynomial in its first
input, such that

x ∈ L ⇔ ∃w M(x,w) = 1.

L ∈ coNP if there is a (deterministic) Turing machine M running in time polynomial in its first
input, such that

x ∈ L ⇔ ∀w M(x,w) = 1.

It is natural to generalize the above; doing so allows us to capture problems that are “more
difficult” than NP ∪ coNP. As an example, consider the language IND-SET:

IND-SET def= {(G, k) : G has an independent set of size ≥ k} .

We know that IND-SET ∈ NP; a certificate is just an independent set of vertices of size at least k
(that the vertices are independent can easily be verified). How about the following language?

MAX-IND-SET def= {(G, k) : the largest independent set in G has size exactly k} .

This language does not appear to be in NP: we can certify that some graph G has an independent
set of size k, but how do we certify that this is the largest independent set in G? The language
does not appear to be in coNP, either: although we could prove that (G, k) 6∈ MAX-IND-SET if
G happened to have an independent set of size larger than k, there is no easy way to prove that
(G, k) 6∈ MAX-IND-SET in case its largest independent set has size smaller than k.

As another example, consider the problem of CNF-formula minimization. A CNF formula φ
on n variables naturally defines a function fφ : {0, 1}n → {0, 1}, where fφ(x) = 1 iff the given
assignment x satisfies φ. Can we tell when a given formula is minimal? Consider the language

MIN-CNF def= {φ : no formula with fewer clauses than φ computes fφ}.

This language does not appear to be in NP or coNP, either. (Even if I give you a smaller formula
φ′ that computes fφ, there is no obvious way for you to verify that fact efficiently.)

The above examples motivate the following definition:

Definition 1 Let i be a positive integer. L ∈ Σi if there is a (deterministic) Turing machine M
running in time polynomial in its first input, such that

x ∈ L ⇔ ∃w1∀w2 · · ·Qiwi︸ ︷︷ ︸
i times

M(x,w1, . . . , wi) = 1.

8-1

where Qi = ∀ if i is even, and Qi = ∃ if i is odd.
L ∈ Πi if there is a (deterministic) Turing machine M running in time polynomial in its first

input, such that
x ∈ L ⇔ ∀w1∃w2 · · ·Qiwi︸ ︷︷ ︸

i times

M(x,w1, . . . , wi) = 1.

where Qi = ∀ if i is odd, and Qi = ∃ if i is even.

As in the case of NP, we may assume without loss of generality that the wi each have length
polynomial in x. Note also the similarity to TQBF. The crucial difference is that TQBF allows
an unbounded number of alternating quantifiers, whereas Σi, Πi each allow (at most) i quantifiers.
Since TQBF is PSPACE-complete, this implies that Σi, Πi ∈ PSPACE for all i. (One could also
prove this directly, via a PSPACE algorithm just like the one used to solve TQBF.)

Returning to our examples, note that MAX-IND-SET ∈ Σ2 since (G, k) ∈ MAX-IND-SET iff
there exists a set of vertices S such that for all sets of vertices S′ the following (efficiently verifiable)
predicate is true:

|S| = k and S is an independent set of G; moreover, either |S′| ≤ k or S′ is not an
independent set of G.

(It is easier to express the above in English as: “there exists a set S of k vertices, such that for all
sets S′ containing more than k vertices, S is an independent set and S′ is not an independent set”.
But one has to be careful to check that anytime the quantification is limited [e.g., by quantifying
over all sets of size greater than k, rather than all sets], the limitation is efficient to verify.) We also
have MAX-IND-SET ∈ Π2 since we can swap the order of quantifiers in this case (since S′ does not
depend on S, above). Turning to the second example, note MIN-CNF ∈ Π2 since φ ∈ MIN-CNF
iff for all formulas φ′ that are smaller than φ there exists an input x for which φ(x) 6= φ(x′). Here,
however, we cannot just swap the order of quantifiers (do you see why?), and so we do not know,
or believe, that MIN-CNF ∈ Σ2.

We make some relatively straightforward observations, leaving their proofs as exercises.

• Σ1 = NP and Π1 = coNP.

• For all i, we have coΣi = Πi (and coΠi = Σi).

• For all i, we have Σi, Πi ⊆ Πi+1 and Σi,Πi ⊆ Σi+1.

The polynomial hierarchy PH consists of all those languages of the form defined above; that is,
PH

def=
⋃

i Σi =
⋃

i Πi. Since Σi ⊆ PSPACE for all i, we have PH ⊆ PSPACE. Each Σi (resp., Πi) is
called a level in the hierarchy.

As in the case of NP and coNP, we believe

Conjecture 1 Σi 6= Πi for all i.

If the above conjecture is not true, then the polynomial hierarchy collapses in the following sense:

Theorem 2 If Σi = Πi for some i, then PH = Σi.

8-2

Proof We show that for all j > i, we have Σj = Σj−1. Let L ∈ Σj . So there is a polynomial-time
Turing machine M such that

x ∈ L ⇔ ∃wj∀wj−1 · · ·Qw1 M(x,wj , . . . , w1) = 1,

where we have numbered the variables in descending order for clarity in what follows. Assume j− i
is even. (A symmetric argument works if j − i is odd.) Define language L′ as

(x, wj , . . . , wi+1) ∈ L′ ⇔ ∃wi∀wi−1 · · ·Qw1 M(x,wj , . . . , w1) = 1,

and note that L′ ∈ Σi. By the assumption of the theorem, L′ ∈ Πi and so there is some machine M ′

running in time polynomial in |x|+ |wj |+ · · ·+ |wi+1| (and hence polynomial in |x|) such that

(x,wj , . . . , wi+1) ∈ L′ ⇔ ∀w′i∃w′i−1 · · ·Q′w′1 M ′(x, wj , . . . , wi+1, w
′
i, . . . , w

′
1) = 1.

(Note that the {w′i, . . . , w′1} need not have any relation with the {wi, . . . , w1}.) But then

x ∈ L ⇔ ∃wj∀wj−1 · · · ∀wi+1 (x,wj , . . . , wi+1) ∈ L′

⇔ ∃wj∀wj−1 · · · ∀wi+1

[∀w′i∃w′i−1 · · ·Q′w′1 M ′(x, wj , . . . , w
′
1) = 1

]

⇔ ∃wj∀wj−1 · · · ∀wi+1w
′
i∃w′i−1 · · ·Q′w′1 M ′(x,wj , . . . , w

′
1) = 1,

and there are only j − 1 quantifiers in the final expression. Thus, L ∈ Σj−1.

A similar argument gives:

Theorem 3 If P = NP then PH = P.

Each Σi has the complete problem Σi-SAT, where this language contains all true expressions of
the form ∃w1∀w2 · · ·Qwi φ(w1, . . . , wi) = 1 for φ a boolean formula in CNF form. However, if PH
has a complete problem, the polynomial hierarchy collapses: If L were PH-complete then L ∈ Σi

for some i; but then every language L′ ∈ Σi+1 ⊆ PH would be reducible to L, implying Σi+1 = Σi.
Since PSPACE has complete languages, this indicates that PH is strictly contained in PSPACE.

1.1 Alternating Turing Machines

The polynomial hierarchy can also be defined using alternating Turing machines. An alternating
Turing machine (ATM) is a non-deterministic Turing machine (so it has two transition functions,
one of which is non-deterministically chosen in each step of its computation) in which every state
is labeled with either ∃ or ∀. To determine whether a given ATM M accepts an input x, we look
at the configuration graph of M(x) and recursively mark the configurations of M(x) as follows:

• The accepting configuration is marked “accept”.

• A configuration whose state is labeled ∃ that has an edge to a configuration marked “accept”
is itself marked “accept”.

• A configuration whose state is labeled ∀, both of whose edges are to configurations marked
“accept,” is itself marked “accept”.

8-3

M(x) accepts iff the initial configuration of M(x) is marked “accept”.
We can define classes atime(t(n)) and aspace(s(n)) in the natural way. We can also define

Σitime(t(n)) (resp., Πitime(t(n))) to be the class of languages accepted by an ATM running in
time O(t(n)), whose initial state is labeled ∃ (resp., ∀), and that makes at most i− 1 alternations
between states labeled ∃ and states labeled ∀. Note that L ∈ Σ2time(t(n)) iff

x ∈ L ⇔ ∃w1∀w2 M(x,w1, w2),

where M is a deterministic Turing machine running in time t(|x|). (The situation for space-bounded
ATMs is tricker, since the length of the certificates themselves must be accounted for.) Given the
definitions, it should not be surprising that Σi =

⋃
c Σitime(nc) and Πi =

⋃
c Πitime(nc). We also

have PSPACE =
⋃

c atime(nc) (this follows readily from the fact that TQBF is PSPACE-complete).
Defining the polynomial hierarchy in terms of ATMs may seem more cumbersome, but has some

advantages (besides providing another perspective). Perhaps the main advantage is that it allows
for studying more refined notions of complexity, e.g., Σitime(n2) vs. Σitime(n).

It is known that

Theorem 4

• nspace(s(n)) ⊆ atime(s(n)2) ⊆ space(s(n)2) for time/space-constructible s(n) ≥ n.

• aspace(s(n)) = time(2O(s(n))) for time/space-constructible s(n) ≥ log n.

Proof See [2].

We now show an application of ATMs to proving a result about standard non-deterministic
machines. Let TimeSpc(t(n), s(n)) be the class of languages that can be decided by a (de-
terministic) Turing machine M that runs in time O(t(n)) and uses space O(s(n)). (Note that
TimeSpc(t(n), s(n)) is not the same as time(t(n)) ∩ space(s(n)).)

Theorem 5 SAT 6∈ TimeSpc(n1.1, n0.1).

Proof We show that ntime(n) 6⊆ TimeSpc(n1.2, n0.2), which implies the theorem because (by
the strong version of the Cook-Levin theorem proved in [1]) deciding membership of x ∈ {0, 1}n in
some language L ∈ ntime(n) can be reduced to solving SAT on an instance of length O(n log n).

We begin with the following claim (which is of independent interest).

Claim 6 TimeSpc(n12, n2) ⊆ Σ2time(n8).

Proof Let L ∈ TimeSpc(n12, n2), and let M be a machine deciding L in time O(n12) and
space O(n2). Considering the configuration graph of M(x), we see that M(x) accepts iff there
exist a sequence of configurations c0, . . . , cn6 such that (1) c0 is the initial configuration and cn6 is
the (unique) accepting configuration, and (2) for all i, machine M(x) goes from configuration ci to
configuration ci+1 in at most O(n6) steps. Each configuration can be specified using O(n2) bits,
and so the sequence c1, . . . , cn6 can be written down in O(n8) time. Moreover, existence of a path
of length O(n6) from ci to ci+1 can be verified in O(n8) time.

The above claim was unconditional. The next claim uses the assumption that ntime(n) ⊆
TimeSpc(n1.2, n0.2).

8-4

Claim 7 If ntime(n) ⊆ TimeSpc(n1.2, n0.2), then Σ2time(n8) ⊆ ntime(n9.6).

Proof Since TimeSpc(n1.2, n0.2) ⊆ time(n1.2) and time(s(n)) is closed under complementation,
the condition of the claim implies contime(n) ⊆ time(n1.2). If L ∈ Σ2time(n8) then

x ∈ L ⇔ ∃w1∀w2 M(x,w1, w2) = 1,

where M is a deterministic machine running in time O(|x|8). But then

L′ def= {(x,w1) : ∀w2 M(x,w1, w2)} ⊆ contime(n8) ⊆ time
((

n8
)1.2

)
= time(n9.6)

where n denotes the length of x. If we let M ′ be a deterministic machine deciding L′, where
M(x,w1) runs in time O(|x|9.6), then

x ∈ L ⇔ ∃w1 M ′(x,w1) = 1

and hence L ∈ ntime(n9.6).

We now put everything together to prove the theorem. Assume toward a contradiction that
ntime(n) ⊆ TimeSpc(n1.2, n0.2). Then

ntime(n10) ⊆ TimeSpc(n12, n2) ⊆ Σ2time(n8) ⊆ ntime(n9.6),

using Claim 6 for the second inclusion, and Claim 7 for the last inclusion. But this contradicts the
non-deterministic time-hierarchy theorem.

References

[1] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University
Press, 2009.

[2] A. Chandra, D. Kozen, and L. Stockmeyer. Alternation. J. ACM 28(1): 114–133, 1981.

8-5

Notes on Complexity Theory Last updated: October, 2011

Lecture 9

Jonathan Katz

1 The Polynomial Hierarchy

1.1 Defining the Polynomial Hierarchy via Oracle Machines

Here we show a third definition of the levels of the polynomial hierarchy in terms of oracle machines.

Definition 1 Define Σi, Πi inductively as follows:

• Σ0
def= P.

• Σi+1
def= NPΣi and Πi+1 = coNPΣi.

(Note that even though we believe Σi 6= Πi, oracle access to Σi gives the same power as oracle
access to Πi. Do you see why?)

We show that this leads to an equivalent definition. For this section only, let ΣO
i refer to the

definition in terms of oracles. We prove by induction that Σi = ΣO
i . (Since ΠO

i = coΣO
i , this proves

it for Πi, ΠO
i as well.) For i = 1 this is immediate, as Σ1 = NP = NPP = ΣO

1 .
Assuming Σi = ΣO

i , we prove that Σi+1 = ΣO
i+1. Let us first show that Σi+1 ⊆ ΣO

i+1. Let
L ∈ Σi+1. Then there exists a polynomial-time Turing machine M such that

x ∈ L ⇔ ∃w1∀w2 · · ·Qi+1wi+1 M(x,w1, . . . , wi+1) = 1.

In other words, there exists a language L′ ∈ Πi such that

x ∈ L ⇔ ∃w1 (x,w1) ∈ L′.

By our inductive assumption, Πi = ΠO
i ; thus, L ∈ NPΠO

i = NPΣO
i = ΣO

i+1 and so Σi+1 ⊆ ΣO
i+1.

It remains to show that ΣO
i+1 ⊆ Σi+1 (assuming ΣO

i = Σi). Let L ∈ ΣO
i+1. This means there

exists a non-deterministic polynomial-time machine M and a language L′ ∈ ΣO
i such that M , given

oracle access to Li, decides L. In other words, x ∈ L iff ∃y, q1, a1, . . . , qn, an (here, y represents the
non-deterministic choices of M , while qj , aj represent the queries/answers of M to/from its oracle)
such that:

1. M , on input x, non-deterministic choices y, and oracle answers a1, . . . , an, makes queries
q1, . . . , qn and accepts.

2. For all j, we have aj = 1 iff qj ∈ L′.

Since L′ ∈ ΣO
i = Σi (by our inductive assumption) we can express the second condition, above, as:

• aj = 1 ⇔ ∃yj
1∀yj

2 · · ·Qiy
j
i M ′(qj , y

j
1, . . . , y

j
i) = 1

• aj = 0 ⇔ ∀yj
1∃yj

2 · · ·Q′
iy

j
i M ′(qj , y

j
1, . . . , y

j
i) = 0

9-1

for some (deterministic) polynomial-time machine M ′. The above leads to the following specifica-
tion of L as a Σi+1 language:

x ∈ L iff ∃
(
y, q1, a1, . . . , qn, an, {yj

1}n
j=1

)
∀

(
{yj

2}n
j=1

)
· · · Qi+1

(
{yj

i+1}n
j=1

)
:

• M , on input x, non-deterministic choices y, and oracle answers a1, . . . , an, makes queries
q1, . . . , qn and accepts, and

• Let Y be the set of j’s such that aj = 1, and let N be the set of j’s such that aj = 0.

– For all j ∈ Y , we have M ′(qj , y
j
1, . . . , y

j
i) = 1

– For all j ∈ N , we have M ′(qj , y
j
2, . . . , y

j
i+1) = 0.

2 Non-Uniform Complexity

Boolean circuits offer an alternate model of computation: a non-uniform one as opposed to the
uniform model of Turing machines. (The term “uniform” is explained below.) In contrast to
Turing machines, circuits are not meant to model “realistic” computations for arbitrary-length
inputs. Circuits are worth studying for at least two reasons, however. First, when one is interested
in inputs of some fixed size (or range of sizes), circuits make sense as a computational model. (In
the real world, efficient circuit design has been a major focus of industry.) Second, from a purely
theoretical point of view, the hope has been that circuits would somehow be “easier to study” than
Turing machines (even though circuits are more powerful!) and hence that it might be easier to
prove lower bounds for the former than for the latter. The situation here is somewhat mixed: while
some circuit lower bounds have been proved, those results have not really led to any significant
separation of uniform complexity classes.

Circuits are directed, acyclic graphs where nodes are called gates and edges are called wires.
Input gates are gates with in-degree zero, and we will take the output gate of a circuit to be the
(unique) gate with out-degree zero. (For circuits having multiple outputs there may be multiple
output gates.) In a boolean circuit, each input gate is identified with some bit of the input; each
non-input gate is labeled with a value from a given basis of boolean functions. The standard basis
is B0 = {¬,∨,∧}, where each gate has bounded fan-in. Another basis is B1 = {¬, (∨i)i∈N, (∧i)i∈N},
where ∨i,∧i have in-degree i and we say that this basis has unbounded fan-in. In any basis, gates
may have unbounded fan-out.

A circuit C with n input gates defines a function C : {0, 1}n → {0, 1} in the natural way: a given
input x = x1 · · ·xn immediately defines the values of the input gates; the values at any internal
gate are determined inductively; C(x) is then the value of the output gate. If f : {0, 1}∗ → {0, 1}
is a function, then a circuit family C = {Ci}i∈N computes f if f(x) = C|x|(x) for all x. In other
words, for all n the circuit Cn agrees with f restricted to inputs of length n. (A circuit family
decides a language if it computes the characteristic function for that language.) This is the sense
in which circuits are non-uniform: rather than having a fixed algorithm computing f on all input
lengths (as is required, e.g., in the case of Turing machines), in the non-uniform model there may
be a completely different “algorithm” (i.e., circuit) for each input length.

Two important complexity measures for circuits are their size and their depth.1 The size of a
1When discussing circuit size and depth, it is important to be clear what basis for the circuit is assumed. By

default, we assume basis B0 unless stated otherwise.

9-2

circuit is the number of gates it has. The depth of a circuit is the length of the longest path from
an input gate to an output gate. A circuit family C = {Cn}n∈N has size T (·) if, for all sufficiently
large n, circuit Cn has size at most T (n). It has depth D(·) if, for all sufficiently large n, circuit Cn

has depth at most D(n). The usual convention is not to count “not” gates in either of the above:
one can show that all the “not” gates of a circuit can be pushed to immediately follow the input
gates; thus, ignoring “not” gates affects the size by at most n and the depth by at most 1.

Definition 2 L ∈ size(T (n)) if there is a circuit family C = {Cn} of size T (·) that decides L.

We stress that the above is defined over B0. Note also that we do not use big-O notation, since
there is no “speedup theorem” in this context.

One could similarly define complexity classes in terms of circuit depth (i.e., L ∈ depth(D(n))
if there is a circuit family C = {Cn} of depth D(·) that decides L); circuit depth turns out to be
somewhat less interesting unless there is simultaneously a bound on the circuit size.

2.1 The Power of Circuits

We have seen this before (in another context) but it is worth stating again: every function — even
an undecidable one! — is computable by a circuit over the basis B0. Let us first show how to
express any f as a circuit over B1. Fix some input length n. Define F0

def= {x ∈ {0, 1}n | f(x) = 0}
and define F1 analogously. We can express f (restricted to inputs of length n) as:

f(x) =
∨

x′∈F1

[x = x′],

where [x = x′] denotes a boolean expression which is true iff x = x′. (Here, x represents the
variables, and x′ is a fixed string.) Letting xi denote the ith bit of x, note that [x = x′] ⇔
(
∧

i:x′=1 xi) ∧ (
∧

i:x′=0 x̄i). Putting everything together, we have:

f(x) =
∨

x′∈F1

(
(
∧

i:x′=1 xi) ∧ (
∧

i:x′=0 x̄i)
)
. (1)

But the above is just a circuit of depth2 2 over B1. (The size of the circuit is at most Θ(2n).) The
above representation is called the disjunctive normal form (DNF) for f . Another way to express f
is as:

f(x) =
∧

x′∈F0

[x 6= x′],

where [x 6= x′] has the obvious meaning. Note, [x 6= x′] ⇔
(∨

i:x′i=1 x̄i

)
∨

(∨
i:x′i=0 xi

)
; putting

everything together gives:

f(x) =
∧

x′∈F0

((∨
i:x′i=1 x̄i

)
∨

(∨
i:x′i=0 xi

))
, (2)

the conjunctive normal form (CNF) for f . This gives another circuit of depth 2 over B1.
The above show how to obtain a circuit for f over the basis B1. But one can transform any

circuit over B1 to one over B0. The idea is simple: each ∨-gate of in-degree k is replaced by a “tree”
2Recall that “not” gates are not counted.

9-3

of degree-2 ∨-gates, and each ∧-gate of in-degree k is replaced by a “tree” of degree-2 ∧-gates. In
each case we transform a single gate having fan-in k to a sub-circuit with k− 1 gates having depth
dlog ke. Applying this transformation to Eqs. (1) and (2), we obtain a circuit for any function f
over the basis B0 with at most n · 2n gates and depth at most n + dlog ne. We thus have:

Theorem 1 Every function is in size(n · 2n).

This can be improved to show that for every ε > 0 every function is in size
(
(1 + ε) · 2n

n

)
. This

is tight up to low-order terms, as we show next time.

Bibliographic Notes

For more on circuit complexity see the classic text by Wegener [6] and the excellent book by
Vollmer [5]. (The forthcoming book by Jukna [2] also promises to be very good.) The claim
that all functions can be computed by circuits of size (1 + ε) · 2n/n was proven by Lupanov. A
proof of a weaker claim (showing this bound over the basis {∨,∧,¬,⊕}) can be found in my notes
from 2005 [3, Lecture 5]. A proof over the basis B0 can be found in [4, Section 2.13]. Frandsen
and Miltersen [1] give another exposition, and discuss what is known about the low-order terms in
both the upper and lower bounds.

References

[1] G.S. Frandsen and P.B. Miltersen. Reviewing Bounds on the Circuit Size of the Hard-
est Functions. Information Processing Letters 95(2): 354–357, 2005. Available on-line at
http://www.daimi.au.dk/~bromille/Papers/shannon.pdf

[2] S. Jukna. Boolean Function Complexity: Advances and Frontiers, Springer, 2012.

[3] J. Katz. Lecture notes for CMSC 652 — Complexity Theory. Fall 2005.

[4] J.E. Savage. Models of Computation: Exploring the Power of Computing. Addison-Wesley, 1998.

[5] H. Vollmer. Introduction to Circuit Complexity. Springer, 1999.

[6] I. Wegener. The Complexity of Boolean Functions. John Wiley & Sons, 1987.

9-4

Notes on Complexity Theory Last updated: October, 2011

Lecture 10

Jonathan Katz

1 Non-Uniform Complexity

1.1 The Power of Circuits

Last time we saw that every function f : {0, 1}n → {0, 1} could be computed by a circuit of size
n · 2n, and noted that this bound could be improved to (1+ ε) · 2n/n for every ε > 0. We now show
that this is essentially tight.

Theorem 1 Let ε > 0 and q(n) = (1 − ε)2n

n . Then for n large enough there exists a function
f : {0, 1}n → {0, 1} that cannot be computed by a circuit of size at most q(n).

Proof In fact, the fraction of functions f : {0, 1}n → {0, 1} that can be computed by circuits of
size at most q(n) approaches 0 as n approaches infinity; this easily follows from the proof below.

Let q = q(n). The proof is by a counting argument. We count the number of circuits of size
q (note that if a function can be computed by a circuit of size at most q, then by adding useless
gates it can be computed by a circuit of size exactly q) and show that this is less than the number
of n-ary functions. A circuit having q internal gates is defined by (1) specifying, for each internal
gate, its type and its two predecessor gates, and (2) specifying the output gate. We may assume
without loss of generality that each gate of the circuit computes a different function — otherwise,
we can simply remove all but one copy of the gate (and rewire the circuit appropriately). Under this
assumption, permuting the numbering of the internal gates does not affect the function computed
by the circuit. Thus, the number of circuits with q internal gates is at most:

(
3 · (q + n)2

)q · q
q!

≤
(
12 · (q)2)q · q

q!
.

In fact, we are over-counting since some of these are not valid circuits (e.g., they are cyclic). We
have:

q · (12 · (q + n)2
)q

q!
≤ q · (36)q · q2q

qq

= q · (36 · q)q

≤ (36 · q)q+1

≤ (2n)(1−ε)2n/n + 1 = 2(1−ε)2n+n,

for n sufficiently large, using Stirling’s bound q! ≥ qq/eq ≥ qq/3q for the first inequality. But this
is less than 22n

(the number of n-ary boolean functions) for n large enough.

We saw that any function can be computed by a circuit family of depth n+ dlog ne ≤ (1+ ε) ·n
(for n large enough) for any ε > 0. This, too, is essentially tight (see [1, Sect. 2.12]):

Theorem 2 Let ε > 0 and d(n) = (1 − ε) · n. Then for n large enough there exists a function
f : {0, 1}n → {0, 1} that cannot be computed by a circuit of depth at most d(n).

10-1

1.2 Polynomial-Size Circuits

As with our interest in polynomial-time algorithms, we are also interested in polynomial-size cir-
cuits. Define P/poly

def=
⋃

c size(nc). A second characterization of P/poly is:

Definition 1 L ∈ P/poly iff there exists a Turing machine M running in time polynomial in its
first input, and a sequence of “advice strings” {zn}n∈N such that x ∈ L iff M(x, zn) = 1.

A proof that this is an equivalent definition uses the proof that follows, and is left as an exercise.
Perhaps not surprisingly, we have

Theorem 3 P ⊆ P/poly.

Proof We prove a stronger result: for any t(n) ≥ n we have time(t(n)) ⊆ size(t(n) · log t(n)).
Given a language L ∈ time(t(n)), we first construct an oblivious Turing machine M deciding L in
time t′(n) = O(t(n) · log t(n)). For simplicity, assume M has a single work tape (in addition to its
input tape); the proof is similar if M has k work tapes. Considering the tableau of the computation
of M(x) with x ∈ {0, 1}n, we see that M(x) passes through (at most) t′(n) + 1 configurations and
each configuration can be represented using O(t′(n)) bits. We will imagine associating a set of wires
with each configuration of M(x). Note, however, that in passing from one configuration to the next
most of the wire values will remain unchanged and, because of the obliviousness of M , we know
in advance which wires can possibly change. Wires that do not change can simply be “extended”
from one configuration to the next, without using any gates.

In a bit more detail, we show how to compute one configuration from the next using only a
constant number of gates. To go from configuration i to configuration i+1, we construct a boolean
sub-circuit that takes as input (1) the state of M at time i, (2) the wires representing the cell
scanned by M at time i (here we use the assumption that M is oblivious, so we know in advance
where the work-tape head of M will be at every time step); and (3) the position of the input scanned
by M at time i (once again using obliviousness). The output of this sub-circuit is (1) the updated
state of M and (2) an updated value for what is written on the cell scanned by M at the previous
time step. Note that the number of inputs to this sub-circuit is constant, so by what we have shown
previously we can compute the transition function using a constant number of gates. Using similar
reasoning, we can also add a final sub-circuit that tests whether the final state of M is accepting
or not. We thus have O(t′(n)) constant-size sub-circuits, for a circuit of total size O(t′(n)).

The above proof can also be used to show that the following problem is NP-complete:

CKT-SAT
def= {C | C is a circuit, and ∃x s.t. C(x) = 1} .

Could it be that P = P/poly? Actually, here we know that the inclusion is strict, since P/poly is
still powerful enough to contain undecidable languages. To see this, let L ⊆ 1∗ be an undecidable
unary language, and note that any unary language is trivially in P/poly.

Could it be that NP ⊆ P/poly? This would be less surprising than P = NP, and would not
necessarily have any practical significance (frustratingly, NP ⊆ P/poly but P 6= NP would mean
that efficient algorithms for NP exist, but can’t be found efficiently). Nevertheless, the following
result suggests that NP 6⊆ P/poly:

Theorem 4 (Karp-Lipton) If NP ⊆ P/poly then Σ2 = Π2 (and hence PH = Σ2).

10-2

Proof We begin with a claim that can be proved easily given our earlier work on self-reducibility
of SAT: if SAT ∈ P/poly then there exists a polynomial-size circuit family {Cn} such that C|φ|(φ)
outputs a satisfying assignment for φ if φ is satisfiable. That is, if SAT can be decided by polynomial-
size circuits, then SAT can be solved by polynomial-size circuits.

We use this claim to prove that Π2 ⊆ Σ2 (from which the theorem follows). Let L ∈ Π2. This
means there is a Turing machine M running in time polynomial in its first input such that1

x ∈ L ⇔ ∀y∃z : M(x, y, z) = 1.

Define L′ = {(x, y) | ∃z : M(x, y, z) = 1}. Note that L′ ∈ NP, and so there is a Karp reduc-
tion f from L′ to SAT. (The function f can be computed in time polynomial in |(x, y)|, but since
|y| = poly(|x|) this means it can be computed in time polynomial in |x|.) We may thus express
membership in L as follows:

x ∈ L ⇔ ∀y : f(x, y) ∈ SAT. (1)

But we then have

x ∈ L ⇔ ∃C∀y : C(f(x, y)) is a satisfying assignment of f(x, y),

where C is interpreted as a circuit, and is chosen from strings of (large enough) polynomial length.
Thus, L ∈ Σ2.

1.3 Small Depth Circuits and Parallel Computation

Circuit depth corresponds to the time required for the circuit to be evaluated; this is also evidenced
by the proof of Theorem 3. Moreover, a circuit of size s and depth d for some problem can readily
be turned into a parallel algorithm for the problem using s processors and running in “wall clock”
time d. Thus, it is interesting to understand when low-depth circuits for problems exist. From a
different point of view, we might expect that lower bounds would be easier to prove for low-depth
circuits. These considerations motivate the following definitions.

