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Lecture 14
Jonathan Katz

1 Randomized Space Complexity

1.1 Undirected Connectivity and Random Walks

A classic problem in RL is undirected connectivity (UCONN). Here, we are given an undirected
graph and two vertices s,t and are asked to determine whether there is a path from s to t. An RL
algorithm for this problem is simply to take a “random walk” (of sufficient length) in the graph,
starting from s. If vertex t is ever reached, then output 1; otherwise, output 0. (We remark that
this approach does not work for directed graphs.) We analyze this algorithm (and, specifically, the
length of the random walk needed) in two ways; each illustrates a method that is independently
useful in other contexts. The first method looks at random walks on regular graphs, and proves a
stronger result showing that after sufficiently many steps of a random walk the location is close to
uniform over the vertices of the graph. The second method is more general, in that it applies to
any (non-bipartite) graph; it also gives a tighter bound.

1.1.1 Random Walks on Regular Graphs

Fix an undirected graph G on n vertices where we allow self-loops and parallel edges (i.e., integer
weights on the edges). We will assume the graph is d-regular and has at least one self-loop at every
vertex; any graph can be changed to satisfy these conditions (without changing its connectivity) by
adding sufficiently many self-loops. Let G also denote the (scaled) adjacency matrix corresponding
to this graph: the (i,7)th entry is k/d if there are k edges between vertices ¢ and j. Note that
G is symmetric (G;; = G;; for all 4,j) and doubly stochastic (all entries are non-negative, and
all rows and columns sum to 1). A probability vector p = (p1,...,pn) € R™ is a vector each of
whose entries is non-negative and such that ), p; = 1. If we begin by choosing a vertex v of G
with probability determined by p, and then take a “random step” by choosing (uniformly) an edge
of v and moving to the vertex v’ adjacent to that edge, the resulting distribution on v’ is given
by p’ = G - p. Inductively, the distribution after ¢ steps is given by G! - p. Note that if we set
p = e; (i.e., the vector with a 1 in the ith position and 0s everywhere else), then G - p gives the
distribution on the location of a t-step random walk starting at vertex i.

An eigenvector of a matrix G is a vector v such that G - v = Av for some A € R; in this case
we call A the associated eigenvalue. Since G is a symmetric matrix, standard results from linear
algebra show that there is an orthonormal basis of eigenvectors vy,..., v, with (real) eigenvalues
AL, ..y A, sorted so that |A1] > |A2| > -+ > |A\,]. If we let 1 denote the vector with 1/n in each
entry — i.e., it represents the uniform distribution over the vertices of G — then G-1 = 1 and
so G has eigenvalue 1. Moreover, since G is a (doubly) stochastic matrix, it has no eigenvalues of

absolute value greater than 1. Indeed, let v = (v1,...,v,) be an eigenvector of G with eigenvalue A,
and let j be such that |v;| is maximized. Then Av = G - v and so
ol = |20 G- i

14-1



< il Y0 GGl = vl

we conclude that |[A| < 1. If G is connected, then it has no other eigenvector with eigenvalue 1.
Since G is non-bipartite (because of the self-loops), —1 is not an eigenvalue either.

To summarize, if G is connected and not bipartite then it has (real) eigenvectors Aq,..., A\,
with 1 = Ay > |Ag| > --- > |A\y|. The (absolute value of the) second eigenvalue Ao determines how
long a random walk in G we need so that the distribution of the final location is close to uniform:

Theorem 1 Let G be a d-reqular, undirected graph on n vertices with second eigenvalue Ao, and
let p correspond to an arbitrary probability distribution over the vertices of G. Then for any t > 0

16" p = 1], < Pl

Proof Write p = Y ' | o;v;, where the {v;} are the eigenvectors of G (sorted according to
decreasing absolute value of their eigenvalues); recall vi = 1. We have a; = 1; this follows since
ar = (p, 1)/ [11]3 = (1/n)/(1/n) = 1. We thus have

Gp=G-1+Y G vi=1+3 a;(\)' v,
i=2 =2

and so, using the fact that the {v;} are orthogonal,

n
IGtp =15 = S a2()*-|Ivill3
1=2

n
< A ad - |vill3
i=2
< Ml < A llplT = A3
The theorem follows. |

It remains to show a bound on |Aa|.

Theorem 2 Let G be a d-regular, connected, undirected graph on n vertices with at least one
self-loop at each vertex and d < mn. Then |A2| <1 — m.

Proof Let u = (u1,...,u,) be a unit eigenvector corresponding to A2, and recall that u is
orthogonal to 1 = (1/n,...,1/n). Let v = Gu = Agu. We have

2 2 2
1=A3=luly-(1=X3) = Jull; = [vllz
2 2 2
[ally = 2{[vilz + lIvil;
2 2
= [ully = 2(Gu,v) + ||lv[l;

Zu —QZG,JUJUZ—FZU
ZGUU QZGZJUJ’UZ—{—ZGJ v;
ZG” vj ,
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using the fact that G is a symmetric, doubly stochastic matrix for the second-to-last equality. Since
u is a unit vector orthogonal to 1, there exist ,j with u; > 0 > u; and such that at least one of
u; or u; has absolute value at least 1/y/n, meaning that u; — u; > 1/y/n. Since G is connected,
there is a path of length D, say, between vertices ¢ and j. Renumbering as necessary, let i = 1,
7 =D +1, and let the vertices on the path be 2,...,D. Then

1
%SUI_UD-H = (u1 —v1)+ (v1 —u2) + (ug —v2) + (v2 —ug) + -+ (vp — up+1)
< |uwr —wvi] 4+ Jop — upa|
< V(u—v1)? 4+ (vp —upy1)® - V2D

(using Cauchy-Schwarz for the last inequality). But then

1

(w1 —v1)? 4+ (vp —ups1)?) > 2dnD’

ISHN

> Gijlui—v;)? >
i7j

using G;; > 1/d (since every vertex has a self-loop) and G; ;41 > 1/d (since there is an edge from
vertex i to vertex i +1). Since D <n — 1, we get 1 — A3 > 1/4dn? or |X\2| <1 — 1/8dn?, and the
theorem follows. [

We can now analyze the algorithm for undirected connectivity. Let us first specify the algorithm
more precisely. Given an undirected graph G and vertices s, t, we want to determine if there is a path
from s to t. We restrict our attention to the connected component of G containing s, add at least one
self-loop to each vertex in G, and add sufficiently many additional self-loops to each vertex in order
to ensure regularity. Then we take a random walk of length ¢ = 16dn?logn > 2 - (1 — [X2])"'logn
starting at vertex s, and output 1 if we are at vertex ¢ at the end of the walk. (Of course, we do
better if we output 1 if the walk ever passes through vertex ¢; our analysis does not take this into
account.) By Theorem 1,

HGf ey — 1H2 < o)t < 1/n%

If ¢ is in the connected component of s, the probability that we are at vertex ¢ at the end of the
walk is at least % — # > 1/2n. We can, of course, amplify this by repeating the random walk

sufficiently many times.
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