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1 Zero-Knowledge Proofs

(The following notes just sketch what was covered in class.)
In the complexity-theoretic setting of interactive proofs for some language L, we are concerned

about a cheating prover who might try to fool a verifier into accepting an incorrect statement x 6∈
L; there are no “security guarantees” for the prover against the (possibly cheating) verifier. In
cryptographic settings, however, it may be desirable to ensure some notion of privacy for the
prover. Specifically, the prover may be willing to convince the verifier that x ∈ L but be unwilling
to reveal any additional information to the verifier.

A “made up” example is the case of a prover who wants to convince a verifier that some
mathematical statement is true (and that the prover has a proof of that fact), but does not want
to reveal the proof to the verifier for fear that the verifier will then rush to publish the proof on its
own. A more realistic example might be the following: say a voter casts a vote by encrypting the
vote using the public key pk of some central authority, resulting in some ciphertext C. The voter
might be required to prove that it voted honestly — that is, to prove that C is an encryption of
either 0 or 1 — but the voter does not want to divulge its actual vote. To accomplish this, the
parties involved can define the language

L
def= {(pk, C) : ∃b ∈ {0, 1}, r ∈ {0, 1}n s.t. C = Encpk(b; r)};

the voter then proves to the verifier that (pk, C) ∈ L.
We discussed the following results:

1. We defined the notion of honest-verifier (perfect) zero knowledge, defined HVPZK as the
class of languages having honest-verifier zero-knowledge proofs, and showed that graph iso-
morphism is in HVPZK. (Note that from a complexity-theoretic viewpoint we may allow
the honest prover to be computationally unbounded, but for cryptographic purposes we want
the prover to be efficient.)

2. We then introduced the notion of (dishonest-verifier, perfect) zero knowledge, defined PZK
as the class of languages having zero-knowledge proofs, and showed that the same protocol
for graph isomorphism satisfies this stronger notion.

3. If we want to reduce the soundness error to 2−n by repeating the graph-isomorphism protocol
n times, parallel repetition preserves honest-verifier zero knowledge, but sequential repetition
appears necessary if we want to preserve (dishonest-verifier) zero knowledge.

4. PZK cannot be too powerful; it is known that PZK ⊆ AM ∩ coAM. (In fact, this holds
even if we only require the simulated transcript to be statistically close to the real transcript.)
Motivated by this, we consider two relaxations of the notion:
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• Computational zero knowledge requires the simulated transcript to be (only) compu-
tationally indistinguishable from the real transcript. Let CZK denote the set of lan-
guages having computational zero-knowledge proofs. We showed a computational zero-
knowledge proof for graph 3-colorability under the assumption that (statistically bind-
ing) commitment schemes exist, implying NP ⊂ CZK under the same assumption. In
fact, CZK = IP under this assumption as well.
Statistically binding commitment schemes can be constructed from the (minimal) cryp-
tographic assumption of one-way functions.

• A different relaxation is to require perfect zero knowledge as before, but to only demand
soundness against computationally bounded cheating provers. In this case we refer to
arguments instead of proofs. Statistical zero-knowledge arguments for all of NP can be
based on the existence of statistically hiding commitment schemes. These, in turn, were
recently shown to exist based on the assumption of one-way functions.
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