Definition 2 Let i ≥ 0. Then

• L ∈ NC i if L is decided by a circuit family {Cn} of polynomial size and O(logi n) depth over
the basis B0.

• L ∈ AC i if L is decided by a circuit family {Cn} of polynomial size and O(logi n) depth over
the basis B1.

NC =
⋃

i NC i and AC =
⋃

i AC i.

Note NC i ⊆ AC i ⊆ NC i+1. Also, NC0 is not a very interesting class since the function computed
by a constant-depth circuit over B0 can only depend on a constant number of bits of the input.

Bibliographic Notes

Theorem 1 is due to Shannon; the proof here is adapted from Vollmer [2].
1By convention, quantification is done over strings of length some (appropriate) fixed polynomial in |x|.

10-3

References

[1] J.E. Savage. Models of Computation: Exploring the Power of Computing. Addison-Wesley, 1998.

[2] H. Vollmer. Introduction to Circuit Complexity. Springer, 1999.

10-4

Notes on Complexity Theory Last updated: October, 2011

Lecture 11

Jonathan Katz

1 Non-Uniform Complexity

1.1 Circuit Lower Bounds for a Language in Σ2 ∩ Π2

We have seen that there exist “very hard” languages (i.e., languages that require circuits of size
(1 − ε)2n/n). If we can show that there exists a language in NP that is even “moderately hard”
(i.e., requires circuits of super-polynomial size) then we will have proved P 6= NP. (In some
sense, it would be even nicer to show some concrete language in NP that requires circuits of
super-polynomial size. But mere existence of such a language is enough.)

Here we show that for every c there is a language in Σ2 ∩Π2 that is not in size(nc). Note that
this does not prove Σ2∩Π2 6⊆ P/poly since, for every c, the language we obtain is different. (Indeed,
using the time hierarchy theorem, we have that for every c there is a language in P that is not in
time(nc).) What is particularly interesting here is that (1) we prove a non-uniform lower bound
and (2) the proof is, in some sense, rather simple.

Theorem 1 For every c, there is a language in Σ4 ∩Π4 that is not in size(nc).

Proof Fix some c. For each n, let Cn be the lexicographically first circuit on n inputs such
that (the function computed by) Cn cannot be computed by any circuit of size at most nc. By the
non-uniform hierarchy theorem (see [1]), there exists such a Cn of size at most nc+1 (for n large
enough). Let L be the language decided by {Cn}, and note that we trivially have L 6∈ size(nc).

We claim that L ∈ Σ4 ∩Π4. Indeed, x ∈ L iff (let |x| = n):

1. There exists a circuit C of size at most nc+1 such that

2. For all circuits C ′ (on n inputs) of size at most nc,
and for all circuits B (on n inputs) lexicographically preceding C,

3. There exists an input x′ ∈ {0, 1}n such that C ′(x) 6= C(x),
and there exists a circuit B′ of size at most nc such that

4. For all w ∈ {0, 1}n it holds that B(w) = B′(w) and

5. C(x) = 1.

Note that that above guesses C and then verifies that C = Cn, and finally computes C(x). This
shows that L ∈ Σ4, and by flipping the final condition we have that L̄ ∈ Σ4.

We now “collapse” the above to get the claimed result — non-constructively:

Corollary 2 For every c, there is a language in Σ2 ∩Π2 that is not in size(nc).

Proof Say NP 6⊆ P/poly. Then SAT ∈ NP ⊆ Σ2 ∩Π2 but SAT 6∈ size(nc) and we are done. On
the other hand, if NP ⊆ P/poly then by the Karp-Lipton theorem PH = Σ2 = Π2 and we may take
the language given by the previous theorem.

11-1

1.2 Small Depth Circuits and Parallel Computation

Circuit depth corresponds to the time required for the circuit to be evaluated; this is also evidenced
by the proof that P ⊆ P/poly. Moreover, a circuit of size s and depth d for some problem can readily
be turned into a parallel algorithm for the problem using s processors and running in “wall clock”
time d. Thus, it is interesting to understand when low-depth circuits for problems exist. From a
different point of view, we might expect that lower bounds would be easier to prove for low-depth
circuits. These considerations motivate the following definitions.

Definition 1 Let i ≥ 0. Then

• L ∈ NC i if L is decided by a circuit family {Cn} of polynomial size and O(logi n) depth over
the basis B0.

• L ∈ AC i if L is decided by a circuit family {Cn} of polynomial size and O(logi n) depth over
the basis B1.

NC =
⋃

i NC i and AC =
⋃

i AC i.

Note NC i ⊆ AC i ⊆ NC i+1. Also, NC0 is not a very interesting class since the function computed
by a constant-depth circuit over B0 can only depend on a constant number of bits of the input.

If we want NC and AC to represent feasible algorithms then we need to make sure that the
circuit family is uniform, i.e., can be computed efficiently. In the case of NC and AC, the right
notion to use is logspace uniformity :

Definition 2 Circuit family {Cn} is logspace-uniform if the function mapping 1n to Cn can be
computed using O(log n) space. Equivalently, each of the following functions can be computed in
O(log n) space:

• size(1n) returns the number of gates in Cn (expressed in binary). By convention the first n
gates are the input gates and the final gate is the output gate.

• type(1n, i) returns the label (i.e., type of gate) of gate i in Cn.

• edge(1n, i, j) returns 1 iff there is a (directed) edge from gate i to gate j in Cn.

This gives rise to logspace-uniform NCi, etc., which we sometimes denote by prefixing u (e.g., u-NC).
Designing low-depth circuits for problems can be quite challenging. Consider as an example

the case of binary addition. The “grade-school” algorithm for addition is inherently sequential,
and expressing it as a circuit would yield a circuit of linear depth. (In particular, the high-order
bit of the output depends on the high-order carry bit, which in the grade-school algorithm is only
computed after the second-to-last bit of the output is computed.) Can we do better?

Lemma 3 Addition can be computed in logspace-uniform AC0.

Proof Let a = an · · · a1 and b = bn · · · b1 denote the inputs, written so that an, bn are the high-
order bits. Let ci denote the “carry bit” for position i, and let di denote the ith bit of the output.
In the “grade-school” algorithm, we set c1 = 0 and then iteratively compute ci+1 and di from ai, bi,
and ci. However, we can note that ci+1 is 1 iff ai = bi = 1, or ai−1 = bi−1 = 1 (so ci = 1) and at

11-2

least one of ai or bi is 1, or . . . , or a1 = b1 = 1 and for j = 2, . . . , i at least one of aj or bj is 1.
That is,

ci+1 =
i∨

k=1

(ak ∧ bk) ∧ (ak+1 ∨ bk+1) · · · ∧ (ai ∨ bi).

So the {ci} can be computed by a constant-depth circuit over B1. Finally, each bit di of the output
can be easily computed from ai, bi, and ci.

(Variants of) the circuit given by the previous lemma are used for addition in modern hardware.
There is a close relationship between logarithmic-depth circuits and logarithmic-space algo-

rithms:

Theorem 4 u-NC1 ⊆ L ⊆ NL ⊆ u-AC1.

Proof (Sketch) A logarithmic-space algorithm for any language in logspace-uniform NC1 follows
by recursively computing the values on the wires of a gate’s parents, re-using space.

For the second inclusion, we show the more general result that nspace(s(n)) can be computed
by a circuit family of depth O(s(n)) over the unbounded fan-in basis B1. The idea, once again, is to
use reachability. Let M be a non-deterministic machine deciding L in space t. Let N(n) = 2O(s(n))

denote the number of configurations of M on any fixed input x of length n. Fix n, let N = N(n),
and we will construct Cn. On input x ∈ {0, 1}n, our circuit does the following:

1. Construct the N×N adjacency matrix Ax in which entry (i, j) is 1 iff M can make a transition
(in one step) from configuration i to configuration j on input x.

2. Compute the transitive closure of Ax. In particular, this allows us to check whether there is
a path from the initial configuration of M (on input x) to the accepting configuration of M .

We show that these computations can be done in the required depth. The matrix Ax can be
computed in constant depth, since each entry (i, j) is either always 0, always 1, or else depends
on only 1 bit of the input (this is because the input head position is part of a configuration). To
compute the transitive closure of Ax, we need to compute (Ax ∨ I)N . (Note: multiplication and
addition here correspond to ∧ and ∨, respectively.) Using associativity of matrix multiplication,
this can be done in a tree-wise fashion using a tree of depth log N = O(s(n)) where each node
performs a single matrix multiplication. Matrix multiplication can be performed in constant depth
over B1: to see this, note that the (i, j)th entry of matrix AB (where A,B are two N ×N matrices
given as input) is given by

(AB)i,j =
∨

1≤k≤N

(Ai,k ∧Bk,j) .

The theorem follows.

Can all of P be parallelized? Equivalently, is P = u-NC? To study this question we can, as
usual, focus on the “hardest” problems in P:

Definition 3 L is P-complete if L ∈ P and every L′ ∈ P is logspace-reducible to L.

Using Theorem 4 we have

Claim 5 If L is P-complete, then L ∈ NC iff P ⊂ NC.

11-3

An immediate P-complete language is given by

CKT-EVAL
def= {(C, x) | C(x) = 1},

where a logarithmic-space reduction from any language in P to CKT-EVAL can be derived from a
more careful version of the proof that P ⊆ P/poly.

Bibliographic Notes

The result of Section 1.1 is by Kannan [3]; the presentation here is adapted from [2].

References

[1] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University
Press, 2009.

[2] S. Jukna. Boolean Function Complexity: Advances and Frontiers, Springer, 2012.

[3] R. Kannan. Cicruit-size lower bounds and non-reducibility to sparse sets. Information and
Control 55(1–3): 40–56, 1982.

11-4

Notes on Complexity Theory Last updated: October, 2011

Lecture 12

Jonathan Katz

1 Randomized Time Complexity

Is deterministic polynomial-time computation the only way to define “feasible” computation? Al-
lowing probabilistic algorithms, that may fail with tiny probability, seems reasonable. (In particular,
consider an algorithm whose error probability is lower than the probability that there will be a hard-
ware error during the computation, or the probability that the computer will be hit by a meteor
during the computation.) This motivates our exploration of probabilistic complexity classes.

There are two different ways to define a randomized model of computation. The first is via Tur-
ing machines with a probabilistic transition function: as in the case of non-deterministic machines,
we have a Turing machine with two transitions functions, and a random one is applied at each
step. The second way to model randomized computation is by augmenting Turing machines with
an additional (read-only) random tape. For the latter approach, one can consider either one-way
or two-way random tapes; the difference between these models is unimportant for randomized time
complexity classes, but (as we will see) becomes important for randomized space classes. Whichever
approach we take, we denote by M(x) a random computation of M on input x, and by M(x; r)
the (deterministic) computation of M on input x using random choices r (where, in the first case,
the ith bit of r determines which transition function is used at the ith step, and in the second case
r is the value written on M ’s random tape).

We now define some randomized time-complexity classes; in the following, ppt stands for “prob-
abilistic, polynomial time” (where this is measured as worst-case time complexity over all inputs,
and as always the running time is measured as a function of the length of the input x).

Definition 1 L ∈ RP if there exists a ppt machine M such that:

x ∈ L ⇒ Pr[M(x) = 1] ≥ 1/2
x 6∈ L ⇒ Pr[M(x) = 0] = 1.

Note that if M(x) outputs “1” we are sure that x ∈ L; if M(x) outputs “0” we cannot make any
definitive claim.

Viewing M as a non-deterministic machine for L, the above means that when x ∈ L at least
half of the computation paths of M(x) accept, and when x 6∈ L then none of the computation paths
of M(x) accept. Put differently, a random tape r for which M(x; r) = 1 serves as a witness that
x ∈ L. We thus have RP ⊆ NP.

Symmetrically:

Definition 2 L ∈ coRP if there exists a ppt machine M such that:

x ∈ L ⇒ Pr[M(x) = 1] = 1
x 6∈ L ⇒ Pr[M(x) = 0] ≥ 1/2.

12-1

Here, if M(x) outputs “0’ we are sure that x 6∈ L, but if M(x) outputs “1” we cannot make any
definitive claim.

The above classes allow one-sided error. A more general notion of randomized computation
allows for two-sided error. For a language L, let χL(x) = 1 iff x ∈ L.

Definition 3 L ∈ BPP if there exists a ppt machine M such that:

Pr[M(x) = χL(x)] ≥ 2/3.

In other words,

x ∈ L ⇒ Pr[M(x) = 1] ≥ 2/3
x 6∈ L ⇒ Pr[M(x) = 1] ≤ 1/3.

Finally, we may also consider randomized algorithms that make no errors (but may not give a
result at all):

Definition 4 L ∈ ZPP if there exists a ppt machine M such that:

Pr[M(x) = χL(x)] ≥ 1/2

Pr [M(x) ∈ {χL(x),⊥}] = 1.

We now explore these definitions further. A first observation is that, for all the above definitions,
the constants are essentially arbitrary. We focus on the case of BPP and leave consideration of the
rest as an exercise.

Theorem 1 The following are both equivalent definitions of BPP:

1. L ∈ BPP if there exists a ppt machine M and a polynomial p such that:

Pr[M(x) = χL(x)] ≥ 1
2

+
1

p(|x|) .

2. L ∈ BPP if there exists a ppt machine M and a polynomial q such that:

Pr[M(x) = χL(x)] ≥ 1− 2−q(|x|).

Proof We show how to transform an algorithm M satisfying the first definition into an algorithm
M ′ satisfying the second definition. M ′(x) is defined as follows: run M(x) a total of t(|x|) times
(for some polynomial t to be fixed later) using independent random coins in each execution. Then
M ′ outputs the bit that was output by a majority of these executions.

To analyze the behavior of M ′, we rely on the Chernoff bound [?, Chap. 4]:

Claim 2 Let p ≤ 1
2 and let X1, . . . , Xn be independent, identically-distributed 0-1 random variables

with Pr[Xi = 1] = p for each i. Then for all ε with 0 < ε ≤ p(1− p) we have:

Pr
[∣∣∣∣

∑n
i=1 Xi

n
− p

∣∣∣∣ > ε

]
< 2 · e− ε2n

2p(1−p) ≤ 2 · e−2nε2
.

12-2

Let Xi denote the output of the ith execution of M(x). When x 6∈ L

Pr[Xi = 1] <
1
2
− 1

p(|x|)
def= ρ.

Furthermore, by definition of M ′ (letting t
def= t(|x|)):

Pr[M ′(x) = 1] = Pr

[∑t
i=1 Xi

t
>

1
2

]

≤ Pr

[∣∣∣∣∣
∑t

i=1 Xi

t
− ρ

∣∣∣∣∣ >
1

p(|x|)

]

< 2 · e−
2t

p(|x|)2 .

Setting t = O
(
q(|x|) · p(|x|)2) gives the desired result. (An exactly analogous argument works for

the case x ∈ L.)

How do the above classes relate to each other? It is immediate that

RP ∪ coRP ⊆ BPP,

and so BPP is a (potentially) more powerful class. Indeed, BPP appears to capture feasible
probabilistic computation. We also claim that

ZPP = RP ∩ coRP;

this is left as an exercise. A third characterization of ZPP is in terms of expected polynomial-time
algorithms that always output the correct answer. Let M be a probabilistic Turing machine. We
say that M runs in expected time t(n) if, for every x ∈ {0, 1}n, the expected running time of M(x)
is at most t(n). Then:

Claim 3 L ∈ ZPP iff there exists an expected polynomial-time Turing machine M such that

Pr[M(x) = χL(x)] = 1.

How about a “minimal” notion of correctness for probabilistic algorithms, where we only require
correctness with probability arbitrarily better than guessing? This gives rise to a class called PP:

Definition 5 L ∈ PP if there exists a ppt machine M such that:

Pr[M(x) = χL(x)] > 1/2.

In other words,

x ∈ L ⇒ Pr[M(x) = 1] > 1/2
x 6∈ L ⇒ Pr[M(x) = 1] < 1/2.

A little thought shows that this is not a reasonable notion of probabilistic computation. The
problem is that the gap between outputting the correct answer and the wrong answer might be
exponentially small (in contrast to BPP, where the gap must be some inverse polynomial); in
particular, amplification does not work here. As some further evidence against the reasonableness
of PP, we have NP ⊆ PP (this, too, is left as an exercise); thus, this notion of probabilistic
computation can solve all of NP!

12-3

1.1 Examples of Randomized Algorithms

There are several examples of where randomized algorithms are more efficient, or simpler, than
known deterministic algorithms. However, there are not as many examples of problems that are
known to be solvable by polynomial-time randomized algorithms, but not known to be solved by
polynomial-time deterministic algorithms. One famous former example was testing primality: this
problem was known to be in coRP since the late 1970s, but was only shown to be in P in 2005.
(Nevertheless, in practice the randomized algorithms are still used since they are faster.)

A search problem for which probabilistic polynomial-time algorithms are known, but determin-
istic polynomial-time algorithms are not, is computing square roots modulo a prime.

Polynomial identity testing. Another interesting example is given by the problem of testing
equality of arithmetic circuits. Here we work with circuits that take integers (rather than boolean
values) as input, and where gates compute +,−, and × (over the integers); the output is an integer.
Say we want to test whether two circuits C1, C2 compute the same function. Note that this easily
reduces to deciding the following language:

ZEROP
def= {C | C outputs 0 on all inputs}.

Any arithmetic circuit is equivalent to a multivariate polynomial over the integers; in principle,
then, we can decide membership in ZEROP by expanding and writing out the polynomial to see
whether it is identically 0. (This explains the name ZEROP for the language above: we are testing
whether an implicitly defined polynomial is the 0 polynomial.) In an arithmetic circuit with m
gates, however, the (total) degree1 of the equivalent polynomial can be as high as 2m, and so even
just writing out all the terms of the polynomial may require exponential time! This is therefore
not a viable approach for an efficient algorithm.

In fact, there is no known (efficient) deterministic algorithm for this problem. Instead, we
make use of the Schwartz-Zippel lemma (which is useful in many contexts). We state it here for
polynomials over the integers, but it also holds over any field.

Lemma 4 Let p(X1, . . . , Xn) be a non-zero polynomial of total degree at most d, and let S be any
finite set of integers. Then

Prx1,...,xn←S [p(x1, . . . , xn) = 0] ≤ d/|S|.

Proof The proof is by induction on n. When n = 1, a non-zero polynomial p(X1) of degree at
most d has at most d roots and the lemma follows. Now assume the lemma is true for n − 1 and
prove that it holds for n. Given a polynomial p(X1, . . . , Xn) of total degree d, we may write

p(X1, . . . , Xn) =
d′∑

i=0

pi(X1, . . . , Xn−1) ·Xi
n, (1)

for some d′ ≤ d and pd′(X1, . . . , Xn−1) a non-zero polynomial of total degree at most d− d′. When
x1, . . . , xn−1 are chosen at random from S, the inductive assumption tells us that pd′(x1, . . . , xn−1) =
0 with probability at most (d − d′)/|S|. When pd′(x1, . . . , xn−1) 6= 0, then (1) is a polynomial of

1The total degree of a monomial is the sum of the degrees in each variable; the total degree of a multivariate
polynomial largest total degree of any monomial.

12-4

degree d′ in the single variable Xn, and so the probability (over random choice of xn ∈ S) that
p(x1, . . . , xn−1, xn) = 0 is at most d′/|S|. Putting everything together, we have

Prx1,...,xn←S [p(x1, . . . , xn) = 0] ≤ d− d′

|S| +
(

1− d− d′

|S|
)
· d′

|S|
≤ d

|S| .

This completes the proof.

The above suggests a simple randomized algorithm: given an arithmetic circuit C with m
gates, and n inputs X1, . . . , Xn, choose x1, . . . , xn ← {1, . . . , 2m+1} and evaluate C(x1, . . . , xn). If
the output is 0, accept; if the output is non-zero, reject. If C ∈ ZEROP, then this algorithm always
accepts, while if C 6∈ ZEROP then the algorithm rejects with probability at least 1/2. (This is thus
a coRP algorithm for ZEROP.)

There is, however, a problem with the algorithm: as written, it is not efficient. The difficulty is
that the value of C(2m+1, . . . , 2m+1) may be as high as (2m+1)2

m
, which would require exponentially

many bits to write down. We can solve this by “fingerprinting”; see [1] for details.

Perfect matching in bipartite graphs. We can use similar ideas to give an efficient randomized
algorithm for detecting the existence of a perfect matching in a bipartite graph. (Although this
problem is in P, the randomized algorithm we show can be implemented in randomized-NC.) Let
G be an n × n matrix representing a bipartite graph on 2n vertices, where Gi,j = Xi,j if there is
an edge from i to j, and Gi,j = 0 otherwise. The determinant of G is

det(G) =
∑

σ

(−1)sign(σ)
n∏

i=1

Gi,σ(i),

and we see that det(G) is a non-zero polynomial (in the variables X1,1, . . . , Xn,n) iff the underlying
graph has a perfect matching. Calculating the polynomial det(G) cannot be done efficiently, since
it may have exponentially many terms; however, we can evaluate det(G) for any given values o
using standard algorithms for computing the determinant. We can thus use the Shwartz-Zippel
lemma and the ideas seen previously to construct a randomized algorithm for this problem.

References

[1] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University
Press, 2009.

12-5

Notes on Complexity Theory Last updated: October, 2011

Lecture 13

Jonathan Katz

1 Randomized Time Complexity

1.1 How Large is BPP?

We know that

P ⊆ ZPP = RP ∩ coRP ⊆ RP ∪ coRP ⊆ BPP ⊆ PSPACE.

We currently do not have a very good unconditional bound on the power of BPP — in particular,
it could be that BPP = NEXP. Perhaps surprisingly, especially in light of the many randomized
algorithms known, the current conjecture is that BPP is not more powerful than P. We will return
to this point later in the semester when we talk about derandomization.

What (unconditional) upper bounds can we place on BPP? Interestingly, we know that it
is not more powerful than polynomial-size circuits; actually, the following theorem is also a good
illustration of the power of non-uniformity.

Theorem 1 BPP ⊂ P/poly.

Proof Let L ∈ BPP. Using amplification, we know that there exists a polynomial-time Turing
machine M such that Pr[M(x) 6= χL(x)] < 2−|x|2 . Say M uses (at most) p(|x|) random coins for
some polynomial p. (Note that p is upper-bounded by the running time of M .) An equivalent way
of stating this is that for each n, and each x ∈ {0, 1}n, the set of “bad” coins for x (i.e., coins for
which M(x) outputs the wrong answer) has size at most 2p(n) · 2−n2

. Taking the union of these
“bad” sets over all x ∈ {0, 1}n, we find that the total number of random coins which are “bad” for
some x is at most 2p(n) · 2−n < 2p(n). In particular, there exists at least one set of random coins
r∗n ∈ {0, 1}p(n) that is “good” for every x ∈ {0, 1}n (in fact, there are many such random coins).
If we let the sequence of “advice strings” be exactly {r∗n} (using the alternate definition of P/poly),
we obtain the result of the theorem.

We can also place BPP in the polynomial hierarchy:

Theorem 2 BPP ⊆ Σ2 ∩Π2.

Proof We show that BPP ⊆ Σ2; since BPP is closed under complement, this proves the theorem.
We begin by proving some probabilistic lemmas. Say S ⊆ {0, 1}m is large if |S| ≥ (1 − 1

m)2m,

and is small if |S| < 2m

m . For a string z ∈ {0, 1}m define S ⊕ z
def= {s⊕ z | s ∈ S}.

Claim 3 If S is small, then for all z1, . . . , zm ∈ {0, 1}m we have
⋃

i(S ⊕ zi) 6= {0, 1}m.

This follows easily since
∣∣⋃

i(S ⊕ zi)
∣∣ ≤ ∑

i |S ⊕ zi| = m · |S| < 2m.

13-1

Claim 4 If S is large, then there exist z1, . . . , zm ∈ {0, 1}m such that
⋃

i(S ⊕ zi) = {0, 1}m.

In fact, we show that choosing at random works with high probability; i.e.,

Pr
z1,...,zm∈{0,1}m

[⋃
i(S ⊕ zi) = {0, 1}m

] ≥ 1−
(

2
m

)m

.

To see this, consider the probability that some fixed y is not in
⋃

i(S ⊕ zi). This is given by:

Pr
z1,...,zm∈{0,1}m

[y 6∈ ⋃
i(S ⊕ zi)] =

∏
i Prz∈{0,1}m [y 6∈ (S ⊕ z)]

≤
(

1
m

)m

.

Applying a union bound by summing over all y ∈ {0, 1}m, we see that the probability that there
exists a y ∈ {0, 1}m which is not in

⋃
i(S ⊕ zi) is at most 2m

mm .
We now prove the theorem. Given L ∈ BPP, there exist a polynomial m and an algorithm M

such that M uses m(|x|) random coins and errs with probability less than 1/m. For any input x,
let Sx ⊆ {0, 1}m(|x|) denote the set of random coins for which M(x; r) outputs 1. Thus, if x ∈ L
(letting m = m(|x|)) we have |Sx| > (1− 1

m) · 2m while if x 6∈ L then |Sx| < 2m

m . This leads to the
following Σ2 characterization of L:

x ∈ L ⇔ ∃z1, . . . , zm ∈ {0, 1}m ∀y ∈ {0, 1}m : y ∈ ⋃
i(Sx ⊕ zi).

(Note the desired condition can be efficiently verified by checking if M(x; y⊕ zi)
?= 1 for some i.)

1.2 Complete Problems for BPP?

As usual, we might like to study a class by focusing on the “hardest” problems in that class. With
this in mind, we can ask whether BPP has any complete problems. The obvious thought is to
consider the following language:

{
(M, x, 1p) | M is a probabilistic machine that accepts x

with probability at least 2/3 within p steps

}
.

While this language is BPP-hard, it is not known to be in BPP! (Consider the case when
Pr[M(x) = 1] = 2/3− 2−|x|.)

We can address this issue using the notion of promise problems, which gives an alternative to
languages as a way to define complexity classes. A promise problem consists of two disjoint sets of
strings ΠY ,ΠN ⊆ {0, 1}∗ with ΠY ∩ΠN = ∅. The “promise” is that all inputs will be from ΠY ∪ΠN ,
and we only need to “solve” the problem on such inputs; in particular, we do not care what happens
if we get an input that is not in ΠY ∪ΠN . Thus, using this formulation, promise-P would be defined
as the class of promise problems (ΠY , ΠN) for which there exists a polynomial-time machine M
such that

x ∈ ΠY ⇒ M(x) = 1]
x ∈ ΠN ⇒ M(x) = 0.

13-2

Promise problems generalize languages, since we may view a language L equivalently as the promise
problem (L, {0, 1}∗ \ L).

We can define the class promise-BPP as the class of promise problems (ΠY , ΠN) for which there
exists a probabilistic polynomial-time machine M such that

x ∈ ΠY ⇒ Pr[M(x) = 1] ≥ 2/3
x ∈ ΠN ⇒ Pr[M(x) = 1] ≤ 1/3.

We don’t care about the behavior of M on inputs not in (ΠY ,ΠN) — it might always accept, or
accept some inputs but not others, or accept with arbitrary probability.

Arguably, promise problems are more natural than languages. (For example, we might speak
of the input as representing an undirected graph and then need to ensure that every string en-
codes some undirected graph; it would be more natural to simply restrict our attention to strings
that canonically represent undirected graphs.) And, indeed, promise-BPP does have a complete
language:

ΠY =
{

(M,x, 1p) | M is a probabilistic machine that accepts x
with probability at least 2/3 within p steps

}

ΠN =
{

(M,x, 1p) | M is a probabilistic machine that rejects x
with probability at least 2/3 within p steps

}
.

2 Randomized Space Complexity

When defining randomized space-complexity classes there are two subtleties to be aware of. The
first subtlety arises if we model probabilistic computation by a Turing machine having a read-only
random tape. (The issue does not come up if we instead view a probabilistic machine as a non-
deterministic machine where the transition function is chosen at random.) Here, as in the case
of the certificate-based definition of non-deterministic space complexity, we need to restrict the
machine to having “read-once” access to its tape.

A second issue (regardless of which formulation of probabilistic computation we use) is that we
must also impose a time bound on the machine.1 E.g., for the case of one-sided error:

Definition 1 A language L is in rspace(s(n)) if there exists a randomized Turing machine M
using s(n) space and 2O(s(n)) time such that

x ∈ L ⇒ Pr[M(x) = 1] ≥ 1/2 and x 6∈ L ⇒ Pr[M(x) = 0] = 1.

If we do not impose this restriction, then probabilistic space classes become too powerful:

Proposition 5 Define rspace′ as above, but without the time restriction. Then for any space-
constructible s(n) ≥ log n we have rspace′(s(n)) = nspace(s(n)).

1An equivalent condition is to require that the machine halts for every possible set of random choices. This is
different from requiring the machine to halt with probability 1; see the proof of Proposition 5 for an illustration of
this phenomenon.

13-3

Proof (Sketch) Showing that rspace′(s(n)) ⊆ nspace(s(n)) is easy. We turn to the other
direction. The basic idea is that, given a language L ∈ nspace(s(n)), we construct a machine
which on input x guesses valid witnesses for x (where a witness here is an accepting computation
of the non-deterministic machine on input x). Since there may only be a single witness, we guess a
doubly-exponential number of times. This is where the absence of a time bound makes a difference.

In more detail, given L as above we know that any x ∈ L ∩ {0, 1}n has a witness (i.e., an
accepting computation) of length at most `(n) = 2O(s(n)). If we happen to have such a witness
written on the random tape, we can verify its correctness using space O(s(n)). So what we do is the
following: alternately (1) read the next `(n) bits of the random tape and check whether it encodes
a witness, (2) read the next `(n) bits of the random tape and halt if they are all 0. If x 6∈ L this
machine never accepts; if x ∈ L then it accepts with probability 1/2. Note that M may run for an
unbounded amount of time, however it halts on all inputs with probability 1.

The most interesting probabilistic space classes are those where logarithmic space is used:

Definition 2 L ∈ RL if there is a machine M using logarithmic space and running in polynomial
time such that:

x ∈ L ⇒ Pr[M(x) = 1] ≥ 1/2 and x 6∈ L ⇒ Pr[M(x) = 0] = 1.

