
Notes on Complexity Theory Last updated: October, 2011

Lecture 13

Jonathan Katz

1 Randomized Time Complexity

1.1 How Large is BPP?

We know that

P ⊆ ZPP = RP ∩ coRP ⊆ RP ∪ coRP ⊆ BPP ⊆ PSPACE.

We currently do not have a very good unconditional bound on the power of BPP — in particular,
it could be that BPP = NEXP. Perhaps surprisingly, especially in light of the many randomized
algorithms known, the current conjecture is that BPP is not more powerful than P. We will return
to this point later in the semester when we talk about derandomization.

What (unconditional) upper bounds can we place on BPP? Interestingly, we know that it
is not more powerful than polynomial-size circuits; actually, the following theorem is also a good
illustration of the power of non-uniformity.

Theorem 1 BPP ⊂ P/poly.

Proof Let L ∈ BPP. Using amplification, we know that there exists a polynomial-time Turing
machine M such that Pr[M(x) 6= χL(x)] < 2−|x|2 . Say M uses (at most) p(|x|) random coins for
some polynomial p. (Note that p is upper-bounded by the running time of M .) An equivalent way
of stating this is that for each n, and each x ∈ {0, 1}n, the set of “bad” coins for x (i.e., coins for
which M(x) outputs the wrong answer) has size at most 2p(n) · 2−n2

. Taking the union of these
“bad” sets over all x ∈ {0, 1}n, we find that the total number of random coins which are “bad” for
some x is at most 2p(n) · 2−n < 2p(n). In particular, there exists at least one set of random coins
r∗n ∈ {0, 1}p(n) that is “good” for every x ∈ {0, 1}n (in fact, there are many such random coins).
If we let the sequence of “advice strings” be exactly {r∗n} (using the alternate definition of P/poly),
we obtain the result of the theorem.

We can also place BPP in the polynomial hierarchy:

Theorem 2 BPP ⊆ Σ2 ∩Π2.

Proof We show that BPP ⊆ Σ2; since BPP is closed under complement, this proves the theorem.
We begin by proving some probabilistic lemmas. Say S ⊆ {0, 1}m is large if |S| ≥ (1 − 1

m)2m,

and is small if |S| < 2m

m . For a string z ∈ {0, 1}m define S ⊕ z
def= {s⊕ z | s ∈ S}.

Claim 3 If S is small, then for all z1, . . . , zm ∈ {0, 1}m we have
⋃

i(S ⊕ zi) 6= {0, 1}m.

This follows easily since
∣∣⋃

i(S ⊕ zi)
∣∣ ≤ ∑

i |S ⊕ zi| = m · |S| < 2m.

13-1

Claim 4 If S is large, then there exist z1, . . . , zm ∈ {0, 1}m such that
⋃

i(S ⊕ zi) = {0, 1}m.

In fact, we show that choosing at random works with high probability; i.e.,

Pr
z1,...,zm∈{0,1}m

[⋃
i(S ⊕ zi) = {0, 1}m

] ≥ 1−
(

2
m

)m

.

To see this, consider the probability that some fixed y is not in
⋃

i(S ⊕ zi). This is given by:

Pr
z1,...,zm∈{0,1}m

[y 6∈ ⋃
i(S ⊕ zi)] =

∏
i Prz∈{0,1}m [y 6∈ (S ⊕ z)]

≤
(

1
m

)m

.

Applying a union bound by summing over all y ∈ {0, 1}m, we see that the probability that there
exists a y ∈ {0, 1}m which is not in

⋃
i(S ⊕ zi) is at most 2m

mm .
We now prove the theorem. Given L ∈ BPP, there exist a polynomial m and an algorithm M

such that M uses m(|x|) random coins and errs with probability less than 1/m. For any input x,
let Sx ⊆ {0, 1}m(|x|) denote the set of random coins for which M(x; r) outputs 1. Thus, if x ∈ L
(letting m = m(|x|)) we have |Sx| > (1− 1

m) · 2m while if x 6∈ L then |Sx| < 2m

m . This leads to the
following Σ2 characterization of L:

x ∈ L ⇔ ∃z1, . . . , zm ∈ {0, 1}m ∀y ∈ {0, 1}m : y ∈ ⋃
i(Sx ⊕ zi).

(Note the desired condition can be efficiently verified by checking if M(x; y⊕ zi)
?= 1 for some i.)

1.2 Complete Problems for BPP?

As usual, we might like to study a class by focusing on the “hardest” problems in that class. With
this in mind, we can ask whether BPP has any complete problems. The obvious thought is to
consider the following language:

{
(M, x, 1p) | M is a probabilistic machine that accepts x

with probability at least 2/3 within p steps

}
.

While this language is BPP-hard, it is not known to be in BPP! (Consider the case when
Pr[M(x) = 1] = 2/3− 2−|x|.)

