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Jonathan Katz

1 Randomized Space Complexity

1.1 Undirected Connectivity and Random Walks

A classic problem in RL is undirected connectivity (UConn). Here, we are given an undirected
graph and two vertices s, t and are asked to determine whether there is a path from s to t. An RL
algorithm for this problem is simply to take a “random walk” (of sufficient length) in the graph,
starting from s. If vertex t is ever reached, then output 1; otherwise, output 0. (We remark that
this approach does not work for directed graphs.) We analyze this algorithm (and, specifically, the
length of the random walk needed) in two ways; each illustrates a method that is independently
useful in other contexts. The first method looks at random walks on regular graphs, and proves a
stronger result showing that after sufficiently many steps of a random walk the location is close to
uniform over the vertices of the graph. The second method is more general, in that it applies to
any (non-bipartite) graph; it also gives a tighter bound.

1.1.1 Random Walks on Regular Graphs

Fix an undirected graph G on n vertices where we allow self-loops and parallel edges (i.e., integer
weights on the edges). We will assume the graph is d-regular and has at least one self-loop at every
vertex; any graph can be changed to satisfy these conditions (without changing its connectivity) by
adding sufficiently many self-loops. Let G also denote the (scaled) adjacency matrix corresponding
to this graph: the (i, j)th entry is k/d if there are k edges between vertices i and j. Note that
G is symmetric (Gi,j = Gj,i for all i, j) and doubly stochastic (all entries are non-negative, and
all rows and columns sum to 1). A probability vector p = (p1, . . . , pn) ∈ Rn is a vector each of
whose entries is non-negative and such that

∑
i pi = 1. If we begin by choosing a vertex v of G

with probability determined by p, and then take a “random step” by choosing (uniformly) an edge
of v and moving to the vertex v′ adjacent to that edge, the resulting distribution on v′ is given
by p′ = G · p. Inductively, the distribution after t steps is given by Gt · p. Note that if we set
p = ei (i.e., the vector with a 1 in the ith position and 0s everywhere else), then Gt · p gives the
distribution on the location of a t-step random walk starting at vertex i.

An eigenvector of a matrix G is a vector v such that G · v = λv for some λ ∈ R; in this case
we call λ the associated eigenvalue. Since G is a symmetric matrix, standard results from linear
algebra show that there is an orthonormal basis of eigenvectors v1, . . . ,vn with (real) eigenvalues
λ1, . . . , λn, sorted so that |λ1| ≥ |λ2| ≥ · · · ≥ |λn|. If we let 1 denote the vector with 1/n in each
entry — i.e., it represents the uniform distribution over the vertices of G — then G · 1 = 1 and
so G has eigenvalue 1. Moreover, since G is a (doubly) stochastic matrix, it has no eigenvalues of
absolute value greater than 1. Indeed, let v = (v1, . . . , vn) be an eigenvector of G with eigenvalue λ,
and let j be such that |vj | is maximized. Then λv = G · v and so

|λvj | =
∣∣∑n

i=1Gj,i · vi
∣∣
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≤ |vj | ·
∑n

i=1 |Gj,i| = |vj | ;

we conclude that |λ| ≤ 1. If G is connected, then it has no other eigenvector with eigenvalue 1.
Since G is non-bipartite (because of the self-loops), −1 is not an eigenvalue either.

To summarize, if G is connected and not bipartite then it has (real) eigenvectors λ1, . . . , λn

with 1 = λ1 > |λ2| ≥ · · · ≥ |λn|. The (absolute value of the) second eigenvalue λ2 determines how
long a random walk in G we need so that the distribution of the final location is close to uniform:

Theorem 1 Let G be a d-regular, undirected graph on n vertices with second eigenvalue λ2, and
let p correspond to an arbitrary probability distribution over the vertices of G. Then for any t > 0∥∥Gt · p− 1

∥∥
2
≤ |λ2|t.