L ∈ BPL if there is a machine M as above such that:

x ∈ L ⇒ Pr[M(x) = 1] ≥ 2/3 and x 6∈ L ⇒ Pr[M(x) = 1] ≤ 1/3.

Here, too, the exact constants are arbitrary as error reduction still works. (We need only to
maintain a counter of the fraction of accepting executions.) It is immediate that RL ⊆ NL. One
can also show that BPL ⊆ space(log2(n)) and BPL ⊆ P.

Bibliographic Notes

For an in-depth discussion of promise problems, and arguments in favor of taking that approach,
see the survey by Goldreich [1].

References

[1] O. Goldreich. On promise problems. Manuscript available on-line at
http://www.wisdom.weizmann.ac.il/~oded/prpr.html

13-4

Notes on Complexity Theory Last updated: October, 2011

Lecture 14

Jonathan Katz

1 Randomized Space Complexity

1.1 Undirected Connectivity and Random Walks

A classic problem in RL is undirected connectivity (UConn). Here, we are given an undirected
graph and two vertices s, t and are asked to determine whether there is a path from s to t. An RL
algorithm for this problem is simply to take a “random walk” (of sufficient length) in the graph,
starting from s. If vertex t is ever reached, then output 1; otherwise, output 0. (We remark that
this approach does not work for directed graphs.) We analyze this algorithm (and, specifically, the
length of the random walk needed) in two ways; each illustrates a method that is independently
useful in other contexts. The first method looks at random walks on regular graphs, and proves a
stronger result showing that after sufficiently many steps of a random walk the location is close to
uniform over the vertices of the graph. The second method is more general, in that it applies to
any (non-bipartite) graph; it also gives a tighter bound.

1.1.1 Random Walks on Regular Graphs

Fix an undirected graph G on n vertices where we allow self-loops and parallel edges (i.e., integer
weights on the edges). We will assume the graph is d-regular and has at least one self-loop at every
vertex; any graph can be changed to satisfy these conditions (without changing its connectivity) by
adding sufficiently many self-loops. Let G also denote the (scaled) adjacency matrix corresponding
to this graph: the (i, j)th entry is k/d if there are k edges between vertices i and j. Note that
G is symmetric (Gi,j = Gj,i for all i, j) and doubly stochastic (all entries are non-negative, and
all rows and columns sum to 1). A probability vector p = (p1, . . . , pn) ∈ Rn is a vector each of
whose entries is non-negative and such that

∑
i pi = 1. If we begin by choosing a vertex v of G

with probability determined by p, and then take a “random step” by choosing (uniformly) an edge
of v and moving to the vertex v′ adjacent to that edge, the resulting distribution on v′ is given
by p′ = G · p. Inductively, the distribution after t steps is given by Gt · p. Note that if we set
p = ei (i.e., the vector with a 1 in the ith position and 0s everywhere else), then Gt · p gives the
distribution on the location of a t-step random walk starting at vertex i.

An eigenvector of a matrix G is a vector v such that G · v = λv for some λ ∈ R; in this case
we call λ the associated eigenvalue. Since G is a symmetric matrix, standard results from linear
algebra show that there is an orthonormal basis of eigenvectors v1, . . . ,vn with (real) eigenvalues
λ1, . . . , λn, sorted so that |λ1| ≥ |λ2| ≥ · · · ≥ |λn|. If we let 1 denote the vector with 1/n in each
entry — i.e., it represents the uniform distribution over the vertices of G — then G · 1 = 1 and
so G has eigenvalue 1. Moreover, since G is a (doubly) stochastic matrix, it has no eigenvalues of
absolute value greater than 1. Indeed, let v = (v1, . . . , vn) be an eigenvector of G with eigenvalue λ,
and let j be such that |vj | is maximized. Then λv = G · v and so

|λvj | =
∣∣∑n

i=1 Gj,i · vi

∣∣

14-1

≤ |vj | ·
∑n

i=1 |Gj,i| = |vj | ;
we conclude that |λ| ≤ 1. If G is connected, then it has no other eigenvector with eigenvalue 1.
Since G is non-bipartite (because of the self-loops), −1 is not an eigenvalue either.

To summarize, if G is connected and not bipartite then it has (real) eigenvectors λ1, . . . , λn

with 1 = λ1 > |λ2| ≥ · · · ≥ |λn|. The (absolute value of the) second eigenvalue λ2 determines how
long a random walk in G we need so that the distribution of the final location is close to uniform:

Theorem 1 Let G be a d-regular, undirected graph on n vertices with second eigenvalue λ2, and
let p correspond to an arbitrary probability distribution over the vertices of G. Then for any t > 0

∥∥Gt · p− 1
∥∥

2
≤ |λ2|t.

Proof Write p =
∑n

i=1 αivi, where the {vi} are the eigenvectors of G (sorted according to
decreasing absolute value of their eigenvalues); recall v1 = 1. We have α1 = 1; this follows since
α1 = 〈p,1〉 / ‖1‖2

2 = (1/n)/(1/n) = 1. We thus have

Gt · p = Gt · 1 +
n∑

i=2

αiG
t · vi = 1 +

n∑

i=2

αi (λi)
t vi

and so, using the fact that the {vi} are orthogonal,

∥∥Gt · p− 1
∥∥2

2
=

n∑

i=2

α2
i (λi)

2t · ‖vi‖2
2

≤ λ2t
2 ·

n∑

i=2

α2
i · ‖vi‖2

2

≤ λ2t
2 · ‖p‖2

2 ≤ λ2t
2 · ‖p‖2

1 = λ2t
2 .

The theorem follows.

It remains to show a bound on |λ2|.

Theorem 2 Let G be a d-regular, connected, undirected graph on n vertices with at least one
self-loop at each vertex and d ≤ n. Then |λ2| ≤ 1− 1

poly(n) .

Proof Let u = (u1, . . . , un) be a unit eigenvector corresponding to λ2, and recall that u is
orthogonal to 1 = (1/n, . . . , 1/n). Let v = Gu = λ2u. We have

1− λ2
2 = ‖u‖2

2 · (1− λ2
2) = ‖u‖2

2 − ‖v‖2
2

= ‖u‖2
2 − 2 ‖v‖2

2 + ‖v‖2
2

= ‖u‖2
2 − 2 〈Gu,v〉+ ‖v‖2

2

=
∑

i

u2
i − 2

∑

i,j

Gi,j ujvi +
∑

j

v2
j

=
∑

i,j

Gi,j u2
i − 2

∑

i,j

Gi,j ujvi +
∑

i,j

Gi,j v2
j

=
∑

i,j

Gi,j (ui − vj)2,

14-2

using the fact that G is a symmetric, doubly stochastic matrix for the second-to-last equality. Since
u is a unit vector orthogonal to 1, there exist i, j with ui > 0 > uj and such that at least one of
ui or uj has absolute value at least 1/

√
n, meaning that ui − uj ≥ 1/

√
n. Since G is connected,

there is a path of length D, say, between vertices i and j. Renumbering as necessary, let i = 1,
j = D + 1, and let the vertices on the path be 2, . . . , D. Then

1√
n
≤ u1 − uD+1 = (u1 − v1) + (v1 − u2) + (u2 − v2) + (v2 − u3) + · · ·+ (vD − uD+1)

≤ |u1 − v1|+ · · ·+ |vD − uD+1|
≤

√
(u1 − v1)2 + · · ·+ (vD − uD+1)2 ·

√
2D

(using Cauchy-Schwarz for the last inequality). But then

∑

i,j

Gi,j(ui − vj)2 ≥ 1
d
· ((u1 − v1)2 + · · ·+ (vD − uD+1)2

) ≥ 1
2dnD

,

using Gi,i ≥ 1/d (since every vertex has a self-loop) and Gi,i+1 ≥ 1/d (since there is an edge from
vertex i to vertex i + 1). Since D ≤ n − 1, we get 1 − λ2

2 ≥ 1/4dn2 or |λ2| ≤ 1 − 1/8dn2, and the
theorem follows.

We can now analyze the algorithm for undirected connectivity. Let us first specify the algorithm
more precisely. Given an undirected graph G and vertices s, t, we want to determine if there is a path
from s to t. We restrict our attention to the connected component of G containing s, add at least one
self-loop to each vertex in G, and add sufficiently many additional self-loops to each vertex in order
to ensure regularity. Then we take a random walk of length ` = 16dn2 log n ≥ 2 · (1− |λ2|)−1 log n
starting at vertex s, and output 1 if we are at vertex t at the end of the walk. (Of course, we do
better if we output 1 if the walk ever passes through vertex t; our analysis does not take this into
account.) By Theorem 1, ∥∥∥G` · es − 1

∥∥∥
2
≤ |λ2|` ≤ 1/n2.

If t is in the connected component of s, the probability that we are at vertex t at the end of the
walk is at least 1

n − 1
n2 ≥ 1/2n. We can, of course, amplify this by repeating the random walk

sufficiently many times.

14-3

Notes on Complexity Theory Last updated: October, 2011

Lecture 15

Jonathan Katz

1 Randomized Space Complexity

1.1 Undirected Connectivity and Random Walks

1.1.1 Markov Chains

We now develop some machinery that gives a different, and somewhat more general, perspective
on random walks. In addition, we get better bounds for the probability that we hit t. (Note that
the previous analysis calculated the probability that we end at vertex t. But it would be sufficient
to pass through vertex t at any point along the walk.) The drawback is that here we rely on some
fundamental results concerning Markov chains that are presented without proof.

We begin with a brief introduction to (finite, time-homogeneous) Markov chains. A sequence of
random variables X0, . . . over a space Ω of size n is a Markov chain if there exist {pi,j} such that,
for all t > 0 and x0, . . . , xt−2, xi, xj ∈ Ω we have:

Pr[Xt = xj | X0 = x0, . . . , Xt−2 = xt−2, Xt−1 = xi] = Pr[Xt = xj | Xt−1 = xi] = pj,i.

In other words, Xt depends only on Xt−1 (that is, the transition is memoryless) and is furthermore
independent of t. We view Xt as the “state” of a system at time t. If we have a probability
distribution over the states of the system at time t, represented by a probability vector pt, then the
distribution at time t + 1 is given by P · pt (similar to what we have seen in the previous section).
Similarly, the probability distribution at time t + ` is given by P ` · pt.

A finite Markov chain corresponds in the natural way to a random walk on a (possibly directed
and/or weighted) graph. Focusing on undirected graphs (which is all we will ultimately be interested
in), a random walk on such a graph proceeds as follows: if we are at a vertex v at time t, we move
to a random neighbor of v at time t + 1. If the graph has n vertices, such a random walk defines
the Markov chain given by:

pj,i =
{

k/deg(i) there are k edges between j and i
0 otherwise

.

We continue to allow (multiple) self-loops; each self-loop contributes 1 to the degree of a vertex.
Let p be a probability distribution over the states of the system. We say p is stationary if

P · p = p. We have the following fundamental theorem of random walks on undirected graphs
(which is a corollary of a more general result for Markov chains):

Theorem 1 Let G be an undirected, connected, non-bipartite graph on n vertices, and consider
the transition matrix corresponding to a random walk on G. Then:

1. There is a unique stationary distribution p = (p1, . . . , pn).

15-1

2. Let hi,i denote the expected number of steps for a random walk beginning at vertex i to return
to i. Then hi,i = 1/pi.

In particular, the graph need not be regular.
We do not prove Theorem 1 here. (A proof of the first claim, and intuition for the second claim

can be found in [1, Lecture 8] or dedicated texts on Markov chains, e.g., [2].) Note that for any
undirected graph G, the conditions of the theorem can always be met by (1) restricting attention to
a connected component of G, and (2) adding a self-loop to any vertex in the connected component.

What is the stationary distribution for a given graph? Say we have an undirected, connected,
non-bipartite graph G with m edges and ` self-loops. It can be verified by a simple calculation that
setting pi = deg(i)

2m+` for each vertex i gives a stationary distribution. (For each non-self-loop incident
on vertex i, the probability mass exiting i via that edge is 1

2m+` , which is equal to the probability
mass entering i via that edge.) It follows that, for any vertex i, we have hi,i = 2m+`

deg(i) .
There is another way to view the random walk on G: by looking at the graph G′ on 2m + `

vertices where each vertex in G′ corresponds to an edge plus direction (for non-self-loops) of G,
and there is an edge in G′ between vertices (i, j) and (j′, k′) iff j = j′. The graph G′ is now a
directed graph, but Theorem 1 can be shown to apply here as well.1 Note also that a random
walk in G corresponds exactly to a random walk in G′. In G′, however, the stationary distribution
is the uniform distribution. (This can be verified by calculation, or derived from the stationary
distribution on G.) Thus, for any edge (i, j) in G (which is just a vertex in G′), the expected
number of steps to return to that edge (with direction) after crossing that edge is 1/(2m + `).

Let hi,j denote the expected number of steps to go from vertex i to vertex j. With the above
in hand we can prove the following:

Theorem 2 Consider a random walk on an undirected, connected, non-bipartite graph G with `
self-loops and m (other) edges. If there is an edge in G from vertex i to vertex j then hi,j + hj,i ≤
2m + ` and, in particular, hi,j < 2m + `.

Proof We prove the theorem in two ways. Looking at the random walk in G, we have seen
already that hi,i = 2m+`

deg(i) . If i = j in the theorem then there is a self-loop from i to itself; because
G is connected we must have deg(i) ≥ 2 and so the theorem holds. For i 6= j, we have:

2m + `

deg(j)
= hj,j =

1
deg(j)

·
∑

k∈N(j)

(1 + hk,j) ,

where N(j) are the neighbors of j (the above assumes j has no self-loops or multiple edges, but the
analysis extends to those cases as well). Thus if there is an edge connecting (distinct) vertices i, j
(so i ∈ N(j)), then hi,j < 2m + `. (That hi,j + hj,i ≤ 2m + ` is left as an exercise, but see next.)

Alternately, we may consider the random walk on the graph G′ defined earlier. When we take
a step from vertex i to vertex j in our random walk on G, we view this as being at vertex (i, j)
in the graph G′. We have seen that the stationary distribution in G′ is uniform over the 2m + `
edges (with direction), which means that the expected time to re-visit the edge (i, j) is 2m + `.
But re-visiting edge (i, j) corresponds to a one-step transition from i to j, re-visiting i, and then
following edge (i, j) again. In other words, beginning at j, the expected number of steps to visit i
and then follow edge (i, j) is 2m + `. This gives the desired upper bound on hj,i + hi,j .

1Advanced note: G′ is connected since G is, and is ergodic since G is. Ergodicity is all that is needed for Theorem 1.

15-2

With can now analyze the random-walk algorithm for UConn. Given undirected graph G with
n vertices and |E| edges, and vertices s, t in G, consider the connected component of G containing s.
(Technically, we can imagine adding a self-loop at t to ensure that G is non-bipartite. However, it
is clear that this has no effect on the algorithm.) If t is in the same connected component as s then
there is a path (s = v0, v1, . . . , v` = t) with ` < n; the expected number of steps to go from vi to vi+1

is less than 2|E| + 1. Thus the expected number of steps to go from s = v0 to t = v` is O(n|E|).
Taking a random walk for twice as many steps, we will hit t at some point with probability at
least 1/2.

1.1.2 A Randomized Algorithm for 2SAT

Another easy application of random walks is the following RP algorithm for 2SAT: Begin by
choosing a random assignment for the n variables. Then, while there exists an unsatisfied clause C,
choose one of the variables in C at random and flip its value. Repeat for at most Θ(n2) steps, and
output 1 if a satisfying assignment is ever found.

Let us show that this algorithm finds a satisfying assignment with high probability when one
exists. Fix some satisfying assignment ~x, and let the state of the algorithm be the number of
positions in which the current assignment matches ~x. (So the state i ranges from 0 to n.) When
the algorithm chooses an unsatisfied clause, the value of at least one of the variables in that
clause must differ from the corresponding value of that variable in ~x; thus, the state increases with
probability at least 1/2. The worst case is when the state increases with probability exactly 1/2
(except when i = 0, of course). (We can mentally add a self-loop to state n so the graph is non-
bipartite.) We thus have a random walk on a line, in the worst case starting at i = 0. The expected
number of steps to move from state 0 to state n is h0,1 + · · ·+ hn−1,n ≤ n · (2n + 1) = O(n2).

References

[1] J. Katz. Lecture notes for CMSC 652 — Complexity Theory. Fall 2005.

[2] M. Mitzenmacher and E. Upfal. Probablity and Computing: Randomized Algorithms and Prob-
abilistic Analysis. Cambridge University Press, 2005.

15-3

Notes on Complexity Theory Last updated: October, 2011

Lecture 16

Jonathan Katz

1 Interactive Proofs

Let us begin by re-examining our intuitive notion of what it means to “prove” a statement. Tra-
ditional mathematical proofs are static and are verified deterministically : the verifier checks the
claimed proof of a given statement and is either convinced that the statement is true (if the proof
is correct) or remains unconvinced (if the proof is flawed — note that the statement may possibly
still be true in this case, it just means there was something wrong with the proof). A statement is
true (in this traditional setting) iff there exists a valid proof that convinces a legitimate verifier.

Abstracting this process a bit, we may imagine a prover P and a verifier V such that the prover
is trying to convince the verifier of the truth of some particular statement x; more concretely, let
us say that P is trying to convince V that x ∈ L for some fixed language L. We will require the
verifier to run in polynomial time (in |x|), since we would like whatever proofs we come up with to
be efficiently verifiable. A traditional mathematical proof can be cast in this framework by simply
having P send a proof π to V, who then deterministically checks whether π is a valid proof of
x and outputs V(x, π) (with 1 denoting acceptance and 0 rejection). (Note that since V runs in
polynomial time, we may assume that the length of the proof π is also polynomial.) The traditional
mathematical notion of a proof is captured by requiring:

• If x ∈ L, then there exists a proof π such that V(x, π) = 1.

• If x 6∈ L, then no matter what proof π the prover sends we have V(x, π) = 0.

We refer to the above as a type of proof system, a term we will define more formally later. It should
be obvious that L has a proof system of the above sort iff L ∈ NP.

There are two ways the above can be generalized. First, we can allow the verifier to be proba-
bilistic. Assume for a moment that we restrict the prover to sending an empty proof. If the verifier
is deterministic, then a language L has a proof system of this sort only if L ∈ P (as the prover is
no help here). But if the verifier is probabilistic then we can handle any L ∈ BPP (if we allow
two-sided error). If we go back to allowing non-empty proofs, then we already gain something: we
can eliminate the error when x ∈ L. To see this, recall the proof that BPP ∈ Σ2. The basic idea
was that if a set S ⊂ {0, 1}` is “small” then for any strings z1, . . . , z` ∈ {0, 1}`, the set

⋃
i(S ⊕ zi)

is still “small.” To make this concrete, say |S| ≤ 2`/4`. Then for any z1, . . . , z` we have:
∣∣∣∣∣
⋃̀

i=1

(S ⊕ zi)

∣∣∣∣∣ ≤ ` · |S| ≤ 2`/4. (1)

On the other hand, if S is “large” (specifically, if |S| ≥ (1− 1
4`) ·2`) then there exist z1, . . . , zm such

that
⋃

i(S ⊕ zi) = {0, 1}`.
The above leads to the following proof system for any L ∈ BPP: Let M be a BPP algorithm

deciding L, using a random tape of length `, and having error at most 1/4` (for some polynomial `).

16-1

The prover sends a proof π = (z1, . . . , z`) to the verifier (where each zi ∈ {0, 1}`); V then chooses
a random r ∈ {0, 1}` and accepts iff

∨̀

i=1

M(x; r ⊕ zi) = 1.

For common input x, let Sx be the set of random coins for which M(x) = 1. If x ∈ L, then
|Sx| ≥ (1 − 1

4`) · 2` and so there does indeed exist π = (z1, . . . , z`) such that r ∈ ⋃
i(Sx ⊕ zi) for

every r ∈ {0, 1}`. Fixing such a π, this means that for every r there exists an index i for which
r ∈ Sx ⊕ zi, and so r⊕ zi ∈ Sx. Thus, if the prover sends this π the verifier will always accept. On
the other hand, if x 6∈ L then |Sx| ≤ 2`/4` and so, using Eq. (1), we have

Pr
r∈{0,1}`

[
r ∈

⋃̀

i=1

(S ⊕ zi)

]
≤ 1/4.

So V accepts in this case with probability at most 1/4.
To summarize, we have shown a proof system for any L ∈ BPP such that:

• If x ∈ L, then there exists a proof π such that Pr[V(x, π) = 1] = 1.

• If x 6∈ L, then no matter what proof π the prover sends we have Pr[V(x, π) = 1] ≤ 1/4.

Thus, assuming P 6= BPP, we see that randomization helps. And assuming coRP 6= BPP,
allowing communication from the prover to the verifier helps.

We can further generalize proof systems by allowing interaction between the prover and verifier.
(One can think of this as allowing the verifier to ask questions. In this sense, the notion of a proof
becomes more like a lecture than a static proof written in a book.) Note that unless we also allow
randomness, allowing interaction will not buy us anything: if the verifier is deterministic then the
prover can predict all the verifier’s questions in advance, and simply include all the corresponding
answers as part of the (static) proof.

Before we explore the additional power of interaction, we introduce some formal definitions.
For interactive algorithms P,V, let 〈P,V〉 (x) denote the output of V following an interaction of
P with V on common input x.

Definition 1 L ∈ IP if there exist a pair of interactive algorithms (P,V), with V running in
probabilistic polynomial time (in the length of the common input x), such that

1. If x ∈ L, then Pr[〈P,V〉 (x) = 1] = 1.

2. If x 6∈ L, then for any (even cheating) P∗ we have Pr[〈P∗,V〉 (x) = 1] ≤ 1/2.

(We stress that P and P∗ are allowed to be computationally unbounded.) (P,V) satisfying the
above are called a proof system for L. We say L ∈ IP[`] if it has a proof system as above using
` = `(|x|) rounds of interaction (where each message sent by either party counts as a round).

Using this notation, we have seen already that NP ∪ BPP ⊆ IP[1].
Some comments on the definition are in order:

16-2

• One could relax the definition to allow for two-sided error, i.e., error even when x ∈ L.
It is known, however, that this results in an equivalent definition [1] (although the round
complexity increases by a constant). On the other hand, if the definition is “flipped” so that
we allow error only when x ∈ L (and require no error when x 6∈ L) we get a definition that is
equivalent to NP.

• As usual, the error probability of 1/2 is arbitrary, and can be made exponentially small by
repeating the proof system suitably many times. (It is easy to see that sequential repetition
works, and a more detailed proof shows that parallel repetition works also [2, Appendix C].)

• Although the honest prover is allowed to be computationally unbounded, it suffices for it to
be a PSPACE machine. In certain cases it may be possible to have P run in polynomial time
(for example, if L ∈ NP and P is given a proof π as auxiliary information). In general, it
remains an open question as to how powerful P needs to be in order to give a proof for some
particular class of languages.1

1.1 Graph Non-Isomorphism is in IP
It is possible to show that IP ⊆ PSPACE (since, fixing some V and some x, we can compute the
optimal prover strategy in polynomial space). But does interaction buy us anything? Does IP
contain anything more than NP and BPP? We begin by showing the rather surprising result that
graph non-isomorphism is in IP.

If G is an n-vertex graph and π is a permutation on n elements, we let π(G) be the n-vertex
graph in which

(i, j) is an edge in G ⇔ (π(i), π(j)) is an edge in π(G).

Note that G0 is isomorphic to G1 (written G0
∼= G1) iff G0 = π(G1) for some π. (We identify

a graph with its adjacency matrix. So, there is a difference between two graphs being equal [i.e.,
having the same adjacency matrix] and being isomorphic.)

Let G0, G1 be two graphs. The proof system for graph non-isomorphism works as follows:

1. The verifier chooses a random bit b and a random permutation π, and sends G′ = π(Gb).

2. If G′ ∼= G0, the prover replies with 0; if G′ ∼= G1, it replies with 1.

3. The verifier accepts iff the prover replies with V’s original bit b.

Note that if G0 6∼= G1, then it cannot be the case that both of G′ ∼= G0 and G′ ∼= G1 hold; so, the
prover always answers correctly. On the other hand, if G0

∼= G1 (so that (G0, G1) is not in the
language) then the verifier’s bit b is completely hidden to the prover (even though the prover is
all-powerful!); this is because a random permuted copy of G0 is in this case distributed identically
to a random permuted copy of G1. So when G0, G1 are isomorphic, even a cheating prover can
only make the verifier accept with probability 1/2.

1For example, we will soon see that coNP ⊆ IP. By what we have just said, we know that if L ∈ coNP then
there exists a proof system for L with a prover running in PSPACE. But we do not know whether there exists a proof
system for L with a prover running in, say, PcoNP = PNP .

16-3

2 Public-Coin Proof Systems

Crucial to the above protocol for graph non-isomorphism is that the verifier’s coins are private,
i.e., hidden from the prover. At around the same time the class IP was proposed, a related class
was proposed in which the verifier’s coins are required to be public (still, the verifier does not toss
coins until they are needed, so that the prover does not know what coins will be tossed in the
future). These are called Arthur-Merlin proof systems, where Arthur represents the (polynomial-
time) verifier and Merlin the (all-powerful) prover. We again require perfect completeness and
bounded soundness (though see Theorems 1 and 2 below). As in the case of IP one can in general
allow polynomially many rounds of interaction. Although it might appear that Arthur-Merlin
proofs are (strictly) weaker than general interactive proofs, this is not the case [3]. We do not
prove this, but an indication of the general technique will be given in Section ??.

We will consider for now only the Arthur-Merlin classes MA and AM where there are one or
two rounds of interaction. For the class MA Merlin talks first, and then Arthur chooses random
coins and tries to verify the “proof” that Merlin sent. (We have already seen this type of proof
system before when we showed an interactive proof for BPP.) For the class AM Arthur talks
first but is limited to sending its random coins (so the previous proof of graph non-isomorphism
does not satisfy this); then Merlin sends a proof that is supposed to “correspond” to these random
coins, and Arthur verifies it. (Arthur does not choose any additional random coins after receiving
Merlin’s message, although it would not change the class if Arthur did; see Theorem 3, below.)
One can also express these in the following definition, which is just a specialization of the general
definition of Arthur-Merlin proofs to the above cases:

Definition 2 L ∈ MA if there exists a deterministic algorithm V running in polynomial time (in
the length of its first input) such that:

• If x ∈ L then ∃π such that for all r we have V(x, π, r) = 1.

• If x 6∈ L then ∀π we have Prr[V(x, π, r) = 1] ≤ 1/2.

L ∈ AM if there exists a deterministic algorithm V running in polynomial time (in the length of
its first input) such that:

• If x ∈ L then for all r there exists a π such that V(x, r, π) = 1.

• If x 6∈ L then Prr[∃π : V(x, r, π) = 1] ≤ 1/2.

In the case of MA the prover (Merlin) sends π and the verifier (Arthur) then chooses random
coins r, while in the case of AM the verifier (Arthur) sends random coins r and then the prover
(Merlin) responds with π.

MA can be viewed as a randomized version of NP (since a fixed proof is verified using random-
ization) and so a language in MA is sometimes said to have “publishable proofs.” It is clear that
Arthur-Merlin proofs are not more powerful than the class IP (since an Arthur-Merlin proof system
is a particular kind of proof system).

As we have said, MA and AM do not change if we allow error when x ∈ L. We now prove this.
Let MAε and AMε denote the corresponding classes when (bounded) two-sided error is allowed.

Theorem 1 MAε = MA.

16-4

Proof Let L ∈ MAε. Then there is a proof system such that if x ∈ L then there exists a π
(that Merlin can send) for which Arthur will accept with high probability (i.e., V(x, π, r) = 1 with
high probability over choice of r), while if x 6∈ L then for any π Arthur will accept only with low
probability (i.e., V(x, π, r) = 1 with low probability over choice of r). For a given x and π, let Sx,π

denote the set of coins r for which V(x, π, r) = 1. So if x ∈ L there exists a π for which Sx,π is
“large,” while if x 6∈ L then for every π the set Sx,π is “small.” Having Merlin send π along with a
proof that Sx,π is “large” (exactly as in the BPP case) gives the desired result.

Theorem 2 AMε = AM.

Proof Say L ∈ AMε. Using standard error reduction, we thus have a proof system for L in
which Arthur sends a random string r of (polynomial) length ` and the error is less than 1/4`. For
a common input x, let Sx denote the set of challenges r (that Arthur can send) for which there
exists a π (that Merlin can send) such that V(x, r, π) = 1. By definition of AMε, if x ∈ L then
|Sx| ≥ (1− 1

4`) · 2` while if x 6∈ L then |Sx| ≤ 2`/4`. Exactly as in the proof system for BPP shown
previously, this means that we have the following proof system for L:

1. Merlin sends z1, . . . , z` ∈ {0, 1}`.

2. Arthur sends random r′ ∈ {0, 1}`.

3. Merlin proves that r′ ∈ ⋃
i(Sx ⊕ zi) by finding an i such that r′ ⊕ zi ∈ Sx, setting r = r′ ⊕ zi,

and then computing the appropriate response π to the “challenge” r. So Merlin’s response is
(i, π).

4. Arthur runs V(x, r′ ⊕ zi, π) and outputs the result.

The above has perfect completeness and soundness error at most 1/4 (we do not go through the
analysis since it is the same as in the BPP case).

The problem is that the above is a three-round proof system (notationally, it shows that L ∈
MAM)! But we show below that an “MA” step can be replaced by an “AM” step (while preserving
perfect completeness), and so if we apply that here and then combine Merlin’s last two messages
we get an AMM = AM protocol.

As promised, we now show that MA ⊆ AM. More generally, the proof shows that an “MA”
step can be replaced by an “AM” step.

Theorem 3 MA ⊆ AM.

