Homework 1 Due at the *beginning* of class on Sept. 14

I suggest to use $\mathbb{A}T_{E}X$ when typing up your solutions. It will yield more readable solutions, and will provide you with a skill that you will use your entire (graduate) career.

- 1. Prove that if $\text{TIME}(n^2) = \text{NTIME}(n^2)$ then $\text{TIME}(n^5) = \text{NTIME}(n^5)$. (Hint: given a language $L \in \text{NTIME}(n^5)$, consider the language $L' = \{x0^{|x|^{2.5}} : x \in L\}$.)
- 2. Assume $L_1, L_2 \in \mathcal{NP}$ and $S_1, S_2 \in \mathsf{coNP}$. For the purposes of this problem, you should also assume that $\mathcal{NP} \neq \mathsf{coNP}$. Answer each of the following with proof or with a counterexample:
 - (a) Is $L_1 \cup L_2$ necessarily in \mathcal{NP} ? Is $L_1 \cup S_1$ necessarily in coNP ?
 - (b) Is $L_1 \cap L_2$ necessarily in \mathcal{NP} ? Is $\overline{L}_1 \cap L_2$ necessarily in coNP ?
- 3. Prove that $\mathcal{P} = \mathbf{co}\mathcal{P}$.
- 4. Prove that the following language

 $L = \left\{ (M, x, 1^t) : \exists w \in \{0, 1\}^t \text{ s.t. } M(x, w) \text{ halts within } t \text{ steps with output } 1. \right\}.$

(where M, above, is a deterministic Turing machine) is \mathcal{NP} -complete.

- 5. A language L' is $\operatorname{co}\mathcal{NP}$ -hard if for every $L \in \operatorname{co}\mathcal{NP}$ it holds that $L \leq_p L'$; it is $\operatorname{co}\mathcal{NP}$ complete if furthermore $L' \in \operatorname{co}\mathcal{NP}$. Prove or disprove: L is \mathcal{NP} -complete iff \overline{L} is $\operatorname{co}\mathcal{NP}$ -complete.
- 6. Challenge question optional. Show a universal non-deterministic Turing machine U such that (1) U(M, x) = M(x) for any non-deterministic Turing machine M for which M(x) is defined, and (2) for every M there exists a constant c such that if M(x) runs in time T then U(M, x) runs in time O(T) (once again, the constant in the big-O notation may depend on M).