
Notes on Complexity Theory Last updated: June, 2014

Lecture 22

Jonathan Katz

1 NP ⊆ PCP(poly, 1)

We show here a probabilistically checkable proof for NP in which the verifier reads only a constant
number of bits from the proof (and uses only polynomially many random bits). In addition to being
of independent interest, this result is used as a key step in the proof of the PCP theorem itself.

To show the desired result, we will work with the NP-complete language of satisfiable quadratic
equations. Instances of this problem consist of a system of m quadratic equations







n
∑

i,j=1

c
(k)
i,j · xi xj = c(k)







m

k=1

(1)

(over the field F2) in the n variables x1, . . . , xn. (Note that we can assume no linear terms since
xi = xi · xi in F2 and the summations above include the case i = j.) A system of the above form
is said to be satisfiable if there is an assignment to the {xi} for which every equation is satisfied.

It is obvious that this problem is in NP . To show that it is NP-complete we reduce an instance
of 3SAT to an instance of the above. Given a 3SAT formula φ on n variables, using arithmetization
we can express each of its clauses as a cubic equation. (One way to do this is as follows: arithmetize
the literal xj by the term 1−xj and the literal x̄j by the term xj; a clause ℓ1∨ℓ2∨ℓ3 is arithmetized
by the product of the arithmetization of its literals. Then ask whether there is an assignment under
which the arithmetization of all the clauses of φ equal 0.) To reduce the degree to quadratic, we
introduce the “dummy” variables {xi,j}

n
i,j=1 and then: (1) replace monomials of the form xixjxk

with a monomial of the form xi,jxk, and (2) introduce n2 new equations of the form xi,j −xixj = 0.
We remark that there is no hope of reducing the degree further (unless P = NP) since a system

of linear equations can be solved using standard linear algebra.

1.1 A PCP for Satisfiable Quadratic Equations: An Overview

For the remainder of these notes, we will assume a system of m equations in the n variables {xi},

as in Eq. (1). The proof string π will be a boolean string π ∈ {0, 1}2n
2

that we index by a binary
vector ~v of length n2. Equivalently, we will view π as a function π : {0, 1}n2

→ {0, 1}. For a given
system of satisfiable quadratic equations, π should be such that

π(~v)
def
=

n
∑

i,j=1

aiajvi,j

for some satisfying assignment (a1, . . . , an), where ~v = (v1,1, . . . , v1,n, . . . , vn,1, . . . , vn,n) Note that
with (a1, . . . , an) fixed, π is a linear function of ~v; i.e., π is just the dot product of the input with
the fixed string (a1,1, . . . , an,n).

22-1



Roughly speaking, given access to a proof string π we will have the verifier check three things:
(1) that the proof string encodes a linear function; i.e.,

π(~v) =
n
∑

i,j=1

λi,j vi,j

for some {λi,j}; (2) that the coefficients of the linear function encoded by the proof string are
consistent ; namely, that λi,j = λi,i · λj,j for all i, j; and (3) that the assignment defined by setting
ai = λi,i is indeed a satisfying assignment. (Note that these all hold for a “good” proof π when the
system of equations is satisfiable.) Because the verifier is restricted to making a very small number
of queries, the verifier will be unable to verify any of the above with certainty, but it will be able
to verify these conditions probabilistically. In these notes, we focus only on achieving a constant
probability of rejection when the system of equations is unsatisfiable; we aim for the simplest
proof and make no attempt to optimize the constants. Of course, by using a constant number of
independent repetitions we can then reduce the error probability to 1/2 (while still reading only a
constant number of bits from π and using polynomially many random bits).

We discuss in turn the tests used to verify each of the properties above, and then show how
they can be combined to yield the desired PCP system.

2 The Linearity Test

A function f : {0, 1}N → {0, 1} is linear if there exists an r ∈ {0, 1}N such that f(x) = 〈x, r〉, i.e.,

f(x1 · · · xN ) =
N
∑

i=1

ri · xi .

In this section we show how to test whether a function π : {0, 1}N → {0, 1} is (close to) linear.
Let us first define a notion of distance for functions. Two functions f, g : {0, 1}N → {0, 1} have

distance δ if they disagree on a δ fraction of their inputs; that is, if Prx[f(x) 6= g(x)] = δ (where x
is chosen uniformly from {0, 1}N ). Viewing a boolean function over {0, 1}N as a binary string of
length 2N , two functions have distance δ if their Hamming distance is δ · 2N . We say a function
f is distance at least δ from linear if for all linear functions g the distance between f and g is at
least δ, and define “distance δ from linear” and “distance at most δ from linear” similarly.

The following test allows a verifier, given access to π, to check whether π is “close” to linear:

• Choose random x, y ∈ {0, 1}N .

• Query π(x), π(y), and π(x + y).

• Accept if and only if π(x) + π(y) = π(x + y), where addition is in F2 component-wise.

Note that if π is linear, then the verifier always accepts since

π(x + y) =

N
∑

i=1

ri · (xi + yi)

=

(

N
∑

i=1

ri xi

)

+

(

N
∑

i=1

ri yi

)

= π(x) + π(y).

22-2



The interesting part is to show that when π is “far” from linear then the verifier rejects with high
probability. In the following section we prove:

Theorem 1 If π has distance ε from linear, the linearity test rejects with probability at least ε.

Of course, by repeating the test a constant number of times we can increase the rejection probability
to any constant less than 1.

In the next section we give a proof of Theorem 1 based on Fourier analysis. (A proof that
does not use Fourier analysis is also possible but, conceptually speaking, Fourier analysis is exactly
the right tool for this setting.) The proof is unnecessary for understanding the rest of the PCP
construction, and so the reader willing to take Theorem 1 on faith can skip directly to Section 3.

2.1 Proof of Theorem 1

The first thing we will do is view π as a function from {−1, 1}N to {−1, 1}, by mapping each bit b
of the input and output to the value (−1)b. Given this notational switch, the linearity test chooses
random x, y ∈ {−1, 1}N , and accepts if and only if π(x) · π(y) · π(x ◦ y) = 1, where “◦” denotes
component-wise product.

The proof relies on some basic Fourier analysis; we provide some background first. View the
set of functions from {−1, 1}N to the reals as a vector space (over the reals). This is a vector space
of dimension 2N , with one basis given by the functions {Iv : {−1, 1}N → R}v∈{−1,1}N where

Iv(v
′)

def
=

{

1 v′ = v
0 otherwise

.

To confirm that this is a basis, note that any function π : {−1, 1}N → R can be expressed as:

π =
∑

v∈{−1,1}N

π(v) · Iv.

We will also define an inner product 〈·, ·〉 on this vector space, via:

〈f, g〉
def
=

1

2N
·
∑

v

f(v) · g(v) = Expv[f(v) · g(v)].

(Note that this inner product is bilinear.) We see that the basis given above is orthogonal.
The basis described above is the “standard” one. In our context, however, there is another basis

that works even better: the Fourier basis {χv}S⊆[N ] where

χS(v′) =
∏

i∈S

v′i

(with the empty product when S = ∅ interpreted as a ‘1’). One can check that these functions
are orthogonal and hence, since there are 2N such functions, this is indeed a basis; in fact it is an
orthonormal basis. This means that we can write any function f : {−1, 1} → R as

f =
∑

S⊆[N ]

f̂(S) · χS

22-3



with f̂(S) ∈ R; by orthonormality, we have

〈f, χS〉 =

〈

∑

S⊆[N ]

f̂(S)·χS , χS

〉

= f̂(S).

The first hint that the Fourier basis might be useful for our purposes is the following observation:
If f, g are functions from {−1, 1}N to {−1, 1}, then

〈f, g〉 =
1

2N
·
(

∣

∣

{

x | f(x) = g(x)
}∣

∣−
∣

∣

{

x | f(x) 6= g(x)
}∣

∣

)

= 1 − 2 · Prx[f(x) 6= g(x)];

in other words, if f is distance δ from g, then 〈f, g〉 = 1 − 2δ. Note that each χS is a linear
function (except that everything has been translated from {0, 1} to {−1, 1}), and so the Fourier
basis includes all linear functions. Thus, to find the linear function closest to π we simply need to
find S for which 〈χS , π〉 is maximized. Furthermore, π is far from linear if and only if 〈χS, π〉 is
small for all S. We will use this in the proof below.

Before turning to the proof of the linearity test, we state two facts that follow from standard
linear algebra.

• The inner product 〈f, g〉 of any two functions f, g is given by the sum of the product of the
coefficients of f and g in any orthonormal basis. Thus, in particular, we have

〈f, g〉 =
∑

S⊆N

f̂(S) · ĝ(S) .

This is known as Plancherel’s theorem.

• It follows from the above that 〈f, f〉 =
∑

S f̂(S)2. If the range of f is {−1, 1}, then (by
definition of the inner product)

〈f, f〉 =
1

2N

∑

v

f(v)2 = 1.

We thus conclude that when f maps onto {−1, 1}, we have
∑

S f̂(S)2 = 1. This is known as
Parseval’s theorem.

We can now prove the following result:

Theorem 2 If π has distance ε from linear, the linearity test rejects with probability at least ε.

We begin with a lemma. Amazingly, the lemma is pretty powerful although its proof involves
nothing more than grinding through some algebraic manipulations.

Lemma 3 Pr[linearity test accepts π] = 1
2 + 1

2 ·
∑

S π̂(S)3.