Proof Say L ∈ MA. Then we have an MA proof system with perfect completeness and sound-
ness error at most 1/2. Say the message π sent by Merlin has length p(|x|) for some polynomial p.
Using error reduction, we can obtain a proof system with perfect completeness and soundness error
at most 1/2p+1; note that the lengths of the messages sent by Merlin do not change (only the
lengths of the random coins r used by Arthur increase). So, when x ∈ L there exists a π (call it
π∗) for which V(x, π∗, r) = 1 for all r chosen by Arthur, while if x 6∈ L then for any π sent by
Merlin the fraction of r for which Arthur accepts is at most 1/2p+1. Now simply flip the order of
messages: first Arthur will choose r and send it to Merlin, and then Merlin replies with a π and
Arthur verifies exactly as before. If x ∈ L then Merlin has no problem, and can simply send π∗. On

16-5

the other hand, if x 6∈ L then what is the probability that there exists a π that will cause Arthur
to accept? Well, for any fixed π the probability that π will work is at most 1/2p+1. Taking a union
bound over all π, we see that the probability that there exists one that works is at most 1/2. We
conclude that L ∈ AM.

As we have said, the same proof shows that an “MA” step can be replaced by an “AM”
step in general. So, AMA = AAM = AM and2 MAM = AMM = AM, and so on. In fact,
the above proof technique shows that any Arthur-Merlin proof system with a constant number of
rounds collapses to exactly AM (except for MA which may be strictly contained in AM). Note
that the proof does not extend to proof systems with an arbitrary (non-constant) number of rounds
since the communication complexity increases by a multiplicative factor each time an “MA” step
is replaced by an “AM” step (and so if we perform this switch too many times, the communication
will no longer be polynomial).

References

[1] M. Furer, O. Goldreich, Y. Mansour, M. Sipser, and S. Zachos. On Completeness and
Soundness in Interactive Proof Systems. In Advances in Computing Research: A Re-
search Annual, vol. 5 (Randomness and Computation, S. Micali, ed.), 1989. Available at
http://www.wisdom.weizmann.ac.il/~oded/papers.html

[2] O. Goldreich. Modern Cryptography, Probabilistic Proofs, and Pseudorandomness. Springer-
Verlag, 1998.

[3] S. Goldwasser and M. Sipser. Private Coins vs. Public Coins in Interactive Proof Systems.
STOC ’86.

2The theorem shows that AMA ⊆ AAM = AM, but the inclusion AM ⊆ AMA is trivial.

16-6

Notes on Complexity Theory Last updated: October, 2011

Lecture 17

Jonathan Katz

1 Graph Non-Isomorphism is in AM

The proof system we showed earlier for graph non-isomorphism relied on the fact that the verifier’s
coins are kept hidden from the prover. Is this inherent? Somewhat surprisingly, we now show a
public-coin proof for graph non-isomorphism. Before doing so, we take a brief detour to discuss
pairwise-independent hash functions (which are useful in many other contexts as well).

1.1 Pairwise-Independent Hash Functions

Fix some domain D and range R. Let H = {hk}k∈K be a family of functions, where each k ∈ K
defines a function hk : D → R. We say that H is1 pairwise independent family if for all distinct
x, x′ ∈ D and all (not necessarily distinct) y, y′ ∈ R we have

Prk←K

[
hk(x) = y

∧
hk(x′) = y′

]
= 1/|R|2 .

Put differently, let D = {x1, . . . , x`} and consider the random variables Yi = hK(xi) (where K is
uniform). If H is pairwise independent then each Yi is uniformly distributed, and moreover the
random variables Y1, . . . , Y` are pairwise independent; i.e., for any i 6= j the random variables Yi

and Yj are independent.
We show a simple construction of a pairwise-independent family for D = R = F, where F is

any finite field. Setting F = GF (2n), and viewing strings of length n as field elements, we obtain
a construction with D = R = {0, 1}n. By truncating the output, we obtain a construction with
D = {0, 1}n and R = {0, 1}` for any n ≥ `. By padding the input with 0s, we obtain a construction
for any ` ≥ n.

Fix D = R = F and let H = {ha,b}a,b∈F where ha,b(x) = ax + b. We claim that H is pairwise
independent. Indeed, fix any distinct x, x′ ∈ F and any y, y′ ∈ F, and consider the probability (over
choice of a, b) that

y = ax + b

y′ = ax′ + b.

Using some basic algebra, we see that the above equations are true iff

a = (y − y′) · (x− x′)−1

b = y − (y − y′) · (x− x′)−1 · x.

(Note that the above rely on the fact that x 6= x′.) Since x, x′, y, y′ are fixed, the right-hand sides
of the above equations are some fixed elements in F; hence, the probability that a, b satisfy both
equations is exactly 1/|F|2 as required.

1Frequently, terminology is abused and hk ∈ H is called a pairwise-independent hash function. Formally, it only
makes sense to speak about pairwise independent families of functions.

17-1

For applications, what we actually need are ways to construct pairwise-independent families
on, say, {0, 1}n for some given n. In that case we actually want an efficient probabilistic algorithm
that, given n, outputs a key k that, in turn, defines a function hk : {0, 1}n → {0, 1}n that is
efficiently computable. The construction given above satisfies this, though it is not entirely trivial
to show this. (In particular, we need to use the fact that we can efficiently generate, and manipulate
elements of, GF (2n).)

1.2 An AM Protocol for Graph Non-Isomorphism

We begin by introducing some more notation. For an n-vertex graph G (represented as an adjacency
matrix), consider the (multi-)set all(G) = {π1(G), . . . , πn!(G)} of all permuted versions of G. This
is indeed a multi-set (in general) since it is possible that πi(G) = πj(G) even when πi 6= πj . For
example, consider the 3-vertex graph G in which there is a single edge (1, 2). Considering the 6
possible permutations on the labels of the vertices, we see that π = (12)(3) maps G to itself, even
though π is not the identity permutation. On the other hand, π′ = (13)(2) maps G to a graph
isomorphic, but not identical, to G.

Let aut(G) = {π | π(G) = G}; these are the automorphisms of G. (Note that aut(G) is never
empty, since the identity permutation is always in aut(G).) Let iso(G) be the set (not multi-set)
{π(G) | π is a permutation}. We claim that for any n-vertex graph G we have:

|aut(G)| · |iso(G)| = n! .

The reason is that our original multi-set all(G) has exactly n! elements in it, but each graph in iso(G)
appears exactly aut(G) times in all(G) (because |aut(G)| = |aut(π(G))| for any permutation π).

We now have the ideas we need to describe the proof system. Given graphs (G0, G1), define the
set W as follows:

W =
{

(H, σ) | H is isomorphic to either G0 or G1

and σ ∈ aut(H)

}
.

Note that if G0
∼= G1, then H is isomorphic to G0 iff it is isomorphic to G1; also, the number of

automorphisms of any such H is exactly |aut(G0)|. So the size of W is exactly |iso(G0)| · |aut(G0)| =
n!. On the other hand, if G0 6∼= G1 then the graphs isomorphic to G0 are distinct from those graphs
isomorphic to G1. So the size of W in this case is

|iso(G0)| · |aut(G0)|+ |iso(G1)| · |aut(G1)| = 2n! .

So, |W ×W | = (n!)2 if G0
∼= G1 and |W ×W | = 4 · (n!)2 if G0 6∼= G1. Furthermore, it is possible to

prove membership in W by giving an isomorphism to either G0 or G1 (the automorphism can be
verified in polynomial time).

The above suggests the following proof system:

1. On common input (G0, G1), define W × W as above. (Arthur obviously cannot construct
W × W , but all it needs to do is compute the upper bound 4(n!)2 on its size.) Let m =
log 4(n!)2, and note that m is polynomial in the input size n.

2. Arthur selects a random h from a pairwise-independent family, where h maps strings of the
appropriate length (which will become obvious in a minute) to {0, 1}m. It sends h to Merlin.

17-2

3. Merlin finds an x ∈ W ×W such that h(x) = 0m (if one exists). It sends this x to Arthur,
along with a proof that x ∈ W ×W .

4. Arthur outputs 1 if x ∈ W ×W and h(x) = 0m.

We now analyze the above. Say (G0, G1) are isomorphic. Then |W ×W | = (n!)2 and so

Prh[∃x ∈ W ×W : h(x) = 0m] ≤
∑

x∈W×W

Prh[h(x) = 0m]

= (n!)2 · 2−m = 1/4,

and so Merlin convinces Arthur only with probability at most 1/4. On the other hand, if G0 6∼= G1

then |W ×W | = 4(n!)2 and we can bound the desired probability as follows:

Prh[∃x ∈ W ×W : h(x) = 0m] ≥
∑

x∈W×W

Prh[h(x) = 0m]

− 1
2
·

∑

x,y∈W×W

x 6=y

Prh[h(x) = 0m ∧ h(y) = 0m]

> 1− 1
2
· (4(n!)2)2 · (2−m)2 = 1/2 ,

using the inclusion-exclusion principle for the first inequality, and relying on pairwise independence
in the second step. (A better bound can be obtained using Chebyshev’s inequality.)

The above does not have perfect completeness, but we have seen before that this can be fixed.

1.3 Evidence that Graph Isomorphism is not NP-Complete

Let GI be the language of graph isomorphism, and GNI be the language of graph non-isomorphism.
In the previous section we showed GNI ∈ AM. This gives evidence that GI is not NP-complete.

Theorem 1 If GI is NP-complete, then the polynomial hierarchy collapses (specifically, PH = Σ2).

Proof We first observe that AM ⊆ Π2 (why?). Now, assume GI is NP-complete. Then GNI is
coNP-complete and hence (since GNI ∈ AM) we have coNP ⊆ AM. We show that this implies
Σ2 ⊆ AM ⊆ Π2 and hence PH = Σ2.

Say L ∈ Σ2. Then by definition of Σ2, there is a language L′ ∈ Π1 = coNP such that: (1) if
x ∈ L then there exists a y such that (x, y) ∈ L′, but (2) if x 6∈ L then for all y we have (x, y) 6∈ L′.
This immediately suggests the following proof system for L:

1. Merlin sends y to Arthur.

2. Arthur and Merlin then run an AM protocol that (x, y) ∈ L′ (this is possible precisely because
L′ ∈ coNP ⊆ AM).

The above is an MAM proof system for L. But, as we have seen, this means there is an AM proof
system for L. Since L ∈ Σ2 was arbitrary this means Σ2 ⊆ AM, completing the proof.

17-3

Notes on Complexity Theory Last updated: October, 2011

Lecture 18

Jonathan Katz

1 The Power of IP
We have seen a (surprising!) interactive proof for graph non-isomorphism. This begs the question:
how powerful is IP?

1.1 coNP ⊆ IP
As a “warm-up” we show that coNP ⊆ IP. We have seen last time that coNP is unlikely to have
a constant-round interactive proof system (since this would imply1 that the polynomial hierarchy
collapses). For this reason it was conjectured at one point that IP was not “too much more
powerful” than NP. Here, however, we show this intuition wrong: any language in coNP has a
proof system using a linear number of rounds.

We begin by arithmetizing a 3CNF formula φ to obtain a polynomial expression that evaluates
to 0 iff φ has no satisfying assignments. (This powerful technique, by which a “combinatorial”
statement about satisfiability of a formula is mapped to an algebraic statement about a polynomial,
will come up again later in the course.) We then show how to give an interactive proof demonstrating
that the expression indeed evaluates to 0.

To arithmetize φ, the prover and verifier proceed as follows: identify 0 with “false” and positive
integers with “true.” The literal xi becomes the variable xi, and the literal x̄i becomes (1−xi). We
replace “∧” by multiplication, and “∨” by addition. Let Φ denote the polynomial that results from
this arithmetization; note that this is an n-variate polynomial in the variables x1, . . . , xn, whose
total degree is at most the number of clauses in φ.

Now consider what happens when the {xi} are assigned boolean values: all literals take the
value 1 if they evaluate to “true,” and 0 if they evaluate to “false.” Any clause (which is a
disjunction of literals) takes a positive value iff at least one of its literals is true; thus, a clause
takes a positive value iff it evaluates to “true.” Finally, note that Φ itself (which is a conjunction
of clauses) takes on a positive value iff all of its constituent clauses are positive. We can summarize
this as: Φ(x1, . . . , xn) > 0 if φ(x1, . . . , xn) = true, and Φ(x1, . . . , xn) = 0 if φ(x1, . . . , xn) = false.
Summing over all possible (boolean) settings to the variables, we see that

φ ∈ SAT ⇔
∑

x1∈{0,1}
· · ·

∑

xn∈{0,1}
Φ(x1, . . . , xn) = 0.

If φ has m clauses, then Φ has degree (at most) m (where the [total] degree of a polynomial
is the maximum degree on any of its monomials, and the degree of a monomial is the sum of the
degrees of its constituent variables). Furthermore, the sum above is at most 2n · 3m. So, if we work

1In more detail: a constant-round proof system for coNP would imply a constant-round public-coin proof system
for coNP, which would in turn imply coNP ⊆ AM. We showed last time that the latter implies the collapse of PH.

18-1

modulo a prime q > 2n · 3m the above is equivalent to:

φ ∈ SAT ⇔
∑

x1∈{0,1}
· · ·

∑

xn∈{0,1}
Φ(x1, . . . , xn) = 0 mod q.

Working modulo a prime (rather than over the integers) confers two advantages: it keeps the
numbers from getting too large (since all numbers will be reduced modulo q; note that |q| = log q is
polynomial) and it means that we are working over the finite field Fq (which simplifies the analysis).

We have now reduced the question of whether φ is unsatisfiable to the question of proving
that a particular polynomial expression sums to 0! This already hints at the power of arithmeti-
zation: it transforms questions of logic (e.g., satisfiability) into questions of abstract mathematics
(polynomials, group theory, algebraic geometry, . . .) and we can then use all the powerful tools of
mathematics to attack our problem. Luckily, for the present proof the only “deep” mathematical
result we need is that a non-zero polynomial of degree m over a field has at most m roots. An easy
corollary is that two different polynomials of degree (at most) m can agree on at most m points.

We now show the sum-check protocol, which is an interactive proof that φ is not satisfiable.

• Both prover and verifier have φ. They both generate the polynomial Φ. Note that the
(polynomial-time) verifier cannot write out Φ explicitly, but it suffices for the verifier to
be able to evaluate Φ on any given values of x1, . . . , xn. The prover wants to show that
0 =

∑
x1∈{0,1} · · ·

∑
xn∈{0,1}Φ(x1, . . . , xn).

• The prover sends a prime q such that q > 2n ·3m. The verifier checks the primality of q. (The
verifier could also generate q itself, and send it to the prover.) All subsequent operations are
performed modulo q.

• The verifier initializes v0 = 0.

• The following is repeated for i = 1 to n:

– The prover sends a polynomial P̂i (in one variable) of degree at most m.
– The verifier checks that P̂i has degree at most m and that P̂i(0)+ P̂i(1) = vi−1 (addition

is done in Fq). If not, the verifier rejects. Otherwise, the verifier chooses a random
ri ∈ Fq, computes vi = P̂i(ri), and sends ri to the prover.

• The verifier accepts if Φ(r1, . . . , rn) = vn mod q and rejects otherwise. (Note that even though
we originally only “cared” about the values Φ takes when its inputs are boolean, nothing stops
us from evaluating Φ at any points in the field.)

Claim 1 If φ is unsatisfiable then a prover can make the verifier accept with probability 1.

For every 1 ≤ i ≤ n (and given the verifier’s choices of r1, . . . , ri−1) define the degree-m polynomial:

Pi(xi)
def=

∑

xi+1∈{0,1}
· · ·

∑

xn∈{0,1}
Φ(r1, . . . , ri−1, xi, xi+1, . . . , xn).

We claim that if φ is unsatisfiable and the prover always sends P̂i = Pi, then the verifier always
accepts. In the first iteration (i = 1), we have

P1(0) + P1(1) =
∑

x1∈{0,1}

 ∑

x2∈{0,1}
· · ·

∑

xn∈{0,1}
Φ(x1, . . . , xn)

 = 0 = v0,

18-2

since φ is unsatisfiable. For i > 1 we have:

Pi(0) + Pi(1) =
∑

xi∈{0,1}

∑

xi+1∈{0,1}
· · ·

∑

xn∈{0,1}
Φ(r1, . . . , ri−1, xi, . . . , xn)

= Pi−1(ri−1) = vi−1.

Finally, vn
def= Pn(rn) = Φ(r1, . . . , rn) so the verifier accepts.

Claim 2 If φ is satisfiable, then no matter what the prover does the verifier will accept with prob-
ability at most nm/q.

The protocol can be viewed recursively, where in iteration i the prover is trying to convince the
verifier that

vi−1 =
∑

xi∈{0,1}
· · ·

∑

xn∈{0,1}
Φi(xi, . . . , xn) (1)

for some degree-m polynomial Φi that the verifier can evaluate. (In an execution of the protocol,
we have Φ1 = Φ; for i > 1 we have Φi(xi, . . . , xn) = Φ(r1, . . . , ri−1, xi, . . . , xn).) Each iteration i
proceeds as follows: the prover sends some degree-m polynomial P ′

i (xi) (this polynomial is supposed
to be equal to

∑
xi+1∈{0,1} · · ·

∑
xn∈{0,1}Φi(xi, . . . , xn) but may not be if the prover is cheating).

The verifier checks that
∑

xi∈{0,1} P ′
i (xi) = vi−1 and, if so, then chooses a random point ri; the

prover then needs to convince the verifier that

vi
def= P ′

i (ri) =
∑

xi+1∈{0,1}
· · ·

∑

xn∈{0,1}
Φi+1(xi+1, . . . , xn),

where Φi+1(xi+1, . . . , xn) = Φi(ri, xi+1, . . . , xn).
Looking now abstractly at Eq. (1), we claim that if Eq. (1) does not hold then the prover can

make the verifier accept with probability at most km/q, where k = n − i + 1 is the number of
variables we are summing over. The proof is by induction on k:

Base case. When k = 1 we have

vn 6=
∑

xn∈{0,1}
Φn(xn) (2)

but the prover is trying to convince the verifier otherwise. The prover sends some polynomial P ′
n(xn).

If P ′
n = Φn the verifier always rejects since, by Eq. (2), P ′

n(0) + P ′
n(1) 6= vn. If P ′

n 6= Φn, then
the polynomials P ′

n and Φn agree on at most m points; since the verifier chooses random rn and
accepts only if P ′

n(rn) = Φn(rn), the verifier accepts with probability at most m/q.

Inductive step. Say the claim is true for some value of k, and look at Eq. (1) for k + 1. Renum-
bering the variables, we have

v 6=
∑

x1∈{0,1}
· · ·

∑

xk+1∈{0,1}
Φ(x1, . . . , xk+1),

but the prover is trying to convince the verifier otherwise. The prover sends some polynomial P ′(x1).
Let P̂ (x1) =

∑
x2∈{0,1} · · ·

∑
xk+1∈{0,1}Φ(x1, . . . , xk+1) (this is what the prover is “supposed” to

18-3

send). There are again two possibilities: if P ′ = P̂ , then P ′(0) + P ′(1) 6= v and the verifier always
rejects. If P ′ 6= P̂ then these polynomials agree on at most m points. So with probability at most
m/q the verifier chooses a point r1 for which P ′(r1) = P̂ (r1); if this happens, we will just say the
prover succeeds. If this does not occur, then

v′ def= P ′(r1) 6=
∑

x2∈{0,1}
· · ·

∑

xk+1∈{0,1}
Φ(r1, x2, . . . , xk+1),

and we have reduced to a case where we are summing over k variables. By our inductive assumption,
the prover succeeds with probability at most km/q in that case. Thus, the overall success probability
of the prover is at most m/q + km/q ≤ (k + 1)m/q. This completes the proof.

1.2 #P ⊆ IP
(We have not yet introduced the class #P, but we do not use any properties of this class here.) It
is relatively straightforward to extend the protocol of the previous section to obtain an interactive
proof regarding the number of satisfying assignments of some 3CNF formula φ. We need only
change the way we do the arithmetization: now we want our arithmetization Φ to evaluate to
exactly 1 on any satisfying assignment to φ, and to 0 otherwise. For literals we proceed as before,
transforming xi to xi and x̄i to 1−xi. For clauses, we do something different: given clause a∨ b∨ c
(where a, b, c are literals), we construct the polynomial:

1− (1− â)(1− b̂)(1− ĉ),

where â represents the arithmetization of a, etc. Note that if all of a, b, c are set to “false” (i.e.,
â = b̂ = ĉ = 0) the above evaluates to 0 (i.e., false), while if any of a, b, c are “true” the above
evaluates to 1 (i.e., true). Finally, arithmetization of the entire formula φ (which is the “and” of a
bunch of clauses) is simply the product of the arithmetization of its clauses. This gives a polynomial
Φ with the desired properties. Note that the degree of Φ is now (at most) 3m, rather than m.

Using the above arithmetization, a formula φ has exactly K satisfying assignments iff:

K =
∑

x1∈{0,1}
· · ·

∑

xn∈{0,1}
Φ(x1, . . . , xn).

Using the exact same protocol as before, except with q > 2n (since the above summation can
now be at most 2n) and setting v0 = K (the claimed number of satisfying assignments), gives an
interactive proof for #SAT with soundness error 3mn/q.

18-4

Notes on Complexity Theory Last updated: November, 2011

Lecture 19

Jonathan Katz

1 IP = PSPACE

A small modification of the previous protocol gives an interactive proof for any language in PSPACE,
and hence PSPACE ⊆ IP. Before showing this, however, we quickly argue that IP ⊆ PSPACE.
To see this, fix some proof system (P,V) for a language L (actually, we really only care about
the verifier algorithm V). We claim that L ∈ PSPACE. Given an input x ∈ {0, 1}n, we compute
exactly (using polynomial space) the maximum probability with which a prover can make V accept.
(Although the prover is allowed to be all-powerful, we will see that the optimal strategy can be
computed in PSPACE and so it suffices to consider PSPACE provers in general.) Imagine a tree
where each node at level i (with the root at level 0) corresponds to some sequence of i messages
exchanged between the prover and verifier. This tree has polynomial depth (since V can only run
for polynomially many rounds), and each node has at most 2nc

children (for some constant c),
since messages in the protocol have polynomial length. We recursively assign values to each node
of this tree in the following way: a leaf node is assigned 0 if the verifier rejects, and 1 if the verifier
accepts. The value of an internal node where the prover sends the next message is the maximum
over the values of that node’s children. The value of an internal node where the verifier sends the
next message is the (weighted) average over the values of that node’s children. The value of the
root determines the maximum probability with which a prover can make the verifier accept on the
given input x, and this value can be computed in polynomial space. If this value is greater than 2/3
then x ∈ L; if it is less than 1/3 then x 6∈ L.

1.1 PSPACE ⊆ IP
We now turn to the more interesting direction, namely showing that PSPACE ⊆ IP. We will now
work with the PSPACE-complete language TQBF, which (recall) consists of true quantified boolean
formulas of the form:

∀x1∃x2 · · ·Qnxn φ(x1, . . . , xn),

where φ is a 3CNF formula. We begin by arithmetizing φ as we did in the case of #P; recall, if φ
has m clauses this results in a degree-3m polynomial Φ such that, for x1, . . . , xn ∈ {0, 1}, we have
Φ(x1, . . . , xn) = 1 if φ(x1, . . . , xn) is true, and Φ(x1, . . . , xn) = 0 if φ(x1, . . . , xn) is false.

We next must arithmetize the quantifiers. Let Φ be an arithmetization of φ as above. The
arithmetization of an expression of the form ∀xn φ(x1, . . . , xn) is

∏

xn∈{0,1}
Φ(x1, . . . , xn) def= Φ(x1, . . . , xn−1, 0) · Φ(x1, . . . , xn−1, 1).

If we fix values for x1, . . . , xn−1, then the above evaluates to 1 if the expression ∀xn φ(x1, . . . , xn)
is true, and evaluates to 0 if this expression is false. The arithmetization of an expression of the

19-1

form ∃xn φ(x1, . . . , xn) is

∐

xn∈{0,1}
Φ(x1, . . . , xn) def= 1− (

1− Φ(x1, . . . , xn−1, 0)
) · (1− Φ(x1, . . . , xn−1, 1)

)
.

Note again that if we fix values for x1, . . . , xn−1 then the above evaluates to 1 if the expression
∃xn φ(x1, . . . , xn) is true, and evaluates to 0 if this expression is false. Proceeding in this way, a
quantified boolean formula ∃x1∀x2 · · · ∀xnφ(x1, . . . , xn) is true iff

1 =
∐

x1∈{0,1}

∏

x2∈{0,1}
· · ·

∏

xn∈{0,1}
Φ(x1, . . . , xn). (1)

A natural idea is to use Eq. (1) in the protocols we have seen for coNP and #P, and to have
the prover convince the verifier that the above holds by “stripping off” operators one-by-one. While
this works in principle, the problem is that the degrees of the intermediate results are too large.
For example, the polynomial

P (x1) =
∏

x2∈{0,1}
· · ·

∏

xn∈{0,1}
Φ(x1, . . . , xn)

may have degree as high as 2n · 3m (note that the degree of x1 doubles each time a
∏

or
∐

operator is applied). Besides whatever effect this will have on soundness, this is even a problem for
completeness since a polynomially bounded verifier cannot read an exponentially large polynomial
(i.e., with exponentially many terms).

To address the above issue, we use a simple1 trick. In Eq. (1) the {xi} only take on boolean
values. But for any k > 0 we have xk

i = xi when xi ∈ {0, 1}. So we can in fact reduce the degree
of every variable in any intermediate polynomial to (at most) 1. (For example, the polynomial
x5

1x
4
2+x6

1+x7
1x2 would become 2x1x2+x1.) Let Rxi be an operator denoting this “degree reduction”

operation applied to variable xi. Then the prover needs to convince the verifier that

1 =
∐

x1∈{0,1}
Rx1

∏

x2∈{0,1}
Rx1Rx2

∐

x3∈{0,1}
· · ·Rx1 · · ·Rxn−1

∏

xn∈{0,1}
Rx1 · · ·RxnΦ(x1, . . . , xn).

As in the previous protocols, we will actually evaluate the above modulo some prime q. Since the
above evaluates to either 0 or 1, we can take q any size we like (though soundness will depend
inversely on q as before).

We can now apply the same basic idea from the previous protocols to construct a new protocol
in which, in each round, the prover helps the verifier “strip” one operator from the above expression.
Denote the above expression abstractly by:

Fφ = O1O2 · · · O` Φ(x1, . . . , xn) mod q ,

where ` =
∑n

i=1(i + 1) and each Oj is one of
∏

xi
,
∐

xi
, or Rxi (for some i). At every round k the

verifier holds some value vk and the prover wants to convince the verifier that

vk = Ok+1 · · · O` Φk mod q,

1Of course, it seems simple in retrospect. . .

19-2

where Φk is some polynomial. At the end of the round the verifier will compute some vk+1 and the
prover then needs to convince the verifier that

vk+1 = Ok+2 · · · O` Φk+1 mod q,

for some Φk+1. We explain how this is done below. At the beginning of the protocol we start with
v0 = 1 and Φ0 = Φ (so that the prover wants to convince the verifier that the given quantified
formula is true); at the end of the protocol the verifier will be able to compute Φ` itself and check
whether this is equal to v`.

It only remains to describe each of the individual rounds. There are three cases corresponding to
the three types of operators (we omit the “ mod q” from our expressions from now on, for simplicity):

Case 1: Ok+1 =
∏

xi
(for some i). Here, the prover wants to convince the verifier that

vk =
∏
xi

Rx1 · · ·
∐
xi+1

· · ·
∏
xn

Rx1 · · ·RxnΦ(r1, . . . , ri−1, xi, . . . , xn). (2)

(Technical note: when we write an expression like the above, we really mean

∏

xi

Rx1 · · ·
∐
xi+1

· · ·
∏
xn

Rx1 · · ·RxnΦ(x1, . . . , xi−1, xi, . . . , xn)

 [r1, . . . , ri−1].

That is, first the expression is computed symbolically, and then the resulting expression is evaluated
by setting x1 = r1, . . . , xi−1 = ri−1.) This is done in the following way:

• The prover sends a degree-1 polynomial P̂ (xi).

• The verifier checks that vk =
∏

xi
P̂ (xi). If not, reject. Otherwise, choose random ri ∈ Fq, set

vk+1 = P̂ (ri), and enter the next round with the prover trying to convince the verifier that:

vk+1 = Rx1 · · ·
∐
xi+1

· · ·
∏
xn

Rx1 · · ·RxnΦ(r1, . . . , ri−1, ri, xi+1, . . . , xn). (3)

To see completeness, assume Eq. (2) is true. Then the prover can send

P̂ (xi) = P (xi)
def= Rx1 · · ·

∐
xi+1

· · ·
∏
xn

Rx1 · · ·RxnΦ(r1, . . . , ri−1, xi, . . . , xn);

the verifier will not reject and Eq. (3) will hold for any choice of ri. As for soundness, if Eq. (2)
does not hold then the prover must send P̂ (xi) 6= P (xi) (or else the verifier rejects right away); but
then Eq. (3) will not hold except with probability 1/q.

Case 2: Ok+1 =
∐

xi
(for some i). This case and its analysis are similar to the above and are

therefore omitted.

Case 3: Ok+1 = Rxi (for some i). Here, the prover wants to convince the verifier that

vk = Rxi · · ·
∏
xn

Rx1 · · ·RxnΦ(r1, . . . , rj , xj+1, . . . , xn), (4)

where j ≥ i. This case is a little different from anything we have seen before. Now:

19-3

• The prover sends a polynomial P̂ (xi) of appropriate degree (see below).

• The verifier checks that
(
RxiP̂ (xi)

)
[ri] = vk. If not, reject. Otherwise, choose a new random

ri ∈ Fq, set vk+1 = P̂ (ri), and enter the next round with the prover trying to convince the
verifier that:

vk+1 = Ok+2 · · ·
∏
xn

Rx1 · · ·RxnΦ(r1, . . . , ri, . . . , rj , xj+1, . . . , xn). (5)

Completeness is again easy to see: assuming Eq. (4) is true, the prover can simply send

P̂ (xi) = P (xi)
def= Ok+2 · · ·

∏
xn

Rx1 · · ·RxnΦ(r1, . . . , ri−1, xi, ri+1, . . . , rj , xj+1, . . . , xn)

and then the verifier will not reject and also Eq. (5) will hold for any (new) choice of ri. As for
soundness, if Eq. (4) does not hold then the prover must send P̂ (xi) 6= P (xi); but then Eq. (5) will
not hold except with probability d/q where d is the degree of P̂ .