Proof Write p =
∑n

i=1 αivi, where the {vi} are the eigenvectors of G (sorted according to
decreasing absolute value of their eigenvalues); recall v1 = 1. We have α1 = 1; this follows since
α1 = ⟨p,1⟩ / ∥1∥22 = (1/n)/(1/n) = 1. We thus have

Gt · p = Gt · 1+

n∑
i=2

αiG
t · vi = 1+

n∑
i=2

αi (λi)
t vi

and so, using the fact that the {vi} are orthogonal,

∥∥Gt · p− 1
∥∥2
2

=

n∑
i=2

α2
i (λi)

2t · ∥vi∥22

≤ λ2t
2 ·

n∑
i=2

α2
i · ∥vi∥22

≤ λ2t
2 · ∥p∥22 ≤ λ2t

2 · ∥p∥21 = λ2t
2 .

The theorem follows.

It remains to show a bound on |λ2|.

Theorem 2 Let G be a d-regular, connected, undirected graph on n vertices with at least one
self-loop at each vertex and d ≤ n. Then |λ2| ≤ 1− 1

poly(n) .

Proof Let u = (u1, . . . , un) be a unit eigenvector corresponding to λ2, and recall that u is
orthogonal to 1 = (1/n, . . . , 1/n). Let v = Gu = λ2u. We have

1− λ2
2 = ∥u∥22 · (1− λ2

2) = ∥u∥22 − ∥v∥22
= ∥u∥22 − 2 ∥v∥22 + ∥v∥22
= ∥u∥22 − 2 ⟨Gu,v⟩+ ∥v∥22
=

∑
i

u2i − 2
∑
i,j

Gi,j ujvi +
∑
j

v2j

=
∑
i,j

Gi,j u
2
i − 2

∑
i,j

Gi,j ujvi +
∑
i,j

Gi,j v
2
j

=
∑
i,j

Gi,j (ui − vj)
2,
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using the fact that G is a symmetric, doubly stochastic matrix for the second-to-last equality. Since
u is a unit vector orthogonal to 1, there exist i, j with ui > 0 > uj and such that at least one of
ui or uj has absolute value at least 1/

√
n, meaning that ui − uj ≥ 1/

√
n. Since G is connected,

there is a path of length D, say, between vertices i and j. Renumbering as necessary, let i = 1,
j = D + 1, and let the vertices on the path be 2, . . . , D. Then

1√
n
≤ u1 − uD+1 = (u1 − v1) + (v1 − u2) + (u2 − v2) + (v2 − u3) + · · ·+ (vD − uD+1)

≤ |u1 − v1|+ · · ·+ |vD − uD+1|
≤

√
(u1 − v1)2 + · · ·+ (vD − uD+1)2 ·

√
2D

(using Cauchy-Schwarz for the last inequality). But then∑
i,j

Gi,j(ui − vj)
2 ≥ 1

d
·
(
(u1 − v1)

2 + · · ·+ (vD − uD+1)
2
)
≥ 1

2dnD
,

using Gi,i ≥ 1/d (since every vertex has a self-loop) and Gi,i+1 ≥ 1/d (since there is an edge from
vertex i to vertex i + 1). Since D ≤ n − 1, we get 1 − λ2

2 ≥ 1/4dn2 or |λ2| ≤ 1 − 1/8dn2, and the
theorem follows.

We can now analyze the algorithm for undirected connectivity. Let us first specify the algorithm
more precisely. Given an undirected graphG and vertices s, t, we want to determine if there is a path
from s to t. We restrict our attention to the connected component of G containing s, add at least one
self-loop to each vertex in G, and add sufficiently many additional self-loops to each vertex in order
to ensure regularity. Then we take a random walk of length ℓ = 16dn2 log n ≥ 2 · (1− |λ2|)−1 log n
starting at vertex s, and output 1 if we are at vertex t at the end of the walk. (Of course, we do
better if we output 1 if the walk ever passes through vertex t; our analysis does not take this into
account.) By Theorem 1, ∥∥∥Gℓ · es − 1

∥∥∥
2
≤ |λ2|ℓ ≤ 1/n2.

If t is in the connected component of s, the probability that we are at vertex t at the end of the
walk is at least 1

n − 1
n2 ≥ 1/2n. We can, of course, amplify this by repeating the random walk

sufficiently many times.
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