We can address this issue using the notion of promise problems, which gives an alternative to
languages as a way to define complexity classes. A promise problem consists of two disjoint sets of
strings ΠY ,ΠN ⊆ {0, 1}∗ with ΠY ∩ΠN = ∅. The “promise” is that all inputs will be from ΠY ∪ΠN ,
and we only need to “solve” the problem on such inputs; in particular, we do not care what happens
if we get an input that is not in ΠY ∪ΠN . Thus, using this formulation, promise-P would be defined
as the class of promise problems (ΠY , ΠN) for which there exists a polynomial-time machine M
such that

x ∈ ΠY ⇒ M(x) = 1]
x ∈ ΠN ⇒ M(x) = 0.

13-2

Promise problems generalize languages, since we may view a language L equivalently as the promise
problem (L, {0, 1}∗ \ L).

We can define the class promise-BPP as the class of promise problems (ΠY , ΠN) for which there
exists a probabilistic polynomial-time machine M such that

x ∈ ΠY ⇒ Pr[M(x) = 1] ≥ 2/3
x ∈ ΠN ⇒ Pr[M(x) = 1] ≤ 1/3.

We don’t care about the behavior of M on inputs not in (ΠY ,ΠN) — it might always accept, or
accept some inputs but not others, or accept with arbitrary probability.

Arguably, promise problems are more natural than languages. (For example, we might speak
of the input as representing an undirected graph and then need to ensure that every string en-
codes some undirected graph; it would be more natural to simply restrict our attention to strings
that canonically represent undirected graphs.) And, indeed, promise-BPP does have a complete
language:

ΠY =
{

(M,x, 1p) | M is a probabilistic machine that accepts x
with probability at least 2/3 within p steps

}

ΠN =
{

(M,x, 1p) | M is a probabilistic machine that rejects x
with probability at least 2/3 within p steps

}
.

2 Randomized Space Complexity

When defining randomized space-complexity classes there are two subtleties to be aware of. The
first subtlety arises if we model probabilistic computation by a Turing machine having a read-only
random tape. (The issue does not come up if we instead view a probabilistic machine as a non-
deterministic machine where the transition function is chosen at random.) Here, as in the case
of the certificate-based definition of non-deterministic space complexity, we need to restrict the
machine to having “read-once” access to its tape.

A second issue (regardless of which formulation of probabilistic computation we use) is that we
must also impose a time bound on the machine.1 E.g., for the case of one-sided error:

Definition 1 A language L is in rspace(s(n)) if there exists a randomized Turing machine M
using s(n) space and 2O(s(n)) time such that

x ∈ L ⇒ Pr[M(x) = 1] ≥ 1/2 and x 6∈ L ⇒ Pr[M(x) = 0] = 1.

If we do not impose this restriction, then probabilistic space classes become too powerful:

Proposition 5 Define rspace′ as above, but without the time restriction. Then for any space-
constructible s(n) ≥ log n we have rspace′(s(n)) = nspace(s(n)).

1An equivalent condition is to require that the machine halts for every possible set of random choices. This is
different from requiring the machine to halt with probability 1; see the proof of Proposition 5 for an illustration of
this phenomenon.

13-3

Proof (Sketch) Showing that rspace′(s(n)) ⊆ nspace(s(n)) is easy. We turn to the other
direction. The basic idea is that, given a language L ∈ nspace(s(n)), we construct a machine
which on input x guesses valid witnesses for x (where a witness here is an accepting computation
of the non-deterministic machine on input x). Since there may only be a single witness, we guess a
doubly-exponential number of times. This is where the absence of a time bound makes a difference.

In more detail, given L as above we know that any x ∈ L ∩ {0, 1}n has a witness (i.e., an
accepting computation) of length at most `(n) = 2O(s(n)). If we happen to have such a witness
written on the random tape, we can verify its correctness using space O(s(n)). So what we do is the
following: alternately (1) read the next `(n) bits of the random tape and check whether it encodes
a witness, (2) read the next `(n) bits of the random tape and halt if they are all 0. If x 6∈ L this
machine never accepts; if x ∈ L then it accepts with probability 1/2. Note that M may run for an
unbounded amount of time, however it halts on all inputs with probability 1.

The most interesting probabilistic space classes are those where logarithmic space is used:

Definition 2 L ∈ RL if there is a machine M using logarithmic space and running in polynomial
time such that:

x ∈ L ⇒ Pr[M(x) = 1] ≥ 1/2 and x 6∈ L ⇒ Pr[M(x) = 0] = 1.

L ∈ BPL if there is a machine M as above such that:

x ∈ L ⇒ Pr[M(x) = 1] ≥ 2/3 and x 6∈ L ⇒ Pr[M(x) = 1] ≤ 1/3.

Here, too, the exact constants are arbitrary as error reduction still works. (We need only to
maintain a counter of the fraction of accepting executions.) It is immediate that RL ⊆ NL. One
can also show that BPL ⊆ space(log2(n)) and BPL ⊆ P.

Bibliographic Notes

For an in-depth discussion of promise problems, and arguments in favor of taking that approach,
see the survey by Goldreich [1].

References

[1] O. Goldreich. On promise problems. Manuscript available on-line at
http://www.wisdom.weizmann.ac.il/~oded/prpr.html

13-4