This brings us to the last point, which is what the degree of P̂ should be. Except for the
innermost n reduce operators, the degree of the intermediate polynomial is at most 2; for the
innermost n reduce operators, the degree can be up to 3m.

We may now compute the soundness error of the entire protocol. There is error 1/q for each of
the n operators of type

∏
or

∐
, error 3m/q for each of the final n reduce operators, and error 2/q

for all other reduce operators. Applying a union bound, we see that the soundness error is:

n

q
+

3mn

q
+

2
q
·

n−1∑

i=1

i =
3mn + n2

q
.

Thus, a polynomial-length q suffices to obtain negligible soundness error.

Bibliographic Notes

The result that PSPACE ⊆ IP is due to Shamir [3], building on [2]. The “simplified” proof given
here is from [4]. Guruswami and O’Donnell [1] have written a nice survey of the history behind the
discovery of interactive proofs (and the PCP theorem that we will cover in a few lectures).

References

[1] V. Guruswami and R. O’Donnell. A History of the PCP Theorem. Available at
http://www.cs.washington.edu/education/courses/533/05au/pcp-history.pdf

[2] C. Lund, L. Fortnow, H.J. Karloff, and N. Nisan. Algebraic Methods for Interactive Proof
Systems. J. ACM 39(4): 859–868 (1992). The result originally appeared in FOCS ’90.

[3] A. Shamir. IP = PSPACE. J. ACM 39(4): 869–877 (1992). Preliminary version in FOCS ’90.

[4] A. Shen. IP = PSPACE: Simplified Proof. J. ACM 39(4): 878–880 (1992).

19-4

Notes on Complexity Theory Last updated: November, 2011

Lecture 20

Jonathan Katz

1 Zero-Knowledge Proofs

(The following notes just sketch what was covered in class.)
In the complexity-theoretic setting of interactive proofs for some language L, we are concerned

about a cheating prover who might try to fool a verifier into accepting an incorrect statement x 6∈
L; there are no “security guarantees” for the prover against the (possibly cheating) verifier. In
cryptographic settings, however, it may be desirable to ensure some notion of privacy for the
prover. Specifically, the prover may be willing to convince the verifier that x ∈ L but be unwilling
to reveal any additional information to the verifier.

A “made up” example is the case of a prover who wants to convince a verifier that some
mathematical statement is true (and that the prover has a proof of that fact), but does not want
to reveal the proof to the verifier for fear that the verifier will then rush to publish the proof on its
own. A more realistic example might be the following: say a voter casts a vote by encrypting the
vote using the public key pk of some central authority, resulting in some ciphertext C. The voter
might be required to prove that it voted honestly — that is, to prove that C is an encryption of
either 0 or 1 — but the voter does not want to divulge its actual vote. To accomplish this, the
parties involved can define the language

L
def= {(pk, C) : ∃b ∈ {0, 1}, r ∈ {0, 1}n s.t. C = Encpk(b; r)};

the voter then proves to the verifier that (pk, C) ∈ L.
We discussed the following results:

1. We defined the notion of honest-verifier (perfect) zero knowledge, defined HVPZK as the
class of languages having honest-verifier zero-knowledge proofs, and showed that graph iso-
morphism is in HVPZK. (Note that from a complexity-theoretic viewpoint we may allow
the honest prover to be computationally unbounded, but for cryptographic purposes we want
the prover to be efficient.)

2. We then introduced the notion of (dishonest-verifier, perfect) zero knowledge, defined PZK
as the class of languages having zero-knowledge proofs, and showed that the same protocol
for graph isomorphism satisfies this stronger notion.

3. If we want to reduce the soundness error to 2−n by repeating the graph-isomorphism protocol
n times, parallel repetition preserves honest-verifier zero knowledge, but sequential repetition
appears necessary if we want to preserve (dishonest-verifier) zero knowledge.

4. PZK cannot be too powerful; it is known that PZK ⊆ AM ∩ coAM. (In fact, this holds
even if we only require the simulated transcript to be statistically close to the real transcript.)
Motivated by this, we consider two relaxations of the notion:

20-1

• Computational zero knowledge requires the simulated transcript to be (only) compu-
tationally indistinguishable from the real transcript. Let CZK denote the set of lan-
guages having computational zero-knowledge proofs. We showed a computational zero-
knowledge proof for graph 3-colorability under the assumption that (statistically bind-
ing) commitment schemes exist, implying NP ⊂ CZK under the same assumption. In
fact, CZK = IP under this assumption as well.
Statistically binding commitment schemes can be constructed from the (minimal) cryp-
tographic assumption of one-way functions.

• A different relaxation is to require perfect zero knowledge as before, but to only demand
soundness against computationally bounded cheating provers. In this case we refer to
arguments instead of proofs. Statistical zero-knowledge arguments for all of NP can be
based on the existence of statistically hiding commitment schemes. These, in turn, were
recently shown to exist based on the assumption of one-way functions.

20-2

Notes on Complexity Theory Last updated: November, 2011

Lecture 21

Jonathan Katz

1 Probabilistically Checkable Proofs

Work on interactive proof systems motivates further exploration of non-interactive proof systems
(e.g., the class NP). One specific question is: how many bits of the proof does the verifier need to
read? Note that in the usual certificate-based definition of NP, the deterministic “verifier” reads
the entire certificate, and correctness and soundness hold with probability 1. If we allow the verifier
to be probabilistic, and are willing to tolerate non-zero soundness error, is it possible to have the
verifier read fewer bits of the proof? (Turning as usual to the analogy with mathematical proofs,
this would be like probabilistically verifying the proof of a mathematical theorem by reading only
a couple of words of the proof!) Amazingly, we will see that it is possible to have the verifier read
only a constant number of bits while being convinced with high probability.

Abstracting the above ideas, we define the class PCP of probabilistically checkable proofs:

Definition 1 Let r, q be arbitrary functions. We say L ∈ PCP(r(·), q(·)) if there exists a probabilistic
polynomial-time verifier V such that:

• Vπ(x) uses O(r(|x|)) random coins and reads O(q(|x|)) bits of π.1

• If x ∈ L then there exists a π such that Pr[Vπ(x) = 1] = 1.

• If x 6∈ L then for all π we have Pr[Vπ(x) = 1] < 1/2.

Some remarks are in order:

• One can view a probabilistically checkable proof as a form of interactive proof where the
(cheating) prover is restricted to committing to its answers in advance (rather than choosing
them adaptively based on queries in previous rounds). Since the power of the cheating prover
is restricted but the abilities of an honest prover are unaffected, IP ⊆ PCP(poly, poly) def=⋃

c PCP(nc, nc). In particular, PSPACE ⊆ PCP(poly, poly).

• Since V runs in polynomial time (in |x|), the length of i (cf. footnote 1) is polynomial and
so it is only meaningful for the length of π to be at most exponential in |x|. In fact, if the
verifier uses r(n) random coins and makes q(n) queries then we may as well assume that any
proof π for a statement of length n satisfies |π| ≤ 2r(n) · q(n).

• The soundness error can, as usual, be reduced by repetition. The completeness condition
could also be relaxed (as long as there is an inverse polynomial gap between the acceptance
probabilities when x ∈ L and when x 6∈ L). In either case, the parameters r, q may be affected.

1Formally, V has an oracle tape on which it can write an index i and obtain the ith bit of π in the next step.

21-1

• The definition allows V to query π adaptively (i.e., it may read the ith bit, and then based on
this value determine which index j to read next). We will only consider non-adaptive verifiers.
However, any adaptive verifier making a constant number of queries can be converted into a
non-adaptive verifier which makes only a (larger) constant number of queries.

1.1 Toward Understanding the Power of PCP

An easy observation is that PCP(0, poly) = NP. In fact, we have the following stronger result:

Lemma 1 PCP(log, poly) = NP.

Proof Containment of NP in PCP(log, poly) is obvious. For the reverse containment, let L ∈
PCP(log, poly) and let V be the verifier for L. For given x ∈ L, we will show how to construct a
witness for x; the NP-machine deciding L will follow naturally. Note that we cannot simply use
a “good” proof πx (which is guaranteed to exist since x ∈ L) because πx may be exponentially
long. However, we can use a “compressed” version of πx. Specifically, imagine running V for
all possible settings of its O(log n) random coins (here, n = |x|). This results in a set S of only
polynomially many indices at which V potentially reads πx (for each setting of its random coins, V
reads polynomially many indices; there are only 2O(log n) = poly(n) possible settings of V’s random
coins). These queries/answers {(i, πi)}i∈S will be our NP witness w. Our NP algorithm for L is
simple: on input a witness w of the above form, simulate the computation of V (in the natural
way) for all possible settings of its random coins. (If V tries to read an index which is not present
in w, then V immediately rejects.) Accept only if V accepts in all those executions.

In fact, we have the more general result that PCP(r(n), q(n)) ⊆ ntime(2O(r(n)) ·O(q(n))).
At the other extreme, if we allow no queries to π we obtain PCP(poly, 0) = coRP (at least if

we require perfect completeness, as we do in our definition). This, along with the previous result,
shows that we only get something interesting from probabilistically checkable proofs if we consider
the power of randomness and proof queries in tandem.

We have the following deep and important result:

Theorem 2 (The PCP Theorem) NP = PCP(log, 1).

The number of queries can be taken to be a fixed constant which is the same for all languages L ∈
NP (and not, e.g., a constant that depends on the language but not the input length). To see
that this follows from the theorem, note that the theorem implies that SAT has a probabilistically
checkable proof where the verifier uses c log |φ| random coins and reads t bits when verifying the
proof for some 3CNF formula φ. Now, for any L ∈ NP we can construct a probabilistically
checkable proof where the verifier first applies a Karp reduction to the input to obtain a 3CNF
formula φ, and then runs the PCP for SAT on input φ. If the Karp reduction maps n-bit inputs to
nk-bit formulae (for some constant k), then the verifier for L will use ck log |x| random coins and
reads t bits when verifying the proof that some x ∈ L.

The above characterization is tight under the assumption that P 6= NP, in the sense that
P 6= NP is known to imply NP 6⊆ PCP(o(log), o(log)). Also, although not explicit in the theorem,
the PCP theorem also shows how to efficiently convert any witness w for a given x (with respect to
a given NP relation R) into a proof πx for which the corresponding PCP verifier always accepts.

For completeness, we also state the following result (that we will not explore further):

Theorem 3 PCP(poly, poly) = NEXP = PCP(poly, 1).

21-2

2 PCP and Inapproximability

Assuming P 6= NP, we know that we cannot hope to exactly solve all NP-complete (search)
problems in polynomial time. However, we might hope to be able to find an approximate solution
in polynomial time. The PCP theorem can be used to show limits on the best approximations we
can hope to achieve for some specific problems.

2.1 Inapproximability of max-SAT

As an example, we show that there exists some constant α such that it is infeasible to approximate
(in polynomial time) the maximum number of satisfiable clauses in a 3CNF formula to within a
multiplicative factor of α. We begin with some definitions.

Definition 2 For a formula φ and an assignment b to the variables in φ, let SATb(φ) denote the
fraction of clauses satisfied by the given assignment. Let max-SAT(φ) = maxb{SATb(φ)}.
Note that max-SAT(φ) = 1 iff φ is satisfiable. On the other hand, observe that if φ has m clauses
and is unsatisfiable then it could be the case that max-SAT(φ) = 1 − 1/m; in other words, there
is no fixed constant c for which max-SAT(φ) < c iff φ is unsatisfiable. As for a lower bound, it is
not hard to show that for any 3CNF formula φ we have max-SAT(φ) ≥ 7/8. (Proof : A random b
satisfies each clause with probability 7/8, and so satisfies 7/8 of the clauses in expectation. Thus,
there must exist a b that satisfies at least 7/8 of the clauses.)

Definition 3 Let ρ < 1. A value k is a ρ-approximation for φ if

ρ ·max-SAT(φ) ≤ k ≤ max-SAT(φ).

Polynomial-time algorithm A is an ρ(·)-approximation algorithm for 3SAT if A(φ) always outputs a
ρ(|φ|)-approximation for φ.

More generally: for an instance of a maximization problem where the best solution has value v,
a ρ-approximation (ρ < 1) is a value k with ρ · v ≤ k ≤ v. For an instance of a minimization
problem where the best solution has cost c, a ρ-approximation (ρ > 1) is a value k with c ≤ k ≤ ρ ·c.
A polynomial-time algorithm is a ρ-approximation algorithm for some problem if it always outputs
a ρ-approximation to its input instance.

A 1-approximation algorithm for 3SAT would imply that we could solve 3SAT in polynomial time.
By what we have said above, it is trivial to find an 7/8-approximation in polynomial time by always
outputting the answer “7/8.” Can we do better? Toward showing that there is a limit to how well
we can do (assuming P 6= NP), we introduce the notion of an amplifying reduction.

Definition 4 Let c < 1. A c-amplifying reduction of 3SAT is a polynomial-time function f on
3CNF formulae such that:

• If φ is satisfiable, then f(φ) is satisfiable. I.e., if max-SAT(φ) = 1 then max-SAT(f(φ)) = 1.

• If φ is not satisfiable, then every assignment to the variables in f(φ) satisfies at most a
c-fraction of the clauses in f(φ). I.e., if max-SAT(φ) < 1 then max-SAT(f(φ)) < c.

(In particular, an amplifying reduction is a Karp reduction.) We will say that 3SAT has an amplifying
reduction if it has a c-amplifying reduction for some c < 1.

An amplifying reduction for 3SAT implies a hardness-of-approximation result for max-SAT:

21-3

Lemma 4 Assume P 6= NP and that 3SAT has a c-amplifying reduction. Then there is no c-
approximation algorithm for 3SAT.

Proof Assume to the contrary that there is a c-approximation algorithm A for 3SAT. We can
then deterministically solve 3SAT in polynomial time as follows: on input formula φ, run A(f(φ))
to obtain output k. If k ≥ c, output 1; otherwise, output 0. To see correctness of this algorithm,
note that when φ is satisfiable then max-SAT(f(φ)) = 1 and so the output k of A must be at least c.
On the other hand, when φ is not satisfiable then max-SAT(f(φ)) < c and so the output k of A
must satisfy k < c. The claim follows.

In general, say we have a reduction f that maps, e.g., boolean formula to instances of a maxi-
mization (resp., minimization) problem such that

• If φ is satisfiable, then f(φ) has value (resp., cost) α(n), where n denotes the size of f(φ);

• If φ is not satisfiable, then f(φ) has value (resp., cost) strictly less than β(n) < α(n) (resp.,
strictly more than β(n) > α(n)).

Then, assuming P 6= NP, the maximization (resp., minimization) problem has no (β(n)/α(n))-
approximation algorithm.

To establish the connection between the PCP theorem and inapproximability, we show that the
PCP theorem implies the existence of an amplifying reduction for 3SAT. In fact, the implication
goes in both directions, thus showing that one way to prove the PCP theorem is to construct an
amplifying reduction.

Lemma 5 NP ⊆ PCP(log, 1) if and only if 3SAT has an amplifying reduction.

Proof One direction is easy. If 3SAT has an amplifying reduction f , then we can construct the
following PCP system for 3SAT: On input φ, the verifier computes f(φ). The proof will contain
a satisfying assignment for f(φ) (i.e., position i of the proof contains the assignment to xi). To
check the proof, the verifier chooses a random clause in f(φ), queries for the assignments to the
3 variables of that clause, and then verifies that the clause is satisfied for those settings of the
variables. It accepts if and only if that is the case.

If φ is satisfiable then f(φ) is satisfiable and so a valid proof (consisting of a satisfying assignment
for f(φ)) exists. On the other hand, if φ is not satisfiable then at most a c-fraction of the clauses in
f(φ) are satisfiable (for any assignment to the variables), and so the verifier accepts with probability
at most c regardless of the proof. Since c is a constant, repeating the above procedure a constant
number of times (and accepting only if each procedure leads to acceptance) will give the desired
soundness error 1/2 using an overall constant number of queries. Also, the number of random bits
needed to select a random clause is logarithmic in |φ| since |f(φ)| is polynomial in |φ|.

The other direction is the more interesting one. Say SAT ∈ PCP(log, 1), and let V be a verifier
for SAT using c log n random coins (on input φ with |φ| = n) and making t queries. We now describe
an amplifying reduction f . On input a 3CNF formula φ do:

• For each setting r of the random coins for V, do the following:

– Determine the t indices q1, . . . qt that V(φ; r) would when using random coins r (recall
that without loss of generality these indices are chosen non-adaptively).

21-4

– Run V(φ; r) on all possible settings for these bits of the proof to determine when V
accepts in this case. In this way, one may define a CNF formula φ̂r on the variables
xq1 , . . . , xqt such that φ̂r evaluates to true exactly when V(φ; r) would accept. (We
stress that variables of the type xqi are the same for the different settings of r.) The
number of clauses in φ̂r is constant since t is constant. Using auxiliary variables (different
for each r), we may convert φ̂r to an equivalent 3CNF formula φr. The number of clauses
in φr is constant as well.

• Set the output f(φ) to be
∧

r∈{0,1}c log n φr.

Note that the above can be implemented in polynomial time and, in particular, both the number
of clauses and the number of variables in f(φ) are polynomial.2

We claim that f , as given above, is an amplifying reduction. It is not hard to see that if φ is
satisfiable then f(φ) is (this follows from perfect completeness of the PCP system). On the other
hand, assume φ is not satisfiable. Then for any setting of the variables in f(φ), at least half of
the {φr} are not satisfied (this follows from soundness of the PCP system). In each unsatisfied φr

there is at least one unsatisfied clause. Let t′ = O(1) denote the maximum number of clauses in
any of the {φr}. It follows that for any setting of the variables, the fraction of unsatisfied clauses
in f(φ) is at least β = 1/2t′, and so the fraction of satisfied clauses is at most 1− β. This means
that f is a c-amplifying reduction for any c > 1− β.

An alternate way of viewing the above result is in terms of a promise problem where “yes” in-
stances correspond to satisfiable 3CNF formulae, and “no” instances correspond to 3CNF formulae
φ for which max-SAT(φ) < c. The above result implies that this promise problem is NP-hard.

2.2 Inapproximability of Other Problems

Different NP-complete problems may behave differently when it comes to how well they can be
approximated. We discuss some examples here.

2.2.1 Minimum Vertex Cover and Maximum Independent Set

For a given graph G, note that a minimum vertex cover is the complement of a maximum in-
dependent set; thus, with respect to exact solutions, the problems are identical. However, they
behave differently with respect to approximation. (Actually, this should not be too surprising: For
an n-vertex graph with maximum independent set of size I = n − O(1), an independent set of
size ρ · I is a ρ-approximation; however, it gives a vertex cover of size n − ρI which is only an
(n− ρI)/(n− I) = O(n)-approximation and so arbitrarily bad as n gets large.)

Lemma 6 There is a Karp reduction from 3CNF formulae to graphs such that for every 3CNF
formula φ with max-SAT(φ) = v, the graph G = f(φ) has a maximum independent set of size v

7 · n
(where n denotes the number of vertices in G)

The above just uses the standard Karp reduction we have seen in class before. Using our previous
inapproximability result for max-SAT, this immediately implies the following:

2Note that at most 2c log n · t indices are ever potentially queried by V.

21-5

Corollary 7 If P 6= NP then there are constants ρ < 1 and ρ′ > 1 such that there is no ρ-
approximation algorithm for Maximum Independent Set, and no ρ′-approximation algorithm for
Minimum Vertex Cover.

Actually, by reducing directly to the PCP theorem (rather than to 3SAT) we can get a stronger
inapproximability result for Maximum Independent Set:

Theorem 8 There is no 1/2-approximation algorithm for Maximum Independent Set.

Proof Let α(n) = Θ(n) be some function we will fix later. Given an arbitrary NP-complete
language L, we show a transformation f that takes an input x and outputs a graph Gx such that
the following hold:

• If x ∈ L, then Gx = f(x) has a maximum independent set of size α(n) (where n denotes the
number of vertices in Gx).

• If x 6∈ L then Gx = f(x) has a maximum independent set of size at most α(n)/2.

By the PCP theorem, there exists a probabilistically checkable proof system for L with a
polynomial-time verifier V that on input x make t queries to its proof and uses ` = O(log |x|)
coin tosses. Let r1, . . . , rm ∈ {0, 1}` denote the sequence of all possible coin tosses of V (note
m = poly(|x|)), and let qi

1, . . . , q
i
t denote the queries made on random coin tosses ri. (Recall we

assume queries are made non-adaptively.) Let ai
1, . . . , a

i
t be a sequence of possible answers. Define

a graph Gx as follows:

Vertices For each set of random coins ri and each possible set of answers ai
1, . . . , a

i
t, the tuple

(
ri, (qi

1, a
i
1), . . . , (q

i
t, a

i
t)

)

is a vertex if and only if V would accept x when using random coins ri and receiving those
answers to its queries.

Since ri and x uniquely determine the queries, there are at most m · 2t vertices in Gx.

Edges Two vertices v and u have an edge between them if and only if they are not consistent.
(Two vertices are not consistent if they contain different answers to the same query.) Note
that if vertices u, v contain the same random tape ri then they cannot be consistent and so
will share an edge.

Finally, add isolated vertices (if necessary) to obtain a graph with exactly m · 2t vertices.
Define α(n) def= n/2t, so that α(m · 2t) = m. We show that Gx satisfies our desiderata:

• When x ∈ L, there exists a proof π for which V accepts for every setting of its random tape.
This implies the existence of an independent set in Gx of size at least m.

• When x 6∈ L, the existence of an independent set with m/2 (or more) vertices would imply
the existence of a proof that would cause V to accept with probability at least 1/2, in
contradiction to the soundness of the PCP system.

We can further amplify the above results, and show that there is no constant-factor approxi-
mation algorithm for Maximum Independent Set.

21-6

Theorem 9 Assume P 6= NP. Then for every ρ ∈ (0, 1], Maximum Independent Set cannot be
ρ-approximated in polynomial time.

Proof Given a graph G and an integer k, define the graph Gk as follows: vertices of Gk correspond
to subsets of k vertices of G; two vertices S1, S2 of Gk have no edge between them iff S1 ∪ S2 is an
independent set in G. Note that Gk can be generated from G in polynomial time. If G has n vertices,
then Gk has

(
n
k

)
vertices. If G has an independent set S then the vertices in Gk corresponding to

all k-size subsets of S form an independent set in Gk. Conversely, if there is some independent set
S1, . . . , S` of vertices in Gk, then the vertices in ∪iSi form an independent set in G. Thus, if the
maximum independent set in G has size |S| then the maximum independent set in Gk has size

(|S|
k

)
.

Applying the reduction from Lemma 6, followed by the reduction above (using some fixed,
constant value of k), we get a reduction f mapping boolean formulae to graphs, such that if φ is
satisfiable then Gk = f(φ) has a maximum independent set of size

(|S|
k

)
, while if φ is not satisfiable

then Gk has a maximum independent set of size
(ρ·|S|

k

)
for some ρ < 1, where |S| = n/7 (and n is

the number of nodes in the intermediate graph produced by the reduction from Lemma 6). Taking
k sufficiently large, the ratio

(ρ·|S|
k

)
/
(|S|

k

) ≈ ρk can be made arbitrarily small.

21-7

Notes on Complexity Theory Last updated: November, 2011

Lecture 22

Jonathan Katz

1 NP ⊆ PCP(poly, 1)

We show here a probabilistically checkable proof for NP in which the verifier reads only a constant
number of bits from the proof (and uses only polynomially many random bits). In addition to being
of independent interest, this result is used as a key step in the proof of the PCP theorem itself.

To show the desired result, we will work with the NP-complete language of satisfiable quadratic
equations. Instances of this problem consist of a system of m quadratic equations

n∑

i,j=1

c
(k)
i,j · xi xj = c(k)

m

k=1

(1)

(over the field F2) in the n variables x1, . . . , xn. (Note that we can assume no linear terms since
xi = xi · xi in F2 and the summations above include the case i = j.) A system of the above form
is said to be satisfiable if there is an assignment to the {xi} for which every equation is satisfied.

It is obvious that this problem is in NP. To show that it is NP-complete we reduce an instance
of 3SAT to an instance of the above. Given a 3SAT formula φ on n variables, using arithmetization
we can express each of its clauses as a cubic equation. (One way to do this is as follows: arithmetize
the literal xj by the term 1−xj and the literal x̄j by the term xj ; a clause `1∨`2∨`3 is arithmetized
by the product of the arithmetization of its literals. Then ask whether there is an assignment under
which the arithmetization of all the clauses of φ equal 0.) To reduce the degree to quadratic, we
introduce the “dummy” variables {xi,j}n

i,j=1 and then: (1) replace monomials of the form xixjxk

with a monomial of the form xi,jxk, and (2) introduce n2 new equations of the form xi,j−xixj = 0.
We remark that there is no hope of reducing the degree further (unless P = NP) since a system

of linear equations can be solved using standard linear algebra.

1.1 A PCP for Satisfiable Quadratic Equations: An Overview

For the remainder of these notes, we will assume a system of m equations in the n variables {xi},
as in Eq. (1). The proof string π will be a boolean string π ∈ {0, 1}n2

that we index by a binary
vector ~v of length n2. Equivalently, we will view π as a function π : {0, 1}n2 → {0, 1}. For a given
system of satisfiable quadratic equations, π should be such that

π(~v) def=
n∑

i,j=1

aiajvi,j

for some satisfying assignment (a1, . . . , an), where ~v = (v1,1, . . . , v1,n, . . . , vn,1, . . . , vn,n) Note that
with (a1, . . . , an) fixed, π is a linear function of ~v; i.e., π is just the dot product of the input with
the fixed string (a1,1, . . . , an,n).

22-1

Roughly speaking, given access to a proof string π we will have the verifier check three things:
(1) that the proof string encodes a linear function; i.e.,

π(~v) =
n∑

i,j=1

λi,j vi,j

for some {λi,j}; (2) that the coefficients of the linear function encoded by the proof string are
consistent ; namely, that λi,j = λi,i · λj,j for all i, j; and (3) that the assignment defined by setting
ai = λi,i is indeed a satisfying assignment. (Note that these all hold for a “good” proof π when the
system of equations is satisfiable.) Because the verifier is restricted to making a very small number
of queries, the verifier will be unable to verify any of the above with certainty, but it will be able
to verify these conditions probabilistically. In these notes, we focus only on achieving a constant
probability of rejection when the system of equations is unsatisfiable; we aim for the simplest
proof and make no attempt to optimize the constants. Of course, by using a constant number of
independent repetitions we can then reduce the error probability to 1/2 (while still reading only a
constant number of bits from π and using polynomially many random bits).

We discuss in turn the tests used to verify each of the properties above, and then show how
they can be combined to yield the desired PCP system.

2 The Linearity Test

A function f : {0, 1}N → {0, 1} is linear if there exists an r ∈ {0, 1}N such that f(x) = 〈x, r〉, i.e.,

f(x1 · · ·xN) =
N∑

i=1

ri · xi .

In this section we show how to test whether a function π : {0, 1}N → {0, 1} is (close to) linear.
Let us first define a notion of distance for functions. Two functions f, g : {0, 1}N → {0, 1} have

distance δ if they disagree on a δ fraction of their inputs; that is, if Prx[f(x) 6= g(x)] = δ (where x
is chosen uniformly from {0, 1}N). Viewing a boolean function over {0, 1}N as a binary string of
length 2N , two functions have distance δ if their Hamming distance is δ · 2N . We say a function
f is distance at least δ from linear if for all linear functions g the distance between f and g is at
least δ, and define “distance δ from linear” and “distance at most δ from linear” similarly.

The following test allows a verifier, given access to π, to check whether π is “close” to linear:

• Choose random x, y ∈ {0, 1}N .

• Query π(x), π(y), and π(x + y).

• Accept if and only if π(x) + π(y) = π(x + y), where addition is in F2 component-wise.

Note that if π is linear, then the verifier always accepts since

π(x + y) =
N∑

i=1

ri · (xi + yi)

=

(
N∑

i=1

ri xi

)
+

(
N∑

i=1

ri yi

)
= π(x) + π(y).

22-2

The interesting part is to show that when π is “far” from linear then the verifier rejects with high
probability. In the following section we prove:

Theorem 1 If π has distance ε from linear, the linearity test rejects with probability at least ε.

Of course, by repeating the test a constant number of times we can increase the rejection probability
to any constant less than 1.

In the next section we give a proof of Theorem 1 based on Fourier analysis. (A proof that
does not use Fourier analysis is also possible but, conceptually speaking, Fourier analysis is exactly
the right tool for this setting.) The proof is unnecessary for understanding the rest of the PCP
construction, and so the reader willing to take Theorem 1 on faith can skip directly to Section 3.

2.1 Proof of Theorem 1

The first thing we will do is view π as a function from {−1, 1}N to {−1, 1}, by mapping each bit b
of the input and output to the value (−1)b. Given this notational switch, the linearity test chooses
random x, y ∈ {−1, 1}N , and accepts if and only if π(x) · π(y) · π(x ◦ y) = 1, where “◦” denotes
component-wise product.

The proof relies on some basic Fourier analysis; we provide some background first. View the
set of functions from {−1, 1}N to the reals as a vector space (over the reals). This is a vector space
of dimension 2N , with one basis given by the functions {Iv : {−1, 1}N → R}v∈{−1,1}N where

Iv(v′)
def=

{
1 v′ = v
0 otherwise

.

To confirm that this is a basis, note that any function π : {−1, 1}N → R can be expressed as:

π =
∑

v∈{−1,1}N

π(v) · Iv.

We will also define an inner product 〈·, ·〉 on this vector space, via:

〈f, g〉 def=
1

2N
·
∑

v

f(v) · g(v) = Expv[f(v) · g(v)].