Proof In our notation, the linearity test chooses random x, y ∈ {−1, 1}N , and accepts iff π(x) ·
π(y)·π(x◦y) = 1. Since π is boolean (so has range {−1, 1}), we have π(x) · π(y) · π(x ◦ y) ∈ {−1, 1}.

22-4



So, I
def
= 1

2 + 1
2π(x) · π(y) · π(x ◦ y) is an indicator random variable for the event that the linearity

test accepts. Thus:

Pr[linearity test accepts] = Expx,y[I]

=
1

2
+

1

2
·Expx,y[π(x) · π(y) · π(x ◦ y)]. (2)

Expanding π in terms of its Fourier coefficients gives

Expx,y[π(x) · π(y) · π(x ◦ y)] =

Expx,y

[(

∑

S

π̂(S)χS(x)

)

·

(

∑

S′

π̂(S′)χS′(y)

)

·

(

∑

S′′

π̂(S′′)χS′′(x ◦ y)

)]

= Expx,y





∑

S,S′,S′′

π̂(S) π̂(S′) π̂(S′′)χS(x)χS′(y)χS′′(x ◦ y)





=
∑

S,S′,S′′

π̂(S) π̂(S′) π̂(S′′) ·Expx,y [χS(x)χS′(y)χS′′(x ◦ y)] . (3)

By definition of χS , for any fixed S, S′, S′′ we have:

Expx,y [χS(x)χS′(y)χS′′(x ◦ y)] = Expx,y

[

∏

i∈S

xi ·
∏

i∈S′

yi ·
∏

i∈S′′

xiyi

]

= Expx,y





∏

i∈S△S′′

xi ·
∏

i∈S′△S′′

yi





= Expx





∏

i∈S△S′′

xi



 · Expy





∏

i∈S′△S′′

yi



 , (4)

where A△B denotes the symmetric difference between sets A and B. (I.e., i ∈ A△B iff i is
in exactly one of A or B.) Above, the second equality uses the fact that x2

i = y2
i = 1 (since

xi, yi ∈ {−1, 1}), and the third equality relies on the fact that x and y are independent.

Evaluating Expx

[

∏

i∈S△S′′ xi

]

is easy: if S = S′′ then the product is empty and so evalu-

ates to 1 regardless of x. On the other hand, if S 6= S′′ then each xi is equally likely to be
1 or −1 and so the expected value of the product is 0. We thus see from Equation (4) that
Expx,y [χS(x)χS′(y)χS′′(x ◦ y)] = 0 unless S = S′ = S′′, in which case the expression evaluates
to 1. Working back through Equations (3) and (2) gives the claimed result.

Given Lemma 3 we can prove Theorem 2 in just a few lines. We have:

Pr[linearity test accepts] =
1

2
+

1

2
·
∑

S

π̂(S)3

≤
1

2
+

1

2
· maxS{π̂(S)} ·

∑

S

π̂(S)2

=
1

2
+

1

2
· maxS{π̂(S)},

22-5



using Parseval’s theorem. If π is distance ε from linear, this means that maxv{π̂(v)} = 1− 2ε. We
conclude that Pr[linearity test accepts] ≤ 1 − ε, proving the theorem.

3 The Consistency Test

We return to our notation from Section 1.1, where ~v represents a boolean vector of length n2 and
we index it using two indices each ranging from 1 to n.

Assume π is within distance 1/48 from linear. This means there exists a unique1 linear function f
within distance 1/48 from π; we can write f as

f(~v) =

n
∑

i,j=1

λi,j · vi,j

for some {λi,j ∈ {0, 1}}. We now want a way to check that these {λi,j} are consistent ; i.e., that
λi,j = λi,i · λj,j for all i, j. A useful way to view this is to put the {λi,j} in an n×n matrix M ; i.e.,

M
def
=







λ1,1 λ1,2 · · · λ1,n

...
...

. . .
...

λn,1 λn,2 · · · λn,n






.

Let ~λ
def
= (λ1,1, . . . , λn,n) (all our vectors will be row vectors). Then consistency is equivalent to:

M = ~λT~λ.

(Note once again that λ2
i,i = λi,i since we are working in F2.) We first show an efficient way to test

equality of matrices, and then show how the test can be implemented using access to π.

Claim 4 Let M,M ′ be two unequal n × n matrices over F2. Then

Pr
~x,~y∈{0,1}n

[~xM~y T = ~xM ′~y T ] ≤
3

4
.

Proof Note that ~xM~y T − ~xM ′~y T = ~x(M −M ′)~y T and M −M ′ is a non-zero matrix. So we are
interested in the probability that ~xM ′′~y T = 0 for non-zero matrix M ′′.

The probability that M ′′~y T = ~0 is at most 1/2. Assuming this does not occur, the probability
that ~x(M ′′~y T ) = 0 is exactly 1/2. So, the probability that ~xM ′′~y T = 0 is at most 3/4.