(Note that this inner product is bilinear.) We see that the basis given above is orthogonal.
The basis described above is the “standard” one. In our context, however, there is another basis

that works even better: the Fourier basis {χv}S⊆[N] where

χS(v′) =
∏

i∈S

v′i

(with the empty product when S = ∅ interpreted as a ‘1’). One can check that these functions
are orthogonal and hence, since there are 2N such functions, this is indeed a basis; in fact it is an
orthonormal basis. This means that we can write any function f : {−1, 1} → R as

f =
∑

S⊆[N]

f̂(S) · χS

22-3

with f̂(S) ∈ R; by orthonormality, we have

〈f, χS〉 =

〈 ∑

S⊆[N]

f̂(S)·χS , χS

〉
= f̂(S).

The first hint that the Fourier basis might be useful for our purposes is the following observation:
If f, g are functions from {−1, 1}N to {−1, 1}, then

〈f, g〉 =
1

2N
·
(∣∣{x | f(x) = g(x)

}∣∣− ∣∣{x | f(x) 6= g(x)
}∣∣

)
= 1− 2 · Prx[f(x) 6= g(x)];

in other words, if f is distance δ from g, then 〈f, g〉 = 1 − 2δ. Note that each χS is a linear
function (except that everything has been translated from {0, 1} to {−1, 1}), and so the Fourier
basis includes all linear functions. Thus, to find the linear function closest to π we simply need to
find S for which 〈χS , π〉 is maximized. Furthermore, π is far from linear if and only if 〈χS , π〉 is
small for all S. We will use this in the proof below.

Before turning to the proof of the linearity test, we state two facts that follow from standard
linear algebra.

• The inner product 〈f, g〉 of any two functions f, g is given by the sum of the product of the
coefficients of f and g in any orthonormal basis. Thus, in particular, we have

〈f, g〉 =
∑

S⊆N

f̂(S) · ĝ(S) .

This is known as Plancherel’s theorem.

• It follows from the above that 〈f, f〉 =
∑

S f̂(S)2. If the range of f is {−1, 1}, then (by
definition of the inner product)

〈f, f〉 =
1

2N

∑
v

f(v)2 = 1.

We thus conclude that when f maps onto {−1, 1}, we have
∑

S f̂(S)2 = 1. This is known as
Parseval’s theorem.

We can now prove the following result:

Theorem 2 If π has distance ε from linear, the linearity test rejects with probability at least ε.

We begin with a lemma. Amazingly, the lemma is pretty powerful although its proof involves
nothing more than grinding through some algebraic manipulations.

Lemma 3 Pr[linearity test accepts π] = 1
2 + 1

2 ·
∑

S π̂(S)3.

Proof In our notation, the linearity test chooses random x, y ∈ {−1, 1}N , and accepts iff π(x) ·
π(y)·π(x◦y) = 1. Since π is boolean (so has range {−1, 1}), we have π(x) · π(y) · π(x ◦ y) ∈ {−1, 1}.

22-4

So, I
def= 1

2 + 1
2π(x) · π(y) · π(x ◦ y) is an indicator random variable for the event that the linearity

test accepts. Thus:

Pr[linearity test accepts] = Expx,y[I]

=
1
2

+
1
2
·Expx,y[π(x) · π(y) · π(x ◦ y)]. (2)

Expanding π in terms of its Fourier coefficients gives

Expx,y[π(x) · π(y) · π(x ◦ y)] =

Expx,y

[(∑

S

π̂(S) χS(x)

)
·
(∑

S′
π̂(S′) χS′(y)

)
·
(∑

S′′
π̂(S′′) χS′′(x ◦ y)

)]

= Expx,y

 ∑

S,S′,S′′
π̂(S) π̂(S′) π̂(S′′) χS(x) χS′(y) χS′′(x ◦ y)

=
∑

S,S′,S′′
π̂(S) π̂(S′) π̂(S′′) ·Expx,y [χS(x) χS′(y) χS′′(x ◦ y)] . (3)

By definition of χS , for any fixed S, S′, S′′ we have:

Expx,y [χS(x) χS′(y) χS′′(x ◦ y)] = Expx,y

[∏

i∈S

xi ·
∏

i∈S′
yi ·

∏

i∈S′′
xiyi

]

= Expx,y

 ∏

i∈S4S′′
xi ·

∏

i∈S′4S′′
yi

= Expx

 ∏

i∈S4S′′
xi

 ·Expy

 ∏

i∈S′4S′′
yi

 , (4)

where A4B denotes the symmetric difference between sets A and B. (I.e., i ∈ A4B iff i is
in exactly one of A or B.) Above, the second equality uses the fact that x2

i = y2
i = 1 (since

xi, yi ∈ {−1, 1}), and the third equality relies on the fact that x and y are independent.
Evaluating Expx

[∏
i∈S4S′′ xi

]
is easy: if S = S′′ then the product is empty and so evalu-

ates to 1 regardless of x. On the other hand, if S 6= S′′ then each xi is equally likely to be
1 or −1 and so the expected value of the product is 0. We thus see from Equation (4) that
Expx,y [χS(x) χS′(y) χS′′(x ◦ y)] = 0 unless S = S′ = S′′, in which case the expression evaluates
to 1. Working back through Equations (3) and (2) gives the claimed result.

Given Lemma 3 we can prove Theorem 2 in just a few lines. We have:

Pr[linearity test accepts] =
1
2

+
1
2
·
∑

S

π̂(S)3

≤ 1
2

+
1
2
·maxS{π̂(S)} ·

∑

S

π̂(S)2

=
1
2

+
1
2
·maxS{π̂(S)},

22-5

using Parseval’s theorem. If π is distance ε from linear, this means that maxv{π̂(v)} = 1− 2ε. We
conclude that Pr[linearity test accepts] ≤ 1− ε, proving the theorem.

3 The Consistency Test

We return to our notation from Section 1.1, where ~v represents a boolean vector of length n2 and
we index it using two indices each ranging from 1 to n.

Assume π is within distance 1/48 from linear. This means there exists a unique1 linear function f
within distance 1/48 from π; we can write f as

f(~v) =
n∑

i,j=1

λi,j · vi,j

for some {λi,j ∈ {0, 1}}. We now want a way to check that these {λi,j} are consistent ; i.e., that
λi,j = λi,i · λj,j for all i, j. A useful way to view this is to put the {λi,j} in an n×n matrix M ; i.e.,

M
def=

λ1,1 λ1,2 · · · λ1,n
...

...
. . .

...
λn,1 λn,2 · · · λn,n

 .

Let ~λ
def= (λ1,1, . . . , λn,n) (all our vectors will be row vectors). Then consistency is equivalent to:

M = ~λT~λ.

(Note once again that λ2
i,i = λi,i since we are working in F2.) We first show an efficient way to test

equality of matrices, and then show how the test can be implemented using access to π.

Claim 4 Let M, M ′ be two unequal n× n matrices over F2. Then

Pr
~x,~y∈{0,1}n

[~xM~y T = ~xM ′~y T] ≤ 3
4

.

Proof Note that ~xM~y T − ~xM ′~y T = ~x(M −M ′)~y T and M −M ′ is a non-zero matrix. So we are
interested in the probability that ~xM ′′~y T = 0 for non-zero matrix M ′′.

The probability that M ′′~y T = ~0 is at most 1/2. Assuming this does not occur, the probability
that ~x(M ′′~y T) = 0 is exactly 1/2. So, the probability that ~xM ′′~y T = 0 is at most 3/4.

How can we evaluate ~xM~y T and ~x(~λT~λ)~y T given access to π? Let us assume we have access
to f , and show how to correct for this later. Given access to f , it is easy to compute ~xM~y T since

~xM~y T =
n∑

i,j=1

λi,jxiyj .

Setting vi,j = xiyj and querying f(~v) thus gives the desired answer. For the second computation,
note that

~x(~λT~λ)~y T = (~x~λT)(~λ~y T).
1That f is unique follows from the fact that any two distinct linear functions are distance 1/2 from each other.

22-6

Setting vi,i = xi (and vi,j = 0 when i 6= j), we see that f(~v) = ~x~λT ; the value ~λ~y T is computed
similarly.

The above assumes we have access to f — but we only have access to π! However, we said that
π was within distance 1/48 from f . So we can compute f(~v) (for any ~v) by choosing a random
“shift” ~r ∈ {0, 1}n2

and computing f̃(~v) = π(~r) + π(~r + ~v). Note that as long as π(~r) = f(~r) and
π(~r +~v) = f(~r +~r), then f̂(~v) = f(~v). Thus, for any ~v we compute the correct value of f(~v) except
with probability 2/48 = 1/24. This technique is called self-correction.

3.1 In Summary

To summarize, we perform the following consistency test :

1. Choose random ~x, ~y.

2. Using self-correction and the approach described above, compute ~xM~y T .

3. Using self-correction and the approach described above, compute ~x(~λT~λ)~y T .

4. Accept if and only if the two values thus computed are equal.

Note that step 2 requires one call to f , so it requires two calls to π. Step 3 requires two calls to f ,
so it requires four calls to π.

We may now state the main result of this section (again, we have not tried to optimize constants):

Theorem 5 Assume π is within distance 1/48 of a linear function f . If f is not consistent (in
the sense described above), then the consistency test rejects with probability at least 1/8.

Proof Assuming the test correctly computes ~xM~y T and ~x(~λT~λ)~y T , the test will accept with
probability at most 3/4 (by Claim 4). The probability that one of the six calls to π results in an
incorrect value for f is at most 6/48 = 1/8 (using the fact that π and f disagree on at most a 1/48
fraction of their points, and applying a union bound). So, the probability of acceptance is at most
3/4 + 1/8 and the theorem follows.

4 The Satisfiability Test

Assume π is within distance 1/48 from the linear function

f(~v) =
n∑

i,j=1

λi,jvi,j

and furthermore that f is consistent (i.e., the {λi,j} satisfy λi,j = λi,i · λj,j for all i, j). We view π
an encoding an assignment ~a = (λ1,1, λ2,2, . . . , λn,n). We now want to check that this assignment
is a satisfying assignment for the given system of equations. (Indeed, note that until this point
everything we have done has been independent of the system of equations whose satisfiability we
are interested in!)

22-7

Our set of equations (cf. Eq (1)) can be written as:

c(k) +

n∑

i,j=1

c
(k)
i,j · xixj = 0

m

k=1

,

and so we want to verify whether

yk
def= c(k) +

n∑

i,j=1

c
(k)
i,j · aiaj

is equal to 0 for all k ∈ [1, m]. If we let ~y
def= (y1, . . . , ym), then we want to check whether ~y is the

0-vector. We can’t check every position individually since this will require too many queries to π.
What we will do instead is to look at the dot product of ~y with a random vector: if ~y = ~0 then this
dot product will always be 0, but if ~y 6= 0 then the dot product will be 1 with probability 1/2.

Taking the dot product of ~y with a random vector is equivalent to choosing a random subset
S ⊆ [m] and looking at the sum. That is,

∑

k∈S

yk =
∑

k∈S

c(k) +

n∑

i,j=1

c
(k)
i,j · aiaj

=
∑

k∈S

c(k) +
∑

k∈S

n∑

i,j=1

c
(k)
i,j · aiaj

=
∑

k∈S

c(k) +
n∑

i,j=1

aiaj ·
(∑

k∈S

c
(k)
i,j

)
.

We can evaluate the first term on our own, and will obtain the second term by evaluating f(~v)
where

vi,j =
∑

k∈S

c
(k)
i,j .

To obtain this value f(~v), we will again use self-correction as in the previous section.
In total, we make two queries to π and achieve the following (again, constants have not been

optimized):

Theorem 6 Assume π is within distance 1/48 of a linear function f and that f is consistent (as
defined previously). Then if the system of equations is not satisfiable, the satisfiability test rejects
with probability at least 1/8.

Proof If the test correctly computes f(~v), it accepts with probability 1/2. The probability that
one of the two calls to π results in an incorrect value for f is at most 2/48 (as in the previous
theorem). So, the probability of acceptance is at most 1/2 + 2/48 and the theorem follows.

22-8

5 Putting it all Together

We summarize the PCP system. Given a system of equations and access to an oracle π, the verifier
proceeds as follows:

• Perform the linearity test (3 queries to π).

• Perform the consistency test (6 queries to π).

• Perform the satisfiability test (2 queries to π).

• Accept only if all the above tests succeed.

If the system of equations is satisfiable, then there exists a proof string π for which the above test
accepts with probability 1. We claim that if the system of equations is not satisfiable, then the
test will reject with probability at least 1/48 (for any π). There are three cases: (1) π is not within
distance 1/48 of a linear function; (2) π is within distance 1/48 of a (unique) linear function f ,
but f is not consistent; or (3) π is within distance 1/48 of a consistent, linear function f , but f
does not encode a satisfying assignment. In case (1) the linearity test will reject with probability at
least 1/48; in case (2) the consistency test will reject with probability at least 1/8; and in case (3)
the satisfiability test will reject with probability at least 1/8.

Bibliographic Notes

For more on Fourier analysis of boolean functions, see O’Donnell’s lecture notes [2], or the online
textbook he is currently writing [3]. For a reasonably self-contained proof of the full PCP theorem
(including also a proof that NP ⊆ PCP(poly, 1)), see Harsha’s thesis [1].

References

[1] P. Harsha. Robust PCPs of Proximity and Shorter PCPs. PhD thesis, MIT, 2004. Available at
http://www.tcs.tifr.res.in/~prahladh/papers/#theses

[2] R. O’Donnell. Lecture notes for 15-859S: Analysis of Boolean Functions. Available at
http://www.cs.cmu.edu/~odonnell/boolean-analysis.

[3] R. O’Donnell. http://www.contrib.andrew.cmu.edu/~ryanod/?page_id=2

22-9

Notes on Complexity Theory Last updated: November, 2011

Lecture 23

Jonathan Katz

1 The Complexity of Counting

1.1 The Class #P
P captures problems where we can efficiently find an answer; NP captures problems where we can
efficiently verify an answer. Counting the number of answers gives rise to the class #P.

Recall that L ∈ NP if there is a (deterministic) Turing machine M running in time polynomial
in its first input such that

x ∈ L ⇔ ∃w M(x,w) = 1. (1)

The corresponding counting problem is: given x, determine the number of strings w for which
M(x,w) = 1. (Note that x ∈ L iff this number is greater than 0.) An important point is that for
a given L, there might be several (different) machines for which Eq. (1) holds; when specifying the
counting problem, we need to fix not only L but also a specific machine M . Sometimes, however,
we abuse notation when there is a “canonical” M for some L.

We let #P denote the class of counting problems corresponding to polynomial-time M as
above. The class #P can be defined as a function class or a language class; we will follow the
book and speak about it as a function class. Let M be a (two-input) Turing machine M that
halts on all inputs, and say M runs in time t(n) where n denotes the length of its first input. Let
#M(x) def=

∣∣{w ∈ {0, 1}t(|x|) | M(x,w) = 1
}∣∣. Then:1

Definition 1 A function f : {0, 1}∗ → N is in #P if there is a Turing machine M running in time
polynomial in its first input such that f(x) = #M(x).

We let FP denote the class of functions computable in polynomial time; this corresponds to the
language class P.

Any f ∈ #P defines a natural language L ∈ NP: letting M be the Turing machine for which
f(x) = #M(x), we can define

L = {x | f(x) > 0}.
This view can be used to show that #P is at least as hard as NP. Consider, for example, the
problem #SAT of counting the number of satisfying assignments of a boolean formula. It is easy
to see that #SAT ∈ #P, but #SAT is not in FP unless P = NP (since being able to count the
number of solutions clearly implies the ability to determine existence of a solution). Interestingly,
it is also possible for a counting problem to be hard even when the corresponding decision problem
is easy. (Actually, it is trivial to come up with “cooked up” examples where this is true. What is

1For completeness, we also discuss how #P can be defined as a language class. For the purposes of this footnote
only, let #FP denote the function class (as defined above). Then language class #P can be defined as: L ∈ #P if
there is a Turing machine M running in time polynomial in its first input such that L = {(x, k) | #M(x) ≤ k}. We
use inequality rather than equality in this definition to ensure that #P = P#FP and #FP = FP#P .

23-1

interesting is that there are many natural examples.) For example, let #cycle be the problem of
counting the number of cycles in a directed graph. Note that #cycle ∈ #P, and the corresponding
decision problem is in P. But:

Claim 1 If P 6= NP, then #cycle 6∈ FP.

Proof (Sketch) If #cycle ∈ FP then we can detect the existence of Hamiltonian cycles in
polynomial time. (Deciding Hamiltonicity is a classic NP-complete problem.) Given a graph G,
form a new graph G′ by replacing each edge (u, v) with a “gadget” that introduces 2n log n paths
from u to v. If G has a Hamiltonian cycle, then G′ has at least

(
2n log n

)n = nn2
cycles; if G does

not have a Hamiltonian cycle then its longest cycle has length at most n − 1, and it has at most
nn−1 cycles; thus, G′ has at most

(
2n log n

)n−1 · nn−1 < nn2
cycles.

There are two approaches, both frequently encountered, that can be used to define (different
notions of) #P-completeness. We say a function g ∈ #P is #P-complete under parsimonious
reductions if for every f ∈ #P there is a polynomial-time computable function φ such that f(x) =
g(φ(x)) for all x. (A more general, but less standard, definition would allow for two polynomial-
time computable functions φ, φ′ such that f(x) = φ′(g(φ(x))).) This is roughly analogous to a Karp
reduction. An alternative definition is that g ∈ #P is #P-complete under oracle reductions if for
every f ∈ #P there is a polynomial-time Turing machine M such that f is computable by Mg. (In
other words, #P ⊆ FPg.) This is analogous to a Cook reduction.

Given some g ∈ #P, denote by Lg the NP-language corresponding to g (see above). It is
not hard to see that if g is #P-complete under parsimonious reductions then Lg is NP-complete.
As for the converse, although no general result is known, one can observe that most Karp re-
ductions are parsimonious; in particular, #SAT is #P-complete under parsimonious reductions.
#P-completeness under oracle reductions is a much more liberal definition; as we will see in the
next section, it is possible for g to be #P-complete under Cook reductions even when Lg ∈ P.

1.2 #P-Completeness of Computing the Permanent

Let A = {ai,j} be an n× n matrix over the integers. The permanent of A is defined as:

perm(A) def=
∑

π∈Sn

n∏

i=1

ai,π(i) ,

where Sn is the set of all permutations on n elements. This formula is very similar to the formula
defining the determinant of a matrix; the difference is that in the case of the determinant there is an
extra factor of (−1)sign(π). Nevertheless, although the determinant can be computed in polynomial
time, computing the permanent (even of boolean matrices) is #P-complete.

We should say a word about why computing the permanent is in #P (since it does not seem
to directly correspond to a counting problem). The reason is that computing the permanent is
equivalent to (at least) two other problems on graphs. For the case when A is a boolean matrix,
we may associate A with a bipartite graph GA having n vertices in each component, where there
is an edge from vertex i (in the left component) to vertex j (in the right component) iff ai,j = 1.
Then perm(A) is equal to the number of perfect matchings in GA. For the case of a general integer
matrices, we may associate any such matrix A with an n-vertex weighted, directed graph GA

(allowing self-loops) by viewing A as a standard adjacency matrix. A cycle cover in GA is a set

23-2

of edges such that each vertex has exactly one incoming and outgoing edge in this set. (Any cycle
cover corresponds to a permutation π on [n] such that (i, π(i)) is an edge for all i.) The weight of
a cycle cover is the product of the weight of the edges it contains. Then perm(A) is equal to the
sum of the weights of the cycle covers of GA. (For boolean matrices, perm(A) is just the number
of cycle covers of GA.)

Determining existence of a perfect matching, or of a cycle cover, can be done in polynomial
time; it is counting the number of solutions that is hard:

Theorem 2 Permanent for boolean matrices is #P-complete under oracle reductions.

The proof is quite involved and so we skip it; a full proof can be found in [1, Section 17.3.1].

References

[1] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University
Press, 2009.

23-3

Notes on Complexity Theory Last updated: November, 2011

Lecture 24

Jonathan Katz

1 The Complexity of Counting

We explore three results related to hardness of counting. Interestingly, at their core each of these
results relies on a simple — yet powerful — technique due to Valiant and Vazirani.

1.1 Hardness of Unique-SAT

Does SAT become any easier if we are guaranteed that the formula we are given has at most one
solution? Alternately, if we are guaranteed that a given boolean formula has a unique solution does
it become any easier to find it? We show here that this is not likely to be the case.

Define the following promise problem:

USAT
def= {φ : φ has exactly one satisfying assignment}

USAT
def= {φ : φ is unsatisfiable}.

Clearly, this problem is in promise-NP. We show that if it is in promise-P, then NP = RP. We
begin with a lemma about pairwise-independent hashing.

Lemma 1 Let S ⊆ {0, 1}n be an arbitrary set with 2m ≤ |S| ≤ 2m+1, and let Hn,m+2 be a family
of pairwise-independent hash functions mapping {0, 1}n to {0, 1}m+2. Then

Pr
h∈Hn,m+2

[there is a unique x ∈ S with h(x) = 0m+2] ≥ 1/8.

Proof Let 0 def= 0m+2, and let p
def= 2−(m+2). Let N be the random variable (over choice of random

h ∈ Hn,m+2) denoting the number of x ∈ S for which h(x) = 0. Using the inclusion/exclusion
principle, we have

Pr[N ≥ 1] ≥
∑

x∈S

Pr[h(x) = 0]− 1
2
·

∑

x6=x′∈S

Pr[h(x) = h(x′) = 0]

= |S| · p−
(|S|

2

)
p2,

while Pr[N ≥ 2] ≤ ∑
x6=x′∈S Pr[h(x) = h(x′) = 0] =

(|S|
2

)
p2. So

Pr[N = 1] = Pr[N ≥ 1]− Pr[N ≥ 2] ≥ |S| · p− 2 ·
(|S|

2

)
p2 ≥ |S|p− |S|2p2 ≥ 1/8,

using the fact that |S| · p ∈ [14 , 1
2].

24-1

Theorem 2 (Valiant-Vazirani) If (USAT, USAT) is in promise-RP, then NP = RP.

Proof If (USAT, USAT) is in promise-RP, then there is a probabilistic polynomial-time algorithm
A such that

φ ∈ USAT ⇒ Pr[A(φ) = 1] ≥ 1/2
φ ∈ USAT ⇒ Pr[A(φ) = 1] = 0.

We design a probabilistic polynomial-time algorithm B for SAT as follows: on input an n-variable
boolean formula φ, first choose uniform m ∈ {0, . . . , n−1}. Then choose random h ← Hn,m+2. Us-

ing the Cook-Levin reduction, rewrite the expression ψ(x) def=
(
φ(x) ∧ (

h(x) = 0m+2
))

as a boolean
formula φ′(x, z), using additional variables z if necessary. (Since h is efficiently computable, the
size of φ′ will be polynomial in the size of φ. Furthermore, the number of satisfying assignments to
φ′(x, z) will be the same as the number of satisfying assignments of ψ.) Output A(φ′).

If φ is not satisfiable then φ′ is not satisfiable, so A (and hence B) always outputs 0. If φ is
satisfiable, with S denoting the set of satisfying assignments, then with probability 1/n the value of
m chosen by B is such that 2m ≤ |S| ≤ 2m+1. In that case, Lemma 1 shows that with probability
at least 1/8 the formula φ′ will have a unique satisfying assignment, in which case A outputs 1 with
probability at least 1/2. We conclude that when φ is satisfiable then B outputs 1 with probability
at least 1/16n.

1.2 Approximate Counting, and Relating #P to NP
#P is clearly not weaker than NP, since if we can count solutions then we can certainly tell if any
exist. Although #P is (in some sense) “harder” than NP, we show that any problem in #P can
be probabilistically approximated in polynomial time using an NP oracle. (This is reminiscent of
the problem of reducing search to decision, except that here we are reducing counting the number
of witness to the decision problem of whether or not a witness exists. Also, we are only obtaining
an approximation, and we use randomization.) We focus on the #P-complete problem #SAT. Let
#SAT(φ) denote the number of satisfying assignments of a boolean formula φ. We show that for
any polynomial p there exists a ppt algorithm A such that

Pr
[
#SAT(φ) ·

(
1− 1

p(|φ|)
)
≤ ANP(φ) ≤ #SAT(φ) ·

(
1 +

1
p(|φ|)

)]
≥ 1− 2−p(|φ|) ; (1)

that is, A approximates #SAT(φ) (the number of satisfying assignments to φ) to within a factor
(1± 1

p(|φ|)) with high probability.
The first observation is that it suffices to obtain a constant-factor approximation. Indeed, say

we have an algorithm B such that

1
64
·#SAT(φ) ≤ BNP(φ) ≤ 64 ·#SAT(φ). (2)

(For simplicity we assume B always outputs an approximation satisfying the above; any failure
probability of B propagates in the obvious way.) We can construct an algorithm A satisfying (1)
as follows: on input φ, set q = log 64 · p(|φ|) and compute t = B(φ′) where

φ′ def=
∧q

i=1 φ(xi) ,

24-2

and the xi denote independent sets of variables. A then outputs t1/q.
Letting N (resp., N ′) denote the number of satisfying assignments to φ (resp., φ′), note that

N ′ = N q. Since t satisfies 1
64 ·N ′ ≤ t ≤ 64 ·N ′, the output of A lies in the range

[
2−1/p(|φ|) ·N, 21/p(|φ|) ·N

]
⊆

[(
1− 1

p(|φ|)
)
·N,

(
1 +

1
p(|φ|)

)
·N

]
,

as desired. In the last step, we use the following inequalities which hold for all x ≥ 1:

(
1
2

)1/x

≥
(

1− 1
x

)
and 21/x ≤

(
1 +

1
x

)
.

The next observation is that we can obtain a constant-factor approximation by solving the
promise problem (ΠY ,ΠN) given by:

ΠY
def= {(φ, k) | #SAT(φ) > 8k}

ΠN
def= {(φ, k) | #SAT(φ) < k/8}.

Given an algorithm C solving this promise problem, we can construct an algorithm B satisfying (2)
as follows. (Once again, we assume C is deterministic; if C errs with non-zero probability we can
handle it in the straightforward way.) On input φ do:

• Set i = 0.

• While M((φ, 8i)) = 1, increment i.

• Return 8i− 1
2 .

Let i∗ be the value of i at the end of the algorithm, and set α = log8 #SAT(φ). In the second step,
we know that M((φ, 8i)) outputs 1 as long as #SAT(φ) > 8i+1 or, equivalently, α > i+1. So we end
up with an i∗ satisfying i∗ ≥ α− 1. We also know that M((φ, 8i)) will output 0 whenever i > α+1
and so the algorithm above must stop at the first (integer) i to satisfy this. Thus, i∗ ≤ α + 2.
Putting this together, we see that our output value satisfies:

#SAT(φ)/64 < 8i∗− 1
2 < 64 ·#SAT(φ),

as desired. (Note that we assume nothing about the behavior of M when (φ, 8i) 6∈ ΠY ∪ΠN .)
Finally, we show that we can probabilistically solve (ΠY , ΠN) using an NP oracle. This just

uses another application of the Valiant-Vazirani technique. Here we rely on the following lemma:

Lemma 3 Let Hn,m be a family of pairwise-independent hash functions mapping {0, 1}n to {0, 1}m,
and let ε > 0. Let S ⊆ {0, 1}n be arbitrary with |S| ≥ ε−3 · 2m. Then:

Pr
h∈Hn,m

[
(1− ε) · |S|

2m
≤ |{x ∈ S | h(x) = 0m}| ≤ (1 + ε) · |S|

2m

]
> 1− ε.

24-3

Proof Define for each x ∈ S an indicator random variable δx such that δx = 1 iff h(x) = 0m

(and 0 otherwise). Note that the δx are pairwise independent random variables with expectation
2−m and variance 2−m · (1 − 2−m). Let Y

def=
∑

x∈S δx = |{x ∈ S | h(x) = 0m}|. The expectation
of Y is |S|/2m, and its variance is |S|

2m · (1 − 2−m) (using pairwise independent of the δx). Using
Chebychev’s inequality, we obtain:

Pr [(1− ε) ·Exp[Y] ≤ Y ≤ (1 + ε) ·Exp[Y]] = Pr [|Y −Exp[Y]| ≤ ε ·Exp[Y]]

≥ 1− Var[Y]
(ε ·Exp[Y])2

= 1− (1− 2−m) · 2m

ε2 · |S| ,

which is greater than 1− ε for |S| as stated in the proposition.

The algorithm solving (ΠY ,ΠN) is as follows. On input (φ, k) with k > 1 (note that a solution
is trivial for k = 1), set m = blog kc, choose a random h from Hn,m, and then query the NP oracle

on the statement φ′(x) def= (φ(x) ∧ (h(x) = 0m)) and output the result. An analysis follows.

Case 1: (φ, k) ∈ ΠY , so #SAT(φ) > 8k. Let Sφ = {x | φ(x) = 1}. Then |Sφ| > 8k ≥ 8 · 2m. So:

Pr
[
φ′ ∈ SAT

]
= Pr

[{x ∈ Sφ : h(x) = 0m} 6= ∅]

≥ Pr
[|{x ∈ Sφ : h(x) = 0m}| ≥ 4

] ≥ 1
2

,

which we obtain by applying Lemma 3 with ε = 1
2 .

Case 2: (φ, k) ∈ ΠN , so #SAT(φ) < k/8. Let Sφ be as before. Now |Sφ| < k/8 ≤ 2m/4. So:

Pr
[
φ′ ∈ SAT

]
= Pr

[{x ∈ Sφ : h(x) = 0m} 6= ∅]

≤
∑

x∈Sφ

Pr [h(x) = 0m]

<
2m

4
· 2−m =

1
4
,

where we have applied a union bound in the second step. We thus have a constant gap in the
acceptance probabilities when φ ∈ ΠY vs. when φ ∈ ΠN ; this gap can be amplified as usual.

1.3 Toda’s Theorem

The previous section may suggest that #P is not “much stronger” than NP, in the sense that #P
can be closely approximated given access to an NP oracle. Here, we examine this more closely,
and show the opposite: while approximating the number of solutions may be “easy” (given an NP
oracle), determining the exact number of solutions appears to be much more difficult.

Toward this, we first introduce the class ⊕P (“parity P”):

Definition 1 A function f : {0, 1}∗ → {0, 1} is in ⊕P if there is a Turing machine M running in
time polynomial in its first input such that f(x) = #M(x) mod 2.

Note that if f ∈ ⊕P then f is just the least-significant bit of some function f̄ ∈ #P. The class
⊕P does not represent any “natural” computational problem. Nevertheless, it is natural to study

24-4

it because (1) it nicely encapsulates the difficulty of computing functions in #P exactly (i.e., down
to the least-significant bit), and (2) it can be seen as a generalization of the unique-SAT example
discussed previously (where the difficulty there is determining whether a boolean formula has 0
solutions or 1 solution).

A function g ∈ ⊕P is ⊕P-complete (under parsimonious reductions) if for every f ∈ #P there
is a polynomial-time computable function φ such that f(x) = g(φ(x)) for all x. If ḡ ∈ #P is #P-
complete under parsimonious reductions, then the least-significant bit of ḡ is ⊕P-complete under
parsimonious reductions. For notational purposes it is easier to treat ⊕P as a language class, in the
natural way. (In particular, if f ∈ ⊕P as above then we obtain the language Lf = {x : f(x) = 1}.)
In this sense, ⊕P-completeness is just the usual notion of a Karp reduction. Not surprisingly,

⊕SAT
def= {φ : φ has an odd number of satisfying assignments}

is ⊕P-complete. Note that φ ∈ ⊕SAT iff
∑

x φ(x) = 1 mod 2 (where we let φ(x) = 1 if x satisfies φ,
and φ(x) = 0 otherwise).

A useful feature of ⊕P is that it can be “manipulated” arithmetically in the following sense:

• (φ ∈ ⊕SAT)
∧

(φ′ ∈ ⊕SAT) ⇔ φ ∧ φ′ ∈ ⊕SAT. This follows because

∑

x,x′
φ(x) ∧ φ′(x′) =

∑

x,x′
φ(x) · φ′(x′) =

(∑
x

φ(x)

)
·
(∑

x′
φ′(x′)

)
,

and hence the number of satisfying assignments of φ ∧ φ′ is the product of the number of
satisfying assignments of each of φ, φ′.

• Let φ, φ′ be formulas, where without loss of generality we assume they both have the same
number n of variables (this can always be enforced, without changing the number of satisfying
assignments, by “padding” with additional variables that are forced to be 0 in any satisfying
assignment). Define the formula φ + φ′ on n + 1 variables as follows:

(φ + φ′)(z, x) =
(
(z = 0) ∧ φ(x)

) ∨ (
(z = 1) ∧ φ′(x)

)
.

Note that the number of satisfying assignments of φ+φ′ is the sum of the number of satisfying
assignments of each of φ, φ′. In particular, (φ + φ′) ∈ ⊕SAT iff exactly one of φ, φ′ ∈ ⊕SAT.

• Let ‘1’ stand for some canonical boolean formula that has exactly one satisfying assignment.
Then φ 6∈ ⊕SAT ⇔ (φ + 1) ∈ ⊕SAT.

• Finally, (φ ∈ ⊕SAT)
∨

(φ′ ∈ ⊕SAT) ⇔ (φ + 1)
∧

(φ′ + 1) + 1 ∈ ⊕SAT.

We use the above tools to prove the following result:

Theorem 4 (Toda’s theorem) PH ⊆ P#P .

The proof of Toda’s theorem proceeds in two steps, each of which is a theorem in its own right.

Theorem 5 Fix any c ∈ N. There is a probabilistic polynomial-time algorithm A such that for any
quantified boolean formula ψ with c alternations, the following holds:

ψ is true ⇒ Pr[A(1m, ψ) ∈ ⊕SAT] ≥ 1− 2−m

ψ is false ⇒ Pr[A(1m, ψ) ∈ ⊕SAT] ≤ 2−m.

As a corollary, PH ⊆ BPP⊕P .

24-5

Proof It suffices to consider quantified boolean formulae beginning with an ‘∃’ quantifier. Indeed,
say we have some algorithm A′ that works in that case. If ψ begins with a ‘∀’ quantifier then ¬ψ
can be written as a quantified boolean formula beginning with an ‘∃’ quantifier; moreover, ψ is true
iff ¬ψ is false. Thus, defining A(1m, ψ) to return A′(1m,¬ψ) + 1 gives the desired result.

The proof is by induction on c. For c = 1 we apply the Valiant-Vazirani result plus amplification.
Specifically, let ψ be a statement with only a single ∃ quantifier. The Valiant-Vazirani technique
gives us a probabilistic polynomial-time algorithm B such that:

ψ is true ⇒ Pr[B(ψ) ∈ ⊕SAT] ≥ 1/8n

ψ is false ⇒ Pr[B(ψ) ∈ ⊕SAT] = 0,

where n is the number of variables in ψ. Algorithm A(1m, ψ) runs B(ψ) a total of ` = O(mn)
times to obtain formulae φ1, . . . , φ`; it then outputs the formula Φ = 1 +

∧
i(φi + 1). Note that∨

i(φi ∈ ⊕SAT) ⇔ Φ ∈ ⊕SAT; hence

ψ is true ⇒ Pr[A(1m, ψ) ∈ ⊕SAT] ≥ 1− 2−m

ψ is false ⇒ Pr[A(1m, ψ) ∈ ⊕SAT] = 0.

In fact, it can be verified that the above holds even if ψ has some free variables x. In more
detail, let ψx be a statement (with only a single ∃ quantifier) that depends on free variables x.1

The Valiant-Vazirani technique gives us a probabilistic polynomial-time algorithm B outputting a
statement φx (with free variables x) such that, for each x:

x is such that ψ is true ⇒ Pr[φx ∈ ⊕SAT] ≥ 1/8n

x is such that ψ is false ⇒ Pr[φx ∈ ⊕SAT] = 0.

Repeating this O(n · (m + |x|)) times and proceeding as before gives a formula Φx where, for all x,

x is such that ψ is true ⇒ Pr[Φx ∈ ⊕SAT] ≥ 1− 2−m

x is such that ψ is false ⇒ Pr[Φx ∈ ⊕SAT] = 0.

For the inductive step, write ψ = ∃x : ψ′x, where ψ′x is a quantified boolean formula with c− 1
alternations having n free variables x. Applying the inductive hypothesis, we can transform ψ′x
into a boolean formula Φ′x such that, for all x:

x is such that ψ′x is true ⇒ Φ′x ∈ ⊕SAT (3)
x is such that ψ′x is false ⇒ Φ′x 6∈ ⊕SAT (4)

except with probability at most 2−(m+1). We assume the above hold for the rest of the proof.
The key observation is that the Valiant-Vazirani technique applies here as well. We can output,

in polynomial time, a boolean formula β such that with probability at least 1/8n,

∃x : ψ′x ⇒ ∃x : Φ′x ∈ ⊕SAT ⇒ ∣∣{x :
(
Φ′x ∈ ⊕SAT

) ∧ β(x)
}∣∣ = 1 mod 2

6 ∃x : ψ′x ⇒ 6 ∃x : Φ′x 6∈ ⊕SAT ⇒ ∣∣{x :
(
Φ′x ∈ ⊕SAT

) ∧ β(x)
}∣∣ = 0 mod 2.

1E.g., ψx may be of the form “∃z : (z ∨ x̄) ∧ x”, in which case ψ0 is false and ψ1 is true.

24-6

Assume β is such that the above hold. Let [P] evaluate to 1 iff predicate P is true. Then ∃x : ψ′x
implies

1 =
∑

x

[(
Φ′x ∈ ⊕SAT

) ∧ β(x)
]

mod 2

=
∑

x

[(
1 =

∑
z

Φ′x(z) mod 2

)
∧ β(x)

]
mod 2

=
∑

x

[
1 =

∑
z

(
β(x) ∧ Φ′x(z)

)
mod 2

]
mod 2

=
∑
x,z

(
β(x) ∧ Φ′x(z)

)
mod 2,

and similarly 6 ∃x : ψ′x implies
0 =

∑
x,z

(
β(x) ∧ Φ′x(z)

)
mod 2.

Letting φ(x, z) def= β(x) ∧ Φ′x(z) (note φ has no free variables), we conclude that

∃x : ψ′x ⇔ φ ∈ ⊕SAT.

The above all holds with probability at least 1/8n. But we may amplify as before to obtain Φ
such that

∃x : ψ′x ⇒ Pr[Φ ∈ ⊕SAT] ≥ 1− 2−(m+1)

6 ∃x : ψ′x ⇒ Pr[Φ ∈ ⊕SAT] ≤ 2−(m+1).

Taking into account the error from Equations (3) and (4), we get a total error probability that is
bounded by 2−m.

The second step of Toda’s theorem shows how to derandomize the above reduction, given access
to a #P oracle.

Theorem 6 BPP⊕P ⊆ P#P .

Proof We prove a weaker result, in that we consider only probabilistic Karp reductions to ⊕P.
(This suffices to prove Toda’s theorem, since the algorithm from the preceding theorem shows that
PH can be solved by such a reduction.) For simplicity, we also only consider derandomization of
the specific algorithm A from the previous theorem.

The first observation is that there is a (deterministic) polynomial-time computable transforma-
tion T such that if φ′ = T (φ, 1`) then

φ ∈ ⊕SAT ⇒ #SAT(φ′) = −1 mod 2`+1

φ 6∈ ⊕SAT ⇒ #SAT(φ′) = 0 mod 2`+1.

(See [1, Lemma 17.22] for details.)

24-7

Let now A be the randomized reduction from the previous theorem (fixing m = 2), so that

ψ is true ⇒ Pr[A(ψ) ∈ ⊕P] ≥ 3/4
ψ is false ⇒ Pr[A(ψ) ∈ ⊕P] ≤ 1/4,

where ψ is a quantified boolean formula. Say A uses t = t(|ψ|) random bits. Let T ◦ A be the
(deterministic) function given by

T ◦A(ψ, r) = T (A(ψ; r), 1t).

Finally, consider the polynomial-time predicate R given by

R(ψ, (r, x)) = 1 iff x is a satisfying assignment for T ◦A(ψ, r).

Now:

1. If ψ is true then for at least 3/4 of the values of r the number of satisfying assignments to
T ◦ A(ψ, r) is equal to −1 modulo 2t+1, and for the remaining values of r the number of
satisfying assignments is equal to 0 modulo 2t+1. Thus

∣∣{(r, x) | R(ψ, (r, x)) = 1}∣∣ ∈ {−2t, . . . ,−3 · 2t/4} mod 2t+1.

2. If ψ is false then for at least 3/4 of the values of r the number of satisfying assignments
to T ◦ A(ψ, r) is equal to 0 modulo 2t+1, and for the remaining values of r the number of
satisfying assignments is equal to −1 modulo 2t+1. Thus

∣∣{(r, x) | R(ψ, (r, x)) = 1}∣∣ ∈ {−2t/4, . . . , 0} mod 2t+1.

We can distinguish the two cases above using a single call to the #P oracle (first applying a
parsimonious reduction from R(ψ, ·) to a boolean formula φ(·)).

References

[1] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University
Press, 2009.

24-8

Notes on Complexity Theory Last updated: November, 2011

Lecture 25

Jonathan Katz

1 Time-Bounded Derandomization

Randomization provides unconditional benefits in many settings; examples include cryptography
(where random keys are used to provide protection against an adversary) and distributed computing
(where randomness can be used as a means to break symmetry between parties). Randomness
also appears to help in algorithm design. But is it possible that, from a complexity-theoretic
perspective, randomness does not help? E.g., might it be the case that every problem that can be
solved in randomized polynomial time can also be solved in deterministic polynomial time? (That
is, is P = BPP?) Historically, guided by progress in designing efficient randomized algorithms,
most researchers believed that randomness does help. Research over the past 25 years on (time-
bounded) derandomization has now led many to change their views; the consensus nowadays is
that randomization does not help.1

One natural approach to derandomize algorithms is to use a pseudorandom generator (PRG)
that expands a small, truly random input into a larger, random-looking output. In the next section
we define PRGs and then describe their application to derandomization. The remainder of these
notes will focus on constructing a PRG based on a (plausible) complexity assumption.

2 Pseudorandom Generators

A pseudorandom generator G is a deterministic algorithm that expands a short input (often called
a “seed”) into a larger output. The output of G should “look random”; formally, G(s) (for s chosen
uniformly) should be indistinguishable from a uniform string of length |G(s)|. We give a formal
definition next. (A word on notation: When we write G : {0, 1}`(t) → {0, 1}t we mean that for
every integer t and every s ∈ {0, 1}`(t), we have |G(s)| = t.)

Definition 1 A function G : {0, 1}`(t) → {0, 1}t is a (complexity-theoretic) pseudorandom generator
if G can be computed in exponential time (i.e., G(s) can be computed in time 2O(|s|)) and if for all
sufficiently large t the following holds: for any distinguisher (i.e., circuit) C of size at most t,

∣∣∣Prr←{0,1}t [C(r) = 1]− Prs←{0,1}`(t) [C (G(s)) = 1]
∣∣∣ < 1/t.

It is worth pointing out several differences between the above definition and that of cryptographic
pseudorandom generators. (Those who have not seen cryptographic PRGs can skip to the next
section.) The primary difference is with respect to the running time of the PRG vs. the running time

1Note that even if randomness “does not help” from a complexity-theoretic standpoint, it may still be the case
that it helps from an algorithmic standpoint. Namely, even if P = BPP there may exist problems whose solution
requires, say, deterministic quadratic time but randomized linear time.

25-1

of the distinguisher. Simplifying things a bit, in the cryptographic setting honest parties evaluate
the PRG and an adversary plays the role of the distinguisher; we would like to keep the running time
of the honest parties as small as possible, while simultaneously protecting them against the most
powerful class of adversaries possible. In particular, we certainly want to offer protection against
adversaries who are at least as powerful as the honest parties; thus, when defining a cryptographic
PRG we will always want to consider distinguishers that run in time greater than the time to
evaluate the PRG itself. In contrast, we will see that this is not needed for complexity-theoretic
applications; thus, it is still meaningful in our context to consider PRGs where the distinguisher
runs in less time than is required to evaluate the PRG.

We mention a few other differences; the reason for these differences should become clear in the
following section:

• Here we only require that the distinguisher cannot distinguish the pseudorandom distribu-
tion from the uniform distribution “too well”, i.e., with advantage better than 1/t. In the
cryptographic setting we require the distinguisher’s advantage to be negligible.

• A complexity-theoretic PRG may require exponential time (in the input length) to compute.
In the cryptographic setting, as noted above, evaluating the PRG should be as efficient as
possible; we at least require the PRG to be computable in polynomial time.

• In the present definition we consider non-uniform distinguishers, while in the usual crypto-
graphic setting one considers only uniform distinguishers.

With the exception of the last point, complexity-theoretic PRGs are weaker than cryptographic
PRGs; thus they can be constructed from milder assumptions.

2.1 Using a PRG to Derandomize Algorithms

We now show how a complexity-theoretic PRG can be used to derandomize algorithms.

Theorem 1 If there is a (complexity-theoretic) pseudorandom generator G : {0, 1}`(t) → {0, 1}t,
then bptime(t(n)) ⊆ time(2O(`(t2(n)))).

Proof Fix a language L ∈ bptime(t(n)), and a probabilistic algorithm A running in time T (n) =
O(t(n)) for which

x ∈ L ⇒ Pr[A(x) = 1] ≥ 2/3
x 6∈ L ⇒ Pr[A(x) = 1] ≤ 1/3.

We construct a deterministic algorithm B deciding L. We focus on input lengths n sufficiently
large; the behavior of B on a finite number of shorter inputs can be hard-coded into the algorithm.

On input x ∈ {0, 1}n, algorithm B sets t = t(n) and does:

1. For each s ∈ {0, 1}`(t2), compute A(x; G(s)). (Note that A uses at most T (n) random bits,
which is less than |G(s)| = t2(n) for n sufficiently large.)

2. Output the majority value computed in the previous step.

25-2

Each iteration of step 1 takes time2 at most 2O(`(t2(n))) + T (n) = 2O(`(t2(n))), and there are 2`(t2(n))

iterations; thus, B runs in time 2O(`(t2(n))). We now show that B correctly decides L.
Correctness of B follows once we show that

x ∈ L ⇒ Pr[A(x; G(s)) = 1] > 1/2
x 6∈ L ⇒ Pr[A(x; G(s)) = 1] < 1/2,

where the probabilities are over random choice of s ∈ {0, 1}`(t2). Fix x ∈ {0, 1}n with x ∈ L. (The
argument if x 6∈ L is analogous.) Consider the distinguisher C(·) = A(x; ·). Since A runs in time
T (n), there is a circuit of size o(T 2) = o(t2) computing C. But then for n sufficiently large

Pr[A(x; G(s)) = 1] = Pr[C(G(s)) = 1]
> Pr[C(r) = 1]− 1/t2 (by pseudorandomness of G)
= Pr[A(x) = 1]− 1/t2 ≥ 2/3− 1/t2 > 1/2.

This completes the proof.

It is worth noting that non-uniformity comes into play in the preceding proof because we want
B to be correct on all inputs; if there exists an input x on which B is incorrect then we can
“hard-wire” x into the distinguisher C. The theorem would hold even if we only required G to
be indistinguishable for T = O(t)-time algorithms taking n ≤ T bits of advice. In a different
direction, if we only required B to be correct for efficiently sampleable inputs then we could work
with a uniform notion of PRGs.

Corollary 2 If there is a (complexity-theoretic) pseudorandom generator G : {0, 1}`(t) → {0, 1}t

with `(t) = O(log t), then P = BPP.

Proof Take arbitrary L ∈ BPP. Then L ∈ bptime(nc) for some constant c. By the previous
theorem, L ∈ time(2O(`(n2c))) = time(2O(log n)) = time(nO(1)) ⊂ P.

3 The Nisan-Wigderson PRG

3.1 Some Preliminaries

We collect here some results that are used in the next section, but are tangential to the main thrust.
The first lemma follows by a standard hybrid argument.

Lemma 3 Fix G : {0, 1}` → {0, 1}t and suppose there is a circuit C of size at most t such that
∣∣∣Prr←{0,1}t [C(r) = 1]− Prx←{0,1}` [C (G(x)) = 1]

∣∣∣ ≥ 1/t.

Then there exists an i ∈ {1, . . . , t} and a circuit C ′ of size at most t such that

Prx←{0,1}` [C ′ (G(x)1 · · ·G(x)i−1

)
= G(x)i]− 1

2
≥ 1/t2.

I.e., C ′ can predict the ith bit of the output of G.

The next lemma is a standard fact we have seen before.

Lemma 4 Any function f : {0, 1}k → {0, 1} can be computed by a circuit of size at most 2k.

2Note that `(t) = Ω(log t) (so 2O(`(t2)) = Ω(T)); otherwise, there is a trivial distinguisher and G is not a PRG.

25-3

3.2 From Hardness to Randomness

We will construct a PRG starting from any “suitably hard” computational problem. The starting
point here is simple: if a boolean function f is hard to compute (on average) for algorithms running
in time t — we formalize this below — then, by definition, x‖f(x) “looks random” to any t-time
algorithm given x. This does not yet give a PRG, but at least indicates the intuition. We first
formally define what it means for a function to be hard.

Definition 2 A function f : {0, 1}m → {0, 1} is S-hard if for all circuits C of size at most S,
∣∣Prx←{0,1}m [C(x) = f(x)]− 1/2

∣∣ < 1/S .

The key to the construction of a PRG is a combinatorial object called a design.

Definition 3 Fix integers k, m, `. A collection of sets {S1, . . . , St} with Si ⊂ {1, . . . , `} is a (k, m)-
design if (1) |Si| = m for all i, and (2) |Si ∩ Sj | ≤ k for all i 6= j.

We can specify a set system {S1, . . . , St} with Si ⊆ {1, . . . , `} by a t × ` matrix, where row i
of the matrix is the characteristic vector for Si. We say such a matrix A is a (k, m)-design if the
corresponding set system is.

Given a function f : {0, 1}m → {0, 1}, an `-bit string x = x1 · · ·x`, and a set S = {i1, . . . , im} ⊂
{1, . . . , `}, define fS(x) = f(xi1 · · ·xim). Given a t × ` matrix A corresponding to a set system
{S1, . . . , St} with Si ⊂ {1, . . . , `}, define fA : {0, 1}` → {0, 1}t as

fA(x) = fS1(x) · · · fSt(x).

In the following theorem we construct a “PRG” G : {0, 1}` → {0, 1}t for some fixed values of `, t.
(It is not quite a PRG since it is not yet a construction for arbitrary outputs length t.) We will
observe later that, as t varies, the construction is computable in exponential time as required by
Definition 2.

Theorem 5 Fix integers t,m, `. Suppose f : {0, 1}m → {0, 1} is t2-hard, and let A be a t × `
matrix that is a (log t, m)-design. Let fA : {0, 1}` → {0, 1}t be as above. Then for all circuits C of
size at most t we have

∣∣∣Prr←{0,1}t [C(r) = 1]− Prx←{0,1}` [C (fA(x)) = 1]
∣∣∣ < 1/t. (1)

Proof Denote the design corresponding to A by {S1, . . . , St}. Fix a circuit C of size at most t,
and assume toward a contradiction that (1) does not hold. By Lemma 3, this implies the existence
of an i ∈ {1, . . . , t} and a circuit C ′ of size at most t for which

Prx←{0,1}` [C ′ (fS1(x) · · · fSi−1(x)
)

= fSi(x)]− 1
2
≥ 1/t2. (2)

That is, C ′ can predict fSi(x) given fS1(x), . . . , fSi−1(x). We construct a circuit D of size at most t2

that computes f with probability better than 1/2 + 1/t2, contradicting the assumed hardness of f .
For notational convenience, let us assume that Si = {1, . . . , m}. Rewriting (2), we have

Prx1,...,x`←{0,1}[C ′ (fS1(x) · · · fSi−1(x)
)

= f(x1 · · ·xm)]− 1
2
≥ 1/t2 ,

25-4

where x = x1 · · ·x`. By a standard averaging argument, this implies that there exist some fixed
values x̄m+1, . . . , x̄` for the variables xm+1, . . . , x` for which

Prx1,...,xm←{0,1}[C ′ (fS1(x) · · · fSi−1(x)
)

= f(x1 · · ·xm)]− 1
2
≥ 1/t2 ,

where now x = x1 · · ·xmx̄m+1 · · · x̄`. We can express C ′ as a function D of x1, . . . , xm only by
defining D(x1 · · ·xm) = C ′ (fS1(x) · · · fSi−1(x)

)
(with x as just defined). The size of D is at most

the size of C ′ plus the sizes of the circuits required to compute all the fSj (x). To get an upper
bound on the latter, we use the fact that A is a (log t,m)-design. This implies that each fSj (x) is a
function of at most log t of the bits x1, . . . , xm (since Sj intersects Si = {1, . . . , m} in at most log t
positions). Thus, by Lemma 4, each fSi can be computed using at most t gates; hence D requires
at most t + (t− 1) · t = t2 gates. This gives the desired contradiction, and completes the proof.

To finish the construction we need only show how to build a design with the required parameters.
Treating the hard function f as being given, we have some fixed t, m and we want a (log t, m)-design
{S1, . . . , St} with Si ⊂ {1, . . . , `} and where ` = `(t,m) is as small as possible. For log t ≤ m ≤ t,
designs with ` = O(m2) exist; see [2]. For m = O(log t), a better construction is possible.

Theorem 6 Fix a constant c. There is an algorithm that, given t, constructs a (log t, c log t)-design
{S1, . . . , St} with Si ⊂ {1, . . . , `} and ` = O(log t). The algorithm runs in time poly(t).

Proof Define m = c log t, and set ` = d log t where the exact constant d can be derived from
the analysis that follows. A greedy algorithm, where we exhaustively search for the next set Si

(with the required properties) given S1, . . . , Si−1, works. To see this, look at the worst case where
S1, . . . , St−1 have all been fixed. Consider a random subset St ⊂ {1, . . . , `} of size m. The expected
number of points in which St and, say, S1 intersect is m2/` = O(log t); setting d appropriately, the
probability that they intersect in more than log t points is at most 1/t. A union bound over the
t− 1 sets that have already been fixed shows that the probability that any one of the existing sets
intersects St in more than log t points is less than 1; thus, there exists a set St that intersects each
of the fixed sets in at most log t points.

Each set can be chosen in time poly(t) (because ` = O(log t), we can enumerate all m-size subsets
of {1, . . . , `} in time poly(t)); since we choose t sets, the overall running time of the algorithm is
polynomial in t.

The only remaining piece is to let t vary, and observe conditions under which the above pseu-
dorandom generator can be computed in the required time. We say a function f : {0, 1}∗ → {0, 1}
is S(n)-hard if for all sufficiently large n the function f restricted to inputs of size n is S(n)-hard.

Corollary 7 Suppose there is a function f that can be computed in time 2αn but is 2βn-hard
for some constants α, β. Then there is a pseudorandom generator G : {0, 1}`(t) → {0, 1}t with
`(t) = O(log t), and P = BPP.

Proof Set c = 2/β, and let `(t) = O(log t) be as obtained using Theorem 6 for this value of c.
Define G as follows: On input x ∈ {0, 1}`, where ` = `(t) for some t, set m = c log t and let

f (m) denote the restriction of f to inputs of length m. Do:

1. Construct a (log t, m)-design {S1, . . . , St} with Si ⊂ {1, . . . , `}. Let A be the matrix corre-
sponding to this design.

25-5

2. Compute f
(m)
A (x).

By the assumptions of the theorem, for all sufficiently large t the function f (m) is t2-hard. Thus,
Theorem 5 implies that the output of G is pseudorandom and all that is left is to analyze the
running time of G. By Theorem 6, step 1 can be done in poly(t) = 2O(`) time. Step 2 requires
t = 2O(`) evaluations of f (m), and the assumptions of the theorem imply that each such evaluation
can be done in time 2O(m) = 2O(`). We thus see that the entire computation of G can be done in
time 2O(`), as required.

Bibliographic Notes

The results here are due to Nisan and Wigderson [2], whose paper is very readable. A good starting
point for subsequent developments in this area is [1, Chapter 20].

References

[1] S. Arora and B. Barak. Computational Complexity: A Modern Approach, Cambridge University
Press, 2009.

[2] N. Nisan and A. Wigderson. Hardness vs. Randomness. J. Computer & System Sciences
49(2):149–167, 1994. Preliminary version in FOCS ’88.

25-6

Notes on Complexity Theory Last updated: December, 2011

Lecture 27

Jonathan Katz

1 Space-Bounded Derandomization

We now discuss derandomization of space-bounded algorithms. Here non-trivial results can be
shown without making any unproven assumptions, in contrast to what is currently known for de-
randomizing time-bounded algorithms. We show first that BPL ⊆ space(log2 n) and then improve
the analysis and show that1 BPL ⊆ TimeSpc(poly(n), log2 n) ⊆ SC. (Note: we already know

RL ⊆ NL ⊆ space(log2 n)

but this does not by itself imply BPL ⊆ space(log2 n).)
With regard to the first result, we actually prove something more general:

Theorem 1 Any randomized algorithm (with two-sided error) that uses space S = Ω(log n) and R
random bits can be converted to one that uses space O(S log R) and O(S log R) random bits.

Since any algorithm using space S uses time at most 2S (by our convention regarding probabilistic
machines) and hence at most this many random bits, the following is an immediate corollary:

Corollary 2 For S = Ω(log n) it holds that bpspace(S) ⊆ space(S2).

Proof Let L ∈ bpspace(S). Theorem 1 shows that L can be decided by a probabilistic machine
with two-sided error using O(S2) space and O(S2) random bits. Enumerating over all random bits
and taking majority, we obtain a deterministic algorithm that uses O(S2) space.

2 BPL ⊆ space(log2 n)

We now prove Theorem 1. Let M be a probabilistic machine running in space S (and time 2S),
using R ≤ 2S random bits, and deciding a language L with two-sided error. (Note that S, R are
functions of the input length n, and the theorem requires S = Ω(log n).) We will assume without
loss of generality that M always uses exactly R random bits on all inputs; recall also that M has
read-once access to its random bits. Fixing an input x and letting ` be some parameter, we will
view the computation of Mx as a random walk on a multi-graph in the following way: our graph
will have R/` + 1 layers, with each layer containing N

def= 2O(S) nodes that correspond to possible
configurations of Mx. There is an edge from node a (in some layer i) to node b (in some layer i+1)
labeled by the string r ∈ {0, 1}` iff Mx moves from configuration a to configuration b after reading
r as its next ` random bits. Computation of M(x) is then equivalent to a random walk of length
R/` on this graph, beginning from the node corresponding to the initial configuration of Mx (in

1SC captures computation that simultaneously uses polynomial time and polylogarithmic space.

27-1

layer 0). If x ∈ L then the probability that this random walk ends up in the accepting state is at
least 2/3, while if x 6∈ L then the probability that this random walk ends up in the accepting state
is at most 1/3.

It will be convenient to represent this process using an N ×N transition matrix Qx, where the
entry in column i, row j is the probability that Mx moves from configuration i to configuration j
after reading ` random bits. Vectors of length N whose entries are non-negative and sum to 1
correspond to probability distributions over the configurations of Mx in the natural way. If we let s
denote the probability distribution that places probability 1 on the initial configuration of Mx (and
0 elsewhere), then Q

R/`
x · s corresponds to the probability distribution over the final configuration

of Mx; thus, if we let i denote the accepting configuration of Mx:

x ∈ L ⇒
(
QR/`

x · s
)

i
≥ 3/4

x 6∈ L ⇒
(
QR/`

x · s
)

i
≤ 1/4.

The statistical difference between two vectors/probability distributions s, s′ is

SD(s, s′) def=
1
2
· ∥∥s− s′

∥∥
1

=
1
2
·
∑

i

|si − s′i|.