How can we evaluate ~xM~y T and ~x(~λT~λ)~y T given access to π? Let us assume we have access
to f , and show how to correct for this later. Given access to f , it is easy to compute ~xM~y T since

~xM~y T =
n
∑

i,j=1

λi,jxiyj .

Setting vi,j = xiyj and querying f(~v) thus gives the desired answer. For the second computation,
note that

~x(~λT~λ)~y T = (~x~λT )(~λ~y T ).

1That f is unique follows from the fact that any two distinct linear functions are distance 1/2 from each other.

22-6



Setting vi,i = xi (and vi,j = 0 when i 6= j), we see that f(~v) = ~x~λT ; the value ~λ~y T is computed
similarly.

The above assumes we have access to f — but we only have access to π! However, we said that
π was within distance 1/48 from f . So we can compute f(~v) (for any ~v) by choosing a random
“shift” ~r ∈ {0, 1}n2

and computing f̃(~v) = π(~r) + π(~r + ~v). Note that as long as π(~r) = f(~r) and
π(~r +~v) = f(~r +~r), then f̂(~v) = f(~v). Thus, for any ~v we compute the correct value of f(~v) except
with probability 2/48 = 1/24. This technique is called self-correction.

3.1 In Summary

To summarize, we perform the following consistency test :

1. Choose random ~x, ~y.

2. Using self-correction and the approach described above, compute ~xM~y T .

3. Using self-correction and the approach described above, compute ~x(~λT~λ)~y T .

4. Accept if and only if the two values thus computed are equal.

Note that step 2 requires one call to f , so it requires two calls to π. Step 3 requires two calls to f ,
so it requires four calls to π.

We may now state the main result of this section (again, we have not tried to optimize constants):

Theorem 5 Assume π is within distance 1/48 of a linear function f . If f is not consistent (in
the sense described above), then the consistency test rejects with probability at least 1/8.

Proof Assuming the test correctly computes ~xM~y T and ~x(~λT~λ)~y T , the test will accept with
probability at most 3/4 (by Claim 4). The probability that one of the six calls to π results in an
incorrect value for f is at most 6/48 = 1/8 (using the fact that π and f disagree on at most a 1/48
fraction of their points, and applying a union bound). So, the probability of acceptance is at most
3/4 + 1/8 and the theorem follows.

4 The Satisfiability Test

Assume π is within distance 1/48 from the linear function

f(~v) =
n
∑

i,j=1

λi,jvi,j

and furthermore that f is consistent (i.e., the {λi,j} satisfy λi,j = λi,i · λj,j for all i, j). We view π
an encoding an assignment ~a = (λ1,1, λ2,2, . . . , λn,n). We now want to check that this assignment
is a satisfying assignment for the given system of equations. (Indeed, note that until this point
everything we have done has been independent of the system of equations whose satisfiability we
are interested in!)

22-7



Our set of equations (cf. Eq (1)) can be written as:







c(k) +
n
∑

i,j=1

c
(k)
i,j · xixj = 0







m

k=1

,

and so we want to verify whether

yk
def
= c(k) +

n
∑

i,j=1

c
(k)
i,j · aiaj

is equal to 0 for all k ∈ [1,m]. If we let ~y
def
= (y1, . . . , ym), then we want to check whether ~y is the

0-vector. We can’t check every position individually since this will require too many queries to π.
What we will do instead is to look at the dot product of ~y with a random vector: if ~y = ~0 then this
dot product will always be 0, but if ~y 6= 0 then the dot product will be 1 with probability 1/2.

Taking the dot product of ~y with a random vector is equivalent to choosing a random subset
S ⊆ [m] and looking at the sum. That is,

∑

k∈S

yk =
∑

k∈S



c(k) +

n
∑

i,j=1

c
(k)
i,j · aiaj





=
∑

k∈S

c(k) +
∑

k∈S

n
∑

i,j=1

c
(k)
i,j · aiaj

=
∑

k∈S

c(k) +
n
∑

i,j=1

aiaj ·

(

∑

k∈S

c
(k)
i,j

)

.

We can evaluate the first term on our own, and will obtain the second term by evaluating f(~v)
where

vi,j =
∑

k∈S

c
(k)
i,j .

To obtain this value f(~v), we will again use self-correction as in the previous section.
In total, we make two queries to π and achieve the following (again, constants have not been

optimized):

Theorem 6 Assume π is within distance 1/48 of a linear function f and that f is consistent (as
defined previously). Then if the system of equations is not satisfiable, the satisfiability test rejects
with probability at least 1/8.

Proof If the test correctly computes f(~v), it accepts with probability 1/2. The probability that
one of the two calls to π results in an incorrect value for f is at most 2/48 (as in the previous
theorem). So, the probability of acceptance is at most 1/2 + 2/48 and the theorem follows.

22-8



5 Putting it all Together

We summarize the PCP system. Given a system of equations and access to