If Q,Q′ are two transition matrices — meaning that all entries are non-negative, and the entries in
each column sum to 1 — then we abuse notation and define

SD(Q,Q′) def= maxs{SD(Qs, Q′s)},

where the maximum is taken over all s that correspond to probability distributions. Note that if
Q,Q′ are N ×N transition matrices and maxi,j{|Qi,j −Q′

i,j |} ≤ ε, then SD(Q,Q′) ≤ Nε/2.

2.1 A Useful Lemma

The pseudorandom generator we construct will use a family H of pairwise-independent functions
as a building block. It is easy to construct such a family H whose functions map `-bit strings to
`-bit strings and such that (1) |H| = 22` (and so choosing a random member of H is equivalent to
choosing a random 2`-bit string) and (2) functions in H can be evaluated in O(`) space.

For S ⊆ {0, 1}`, define ρ(S) def= |S|/2`. We define a useful property and then show that a
function chosen from a pairwise-independent family satisfies the property with high probability.

Definition 1 Let A, B ⊆ {0, 1}`, h : {0, 1}` → {0, 1}`, and ε > 0. We say h is (ε,A, B)-good if:
∣∣∣∣ Pr
x∈{0,1}`

[
x ∈ A

∧
h(x) ∈ B

]
− Pr

x,y∈{0,1}`

[
x ∈ A

∧
y ∈ B

]∣∣∣∣ ≤ ε.

Lemma 3 Let A,B ⊆ {0, 1}`, H be a family of pairwise-independent functions, and ε > 0. Then:

Pr
h∈H

[h is not (ε,A, B)-good] ≤ ρ(A)ρ(B)
2`ε2

.

27-2

Proof The proof is fairly straightforward. We want to bound the fraction of functions in H for
which

∣∣∣Prx∈{0,1}` [x ∈ A
∧

h(x) ∈ B]− ρ(A) · ρ(B)
∣∣∣ > ε or, equivalently,

∣∣∣∣ Pr
x∈A

[h(x) ∈ B]− ρ(B)
∣∣∣∣ > ε/ρ(A).

For fixed x, let δh(x)∈B be an indicator random variable (over random choice of h ∈ H) that is 1 iff
h(x) ∈ B. Then we are interested in the fraction of h ∈ H for which

∣∣∣∣∣
∑

x∈A

δh(x)∈B − |A| · ρ(B)

∣∣∣∣∣ > ε · |A|/ρ(A).

Using Chebyshev’s inequality and pairwise independence of H, we obtain

Pr
h∈H

[∣∣∣∣∣
∑

x∈A

δh(x)∈B − |A| · ρ(B)

∣∣∣∣∣ > ε · |A|/ρ(A)

]
≤ |A| · ρ(B) · ρ(A)2

ε2|A|2 =
ρ(A)ρ(B)

2`ε2
.

2.2 The Pseudorandom Generator and Its Analysis

2.2.1 The Basic Step

We first show how to reduce the number of random bits by roughly half. Let H denote a pairwise-
independent family of functions, and fix an input x. Let Q denote the transition matrix corre-
sponding to transitions in Mx after reading ` random bits; that is, the (j, i)th entry of Q is the
probability that Mx, starting in configuration i, moves to configuration j after reading ` random
bits. So Q2 is a transition matrix denoting the probability that Mx, starting in configuration i,
moves to configuration j after reading 2` random bits. Fixing h ∈ H, let Qh be a transition matrix
where the (j, i)th entry in Qh is the probability that Mx, starting in configuration i, moves to
configuration j after reading the 2` “random bits” r‖h(r) (where r ∈ {0, 1}` is chosen uniformly
at random). Put differently, Q2 corresponds to taking two uniform and independent steps of a
random walk, whereas Qh corresponds to taking two steps of a random walk where the first step
(given by r) is random and the second step (namely, h(r)) is a deterministic function of the first.
We now show that these two transition matrices are “very close”. Specifically:

Definition 2 Let Q, Qh, ` be as defined above, and ε ≥ 0. We say h ∈ H is ε-good for Q if

SD(Qh, Q2) ≤ ε/2 .

Lemma 4 Let H be a pairwise-independent function family, and let Q be an N × N transition
matrix where transitions correspond to reading ` random bits. For any ε > 0 we have:

Pr
h∈H

[h is not ε-good for Q] ≤ N6

ε22`
.

27-3

Proof For i, j ∈ [N] (corresponding to configurations in Mx), define

Bi,j
def= {r ∈ {0, 1}` | r defines a transition from i to j}.

For any fixed i, j, k, we know from Lemma 3 that the probability that h is not (ε/N2, Bi,j , Bj,k)-good
is at most N4ρ(Bi,j)ρ(Bj,k)/ε22` ≤ N4ρ(Bi,j)/ε22`. Applying a union bound over all N3 triples
i, j, k ∈ [N], and noting that for any i we have

∑
j ρ(Bi,j) = 1, we have that h is (ε/N2, Bi,j , Bj,k)-

good for all i, j, k except with probability at most N6/ε22`.
We show that whenever h is (ε/N2, Bi,j , Bj,k)-good for all i, j, k, then h is ε-good for Q. Consider

the (k, i)th entry in Qh; this is given by:
∑

j∈[N] Prr∈{0,1}` [r ∈ Bi,j ∧ h(r) ∈ Bj,k]. On the other
hand, the (k, i)th entry in Q2 is:

∑
j∈[N] ρ(Bi,j) ·ρ(Bj,k). Since h is (ε/N2, Bi,j , Bj,k)-good for every

i, j, k, the absolute value of their difference is
∣∣∣∣∣∣
∑

j∈[N]

(
Pr[r ∈ Bi,j ∧ h(r) ∈ Bj,k]− ρ(Bi,j) · ρ(Bj,k)

)
∣∣∣∣∣∣

≤
∑

j∈[N]

∣∣∣ Pr[r ∈ Bi,j ∧ h(r) ∈ Bj,k]− ρ(Bi,j) · ρ(Bj,k)
∣∣∣

≤
∑

j∈[N]

ε/N2 = ε/N.

It follows that SD(Qh, Q2) ≤ ε/2 as desired.

The lemma above gives us a pseudorandom generator that reduces the required randomness by
(roughly) half. Specifically, define a pseudorandom generator G1 : {0, 1}2`+R/2 → {0, 1}R via:

G1(h; r1, . . . , rR/2`) = r1 ‖h(r1) ‖ · · · ‖ rR/2` ‖h(rR/2`), (1)

where h ∈ H (so |h| = 2`) and ri ∈ {0, 1}`. Assume h is ε-good for Q. Running Mx using the
output of G1(h; · · ·) as the “random tape” generates the probability distribution

R/2`︷ ︸︸ ︷
Qh · · ·Qh ·s

for the final configuration, where s denotes the initial configuration of Mx (i.e., s is the probability
distribution that places probability 1 on the initial configuration of Mx, and 0 elsewhere). Running
Mx on a truly random tape generates the probability distribution

R/2`︷ ︸︸ ︷
Q2 · · ·Q2 ·s

for the final configuration. Since SD(Qh, Q2) ≤ ε/2, we have

SD(

R/2`︷ ︸︸ ︷
Qh · · ·Qh ·s,

R/2`︷ ︸︸ ︷
Q2 · · ·Q2 ·s) ≤ R

2`
· ε

2
.

27-4

This means that the behavior of Mx when run using the output of the pseudorandom generator is
very close to the behavior of Mx when run using a truly random tape: in particular, if x 6∈ L then
Mx in the former case accepts with probability at most

Pr[accepts ∧ h is ε-good for Q] + Pr[h is not ε-good for Q] ≤ (
1/4 + Rε/4`

)
+ N6/ε22`;

similarly, if x ∈ L then Mx in the former case accepts with probability at least 3/4−Rε/4`−N6/ε22`.
Summarizing (and slightly generalizing):

Corollary 5 Let H be a pairwise-independent function family, let Q be an N×N transition matrix
where transitions correspond to reading ` random bits, let k > 0 be an integer, and let ε > 0. Then
except with probability at most N6/ε22` over choice of h ∈ H we have:

SD
(k︷ ︸︸ ︷

Qh · · ·Qh,

k︷ ︸︸ ︷
Q2 · · ·Q2

)
≤ kε/2.

2.2.2 Recursing

Fixing h1 ∈ H, note that Qh1 is a transition matrix and so we can apply Corollary 5 to it as
well. Moreover, if Q uses R random bits then Qh1 uses R/2 random bits (treating h1 as fixed).

Continuing in this way for I
def= O(log(R/`)) iterations, we obtain a transition matrix Qh1,...,hI

. Say
all hi are ε-good if h1 is ε-good for Q, and for each i > 1 it holds that hi is ε-good for Qh1,...,hi−1

.
By Corollary 5 we have:

• All hi are ε-good except with probability at most N6I/ε22`.

• If all hi are ε-good then

SD(Qh1,...,hI
,

R/2`︷ ︸︸ ︷
Q2 · · ·Q2) ≤ ε

2
·

I∑

i=1

R

2i`
= O(εR/`).

Equivalently, we obtain a pseudorandom generator

GI(h1, . . . , hI ; r)
def= GI−1(h1, . . . , hI−1; r) ‖GI−1(h1, . . . , hI−1; hI(r)),

where G1 is as in Equation (1).

2.2.3 Putting it All Together

We now easily obtain the desired derandomization. Recall N = 2O(s). Set ε = 2−S/10, and set
` = Θ(S) so that N6S

ε22` ≤ 1/20. Then the number of random bits used (as input to GI from the
previous section) is O(` · log(R/`) + `) = O(S log R) and the space used is bounded by that as
well (using the fact that each h ∈ H can be evaluated using space O(`) = O(S)). All hi are good
except with probability at most N6 log(R/`)/ε22` ≤ N6S/ε22` ≤ 1/20; assuming all hi are good,
the statistical difference between an execution of the original algorithm and the algorithm run with
a pseudorandom tape is bounded by 2−S/20 ·R ≤ 1/20. Theorem 1 follows easily.

27-5

2.3 BPL ⊆ SC
A deterministic algorithm using space O(log2 n) might potentially run for 2O(log2 n) steps; in fact,
as described, the algorithm from the proof of Corollary 2 uses this much time. For the particular
pseudorandom generator we have described, however, it is possible to do better. The key observation
is that instead of just choosing the h1, . . . , hI at random and simply hoping that they are all ε-good,
we will instead deterministically search for h1, . . . , hI which are each ε-good. This can be done in
polynomial time (when S = O(log n)) because: (1) for a given transition matrix Qh1,...,hi−1 and
candidate hi, it is possible to determine in polynomial time and polylogarithmic space whether hi is
ε-good for Qh1,...,hi−1 (this relies on the fact that the number of configurations N is polynomial in n);
(2) there are only a polynomial number of possibilities for each hi (since ` = Θ(S) = O(log n)).

Once we have found the good {hi}, we then cycle through all possible choices of the seed
r ∈ {0, 1}` and take majority (as before). Since there are a polynomial number of possible seeds
(again using the fact that ` = Θ(S) = O(log n)), the algorithm as a whole runs in polynomial time.

(For completeness, we discuss the case of general S = Ω(log n) assuming R = 2S . Checking
whether a particular hi is ε-good requires time 2O(S). There are 2O(S) functions to search through
at each stage, and O(S) stages altogether. Finally, once we obtain the good {hi} we must then
enumerate through 2O(S) seeds. The end result is that bpspace(S) ⊆ TimeSpc(2O(S), S2).)

3 Applications to Error Reduction

Interestingly, the same pseudorandom generator we have constructed can also be used for efficient
error reduction. Before discussing this application, we briefly discuss error reduction in general.
(For simplicity, we focus here on the case of error reduction for randomized algorithms with one-
sided error; all results described here can be generalized for the case of two-sided error.)

For concreteness, say we have an algorithm A for some language L such that

x ∈ L ⇒ Pr[A(x) = 1] ≥ 1/2
x 6∈ L ⇒ Pr[A(x) = 1] = 0.

Say A uses ` random bits. (The time/space complexity of A is not relevant to this discussion.) A
näıve approach to error reduction would be to run A on a given input k times using independent
random tapes r1, . . . , rk, outputting 1 iff any of these runs returns 1. This uses k · ` random bits,
requires running A for k times, and achieves error 2−k.

A different approach (due to Chor-Goldreich) is to let the {ri} be pairwise independent rather
than completely independent. That is, choose random h ∈ H and set ri = h(i) ∈ {0, 1}`; then run
A for k times using the random coins r1, . . . , rk. This uses O(`) random bits (the only randomness
is the choice of h) and k executions of A as before, but only achieves error O(1/k). (The proof
follows directly from Chebyshev’s inequality.)

A better approach uses (a small modification of) the pseudorandom generator from the previous
section. Define G1(h1; r) = r ‖h1(r) and, inductively,

GI(h1, . . . , hI ; r)
def= GI−1(h1, . . . , hI−1; r) ‖GI−1(h1, . . . , hI−1; hI(r)).

(The difference from before is that now the output length of GI grows; specifically, the output

length of GI is
({0, 1}`

)2I

.) Our algorithm will now be to run A on each of the k
def= 2I strings

27-6

output by GI ; we output 1, as before, iff A outputs 1 in one of those executions. Now we use
O(` · log k) random bits (and k executions of A); the error is given by the following theorem.

Theorem 6 If x ∈ L, the probability that A always outputs 0 when run on the k = 2I random
strings output by GI is at most 2−k + (log k + 2) · 2−`/3.

Proof Setting ε = 2−`/3, Lemma 3 shows that for any A, B ⊆ {0, 1}` we have

Pr
h∈H

[h is not (ε,A, B)-good] ≤ ε .

Thus, all hi are (ε,A, B)-good (for any A,B) except with probability at most ε · log k.
Assuming all hi are (ε,A, B)-good, we prove by induction on I that the probability (over choice

of r ∈ {0, 1}`) that A always outputs 0 when run on the output of GI(h1, . . . , hI ; r) is at most
2−2I

+ 2ε. For I = 0 this is immediate. We prove it holds for I, assuming it holds for I − 1.
Let

A = B = {r | A always outputs 0 when run on the output of GI−1(h1, . . . , hI−1; r)}.

By our inductive step, ρ(A) = ρ(B) ≤ 2−2I−1
+ 2ε. Furthermore, the probability that A always

outputs 0 when run on the output of GI(h1, . . . , hI ; r) is exactly the probability that r ∈ A and
hI(r) ∈ B. Since hI is (ε,A, B)-good we have

Pr
r∈{0,1}`

[r ∈ A
∧

hI(r) ∈ B] ≤ Pr
r,r′∈{0,1}`

[r ∈ A
∧

r′ ∈ B] + ε

≤
(
2−2I−1

+ 2ε
)2

+ ε

≤ 2−2I
+ 2ε.

This completes the proof.

Bibliographic Notes

The results of Section 2 are due to [3, 4], both of which are very readable. See also [1, Lecture 16] for
a slightly different presentation. Section 3 is adapted from the Luby-Wigderson survey on pairwise
independence [2].

References

[1] O. Goldreich. Introduction to Complexity Theory (July 31, 1999).

[2] M. Luby and A. Wigderson. Pairwise Independence and Derandomization. Foundations and
Trends in Theoretical Computer Science. Now Publishers Inc., 2006. (Available freely online.)

[3] N. Nisan. Pseudorandom Generators for Space-Bounded Computation. STOC ’90.

[4] N. Nisan. RL ⊆ SC. Computational Complexity 4: 1–11, 1994. (Preliminary version in
STOC ’92.)

27-7

Notes on Complexity Theory Last updated: December, 2011

Lecture 28

Jonathan Katz

1 Circuit Lower Bounds

Recall that one motivation for studying non-uniform computation is the hope that it might be easier
to prove lower bounds in that setting. (This is somewhat paradoxical, as non-uniform algorithms
are more powerful than uniform algorithms; nevertheless, since circuits are more “combinatorial”
in nature than uniform algorithms, there may still be justification for such hope.) The ultimate
goal here would be to prove that NP 6⊂ P/poly, which would imply P 6= NP. Unfortunately, after
over two decades of attempts we are unable to prove anything close to this. Here, we show one
example of a lower bound that we have been able to prove; we then discuss one “barrier” that
partly explains why we have been unable to prove stronger bounds.

2 Parity Cannot be Solved by AC0 Circuits

Recall that AC0 is the set of languages/problems decided by constant-depth, polynomial-size circuits
(with gates of unbounded fan-in). We consider the basis consisting of AND, OR, and NOT gates,
though we do not count NOT gates when measuring the depth or size of the circuit. The parity
function is given by f(x1 · · ·xn) = x1 ⊕ · · · ⊕ xn. In this lecture we give the “polynomial proof”
that parity cannot be computed in AC0. We will actually prove something stronger:

Theorem 1 For sufficiently large n, any depth-d circuit that computes parity on n-bit inputs must
have at least 1

50 · 20.5·n1/2d
gates.

Thus, for any fixed depth-bound d, any circuit family computing parity grows as 2nε
for some ε > 0.

Proof Fix a circuit C of depth d that computes parity on inputs of length n. Let x1, . . . , xn

denote the inputs to the circuit. We will assume that C has only OR gates and NOT gates; this
assumption is without loss of generality since we may convert any AND gate to a combination of
OR and NOT gates using De Morgan’s laws (by setting

∧
i ai = ¬∨

i(¬ai)) without affecting the
size or depth of the circuit.

Let F3 = {−1, 0, 1} be the field of size 3. Say a polynomial p ∈ F3[x1, . . . , xn] is proper
if p(x1, . . . , xn) ∈ {0, 1} whenever x1, . . . , xn ∈ {0, 1}. Note that any proper polynomial can be
viewed as a boolean function in the natural way.

The proof hinges on two lemmas: we first show that any circuit in AC0 can be approximated
fairly well by a (proper) low-degree polynomial, and then show that parity cannot be approximated
well by any low-degree polynomial.

Lemma 2 For every integer t > 0, there exists a (proper) polynomial of total degree (2t)d that
differs with C on at most size(C) · 2n−t inputs.

28-1

Proof We will associate a proper polynomial with each wire of the circuit, and then bound the
error introduced. Begin at the input wires and associate the monomial xi to the input xi. Now
consider the output wire of some gate g, all of whose input wires have already been associated with
polynomials. Then:

• If g is a NOT gate, and its input wire is associated with the polynomial p, then associate its
output wire with 1− p. Note that this does not increase the degree of the polynomial.

• If g is an OR gate with k input wires associated with the polynomials p1, . . . , pk, then do the
following:

Choose sets S1, . . . , St ⊆ [k] (see below for how these sets are chosen), and define

qi =
(∑

j∈Si
pj

)2
for i = 1, . . . , t. Then set p = 1−∏t

i=1(1− qi).

(Note that p is just the OR of the qi.) If the maximum (total) degree of the {pi} is b, then
the (total) degree of polynomial p is at most 2tb. Note further that p is proper.

For a given wire with associated polynomial p, an error is an input x1, . . . , xn on which the
value of the wire and the value of p differ. We now bound the fraction of errors in the polynomial
p∗ associated with the output wire of the circuit. No errors are introduced at input wires or at
NOT gates. Looking at any OR gate with k input wires associated with the polynomials p1, . . . , pk,
we claim that there is some choice of subsets S1, . . . , St ⊆ [k] that will not introduce too many
errors. On any input where all the pi’s evaluate to 0, the resulting polynomial p will also evaluate
to 0. Consider any input where at least one of the pi’s evaluates to 1, and let S1, . . . , St be random
subsets of [k]. With probability at least half over choice of subset Sj , polynomial qj will evaluate
to 1. If any of the qj evaluate to 1 then so does p. So the probability that p does not evaluate to 1
is at most 2−t. By an averaging argument, this implies the existence of some collection of subsets
that introduces errors on at most a 2−t fraction of the inputs at this gate.

Taking a union bound, we conclude that p∗ is a polynomial of degree at most (2t)d having at
most size(C) · 2n−t errors with respect to C.

Setting t = n1/2d/2 we get a polynomial of degree at most
√

n that differs from C on at most
size(C) · 2n−t inputs.

Lemma 3 Let p ∈ F3[x1, . . . , xn] be a proper polynomial of degree at most
√

n. Then for sufficiently
large n the polynomial p differs from the parity function on at least 2n/50 inputs.

Proof Consider the “translated” parity function parity′ : {−1, 1}n → {−1, 1} defined as

parity′(x1, . . . , xn) =
∏

i

xi.

Since parity′(x1, . . . , xn) = parity(x1 − 1, . . . , xn − 1) + 1, there exists a polynomial p′ of degree at
most

√
n that agrees with parity′ on the same number of inputs for which p agrees with parity.

Let S ⊆ {−1, 1}n be the set of inputs on which p′ and parity′ agree, and let F denote the set of
all functions from S to F3. Note that |F| = 3|S|. Now, for every function f ∈ F we can associate
a polynomial pf ∈ F3[x1, . . . , xn] that agrees with f for all x ∈ S: just set

pf (x1, . . . , xn) = −
∑

y∈S

f(y) ·
n∏

i=1

(yi xi + 1) .

28-2

Although pf , as constructed, has degree 1 in each input variable, the total degree of pf may be as
large as n. We claim that, in fact, we can associate with each f a polynomial p̂f whose degree is
at most n/2+

√
n. To see this, fix f and pf and look at some monomial ±∏

i∈T xi appearing in pf

where |T | > n/2 +
√

n. For any x ∈ S ⊆ {−1, 1}n we have

±
∏

i∈T

xi = ±
n∏

i=1

xi ·
∏

i6∈T

xi

= ±p′(x) ·
∏

i6∈T

xi .

Since p′ has degree at most
√

n, we see that we can re-write pf as a polynomial p̂f that agrees with
pf on S and has degree at most n/2 +

√
n.

The number of monomials whose total degree is at most n/2 +
√

n is
∑n/2+

√
n

i=0

(
n
i

)
, which is

less than 49 · 2n/50 for large enough n. So the total number of polynomials whose degree is at
most n/2 +

√
n is upper bounded by 349·2n/50. Given that |F| = 3|S|, this means we must have

|S| ≤ 49 · 2n/50 as claimed.

To complete the proof, we just combine the two lemmas. The first lemma gives a polynomial
p of degree at most

√
n that differs from parity on at most size(C) · 2n−n1/2d/2 inputs. The second

lemma tells us that, for large enough n, we must have size(C) · 2n−n1/2d/2 ≥ 2n/50. We conclude
that size(C) ≥ 1

50 · 20.5·n1/2d
, completing the proof.

3 Limits of Proving Lower Bounds: Natural Proofs

The lower bound proved in the previous section is, to a rough approximation, about the best we
are able to show. Why is that? We explore one reason here.

We formalize a notion of proving lower bounds using “natural” proof techniques. We then show
that natural proofs cannot be used to prove strong lower bounds assuming some (widely believed)
cryptographic assumptions hold.1

3.1 Defining Natural Proofs

Let C0, C1 denote classes of predicates. (C0, C1 need to satisfy certain technical restrictions, but
these conditions are not very restrictive.) For example, C0 or C1 could be AC0 or P/poly, or even
something more specific like “depth-5 circuits having at most n2 gates”. Say we want to show
that some function f : {0, 1}∗ → {0, 1} is not in C0. One way to prove this would be to define a
“hardness predicate” P on functions such that, for n large enough, P (fn) = 1 (where fn denotes
the restriction of f to n-bit inputs) but for any g ∈ C0 and n large enough, P (gn) = 0. (Here we
view P as taking the truth table of fn as input. Note that the truth table of fn has size 2n, and
we measure complexity of P in terms of that length.) A proof of this form is called a C1-natural
against C0 if P satisfies two conditions: (1) P is in C1 (this is called the constructiveness condition),

1This is an interesting situation, as it means that one way to make progress on proving lower bounds (i.e., to prove
that some function is “hard”) would be to show better upper bounds (namely, to show that certain cryptographic
problems are actually “easy”.)

28-3

and (2) for n sufficiently large, a random predicate gn : {0, 1}n → {0, 1} satisfies P (gn) = 1 with
probability at least 1/n (this is called the largeness condition).

Why are these properties “natural”? There are two types of answers here. The first is just to
observe that (almost?) all known lower bounds do, in fact, satisfy these properties. For example,
in the lower bound for parity that we showed in the previous section, the predicate P corresponds
informally to

P (fn) = 0 ⇔ fn can be “well approximated” by a “low-degree” polynomial.

A random function cannot be approximated by a low-degree polynomial, with high probability.
Constructiveness is more difficult to show, and actually requires us to consider a slightly different
predicate P ′ (for which the largeness condition still holds); we refer to [4] for details. All-in-all, it is
possible to show that the parity lower bound is NC2-natural against AC0. (Interestingly, previous
lower bounds for parity were AC0-natural against AC0.)

The second argument in favor of our definition of “natural” is to appeal to intuition. This
argument is somewhat harder to make (which gives hope that we can circumvent the barrier imposed
by natural proofs, and find new proof techniques for showing lower bounds). Constructiveness is
motivated by the fact that, as part of any lower-bound proof of the above form, we must show
that P (fn) = 1; it seems that any “constructive” proof of this fact should involve some “efficient”
computation involving the truth table of fn. The largeness condition is perhaps more natural.
For starters, random functions are typically hardest. Moreover, every proof that a given function
fn : {0, 1}n → {0, 1} cannot be computed by a circuit of S also proves that at least half the
functions on n bits cannot be computed by a circuit of size ≈ S/2. If not, then write

fn(x) = (fn ⊕ gn)⊕ gn

for a random function gn : {0, 1}n → {0, 1}; with probability strictly greater than 0, both gn and
fn ⊕ gn can be computed by a circuit of size ≈ S/2 (note that both gn and fn ⊕ gn are random
functions), but then fn can be computed by a circuit of size S.

3.2 Ruling Out Natural Proofs of Lower Bounds

For simplicity, let us fix some n instead of working asymptotically. Then we can view C0, C1 as classes
of functions on n-bit and 2n-bit inputs, respectively. Say we have a function f : {0, 1}n → {0, 1}
and want to prove that f is not in C0 using a C1-natural proof. This means that we want to define
a predicate P ∈ C1 such that P (f) = 1 but P (g) = 0 for all g ∈ C0.

Let F denote a keyed function mapping inputs of length n to boolean outputs, and having a
key of length m, i.e., F = {Fk : {0, 1}n → {0, 1}}k∈{0,1}m . We say that F can be computed in C0

if, for any key k ∈ {0, 1}m, the function Fk : {0, 1}n → {0, 1} is in C0. (Note in particular that the
function F (k, x) def= Fk(x) may have complexity “higher” than C0.) Informally, F is a pseudorandom
function (PRF) if it is hard to distinguish whether a given function h : {0, 1}n → {0, 1} is equal
to Fk for a random key k ∈ {0, 1}m, or whether h is a random boolean function on n-bit inputs.
Our notion of distinguishing will be very strong: rather than considering distinguishers that make
oracle queries to h, we simply provide the distinguisher with the entire truth table of h.2 Formally,

2For those used to thinking about polynomial-time distinguishers of cryptographic PRFs this may seem strange. If
it helps, one can think of m as the security parameter and consider, for example, the case where n = O(log2 m). Then
we are just requiring security against slightly super-polynomial distinguishers running in time poly(2n) = mO(log m).

28-4

then, we say that F is pseudorandom against C1 if for every distinguisher D ∈ C1 we have
∣∣∣∣ Pr
k←{0,1}m

[D(Fk) = 1]− Pr
h←Funcn

[D(h) = 1]
∣∣∣∣ < 1/n,

where Funcn denote the space of all predicates on n-bit inputs.
We can now state the main result:

Theorem 4 Assume there exists an F that can be computed in C0 and is pseudorandom against C1.
Then there is no C1-natural proof against C0.

Proof A C1 natural proof against C0 would imply the existence of a predicate P ∈ C1 such that
P (g) = 0 for all g ∈ C0, while Prh←Funcn [P (h) = 1] ≥ 1/n. But then P acts as a distinguisher
for F , using the fact that Fk ∈ C0 for every key k.

Under suitable cryptographic hardness assumptions (e.g., the assumption that the discrete
logarithm problem has hardness 2nε

for some ε > 0, or an analogous assumption for hardness of
subset sum) there are pseudorandom functions that can be computed in NC1 (or even3 TC0) and are
pseudorandom against P. Thus, if these cryptographic conjectures are true, there are no P-natural
proofs even against weak classes like NC1 or TC0. This helps explain why current circuit lower
bounds are “stuck” at AC0 and4 ACC0.

Bibliographic Notes

This proof given here that parity is not in AC0 is due to Razborov [3] and Smolensky [5] (who
proves a more general result); earlier proofs (using a different approach) were given by Furst, Saxe,
and Sipser, by Yao, and by H̊astad. Good surveys of circuit lower bounds include the (old) article
by Boppana and Sipser [1] and the (new) book by Jukna [2]. Natural proofs were introduced by
Razborov and Rudich [4].

References

[1] R. Boppana and M. Sipser. The Complexity of Finite Functions. In Handbook of Theoretical
Computer Science, vol. A: Algorithms and Complexity, J. van Leeuwen, ed., MIT Press, 1990.

[2] S. Jukna. Boolean Function Complexity: Advances and Frontiers. Springer, 2012.

[3] A. Razborov. Lower Bounds on the Size of Bounded Depth Networks Over a Complete Basis
with Logical Addition. Matematicheskie Zametki 41:598–607, 1987.

[4] A. Razborov and S. Rudich. Natural Proofs. J. Computer and System Sciences 55(1): 24–35,
1997.

[5] R. Smolensky. Algebraic Methods in the Theory of Lower Bounds for Boolean Circuit Com-
plexity. STOC 1987.

3TC0 is the class of predicates that can be computed by constant-depth circuits of polynomial size, over a basis of
unbounded fan-in threshold gates. Note that AC0 ⊆ TC0 ⊆ NC1.

4ACC0 is the class of predicates that can be computed by constant-depth circuits of polynomial size, over a basis
of unbounded fan-in AND, OR, and mod m gates (for any fixed constant m). Note that AC0 ⊆ ACC0 ⊆ TC0.

28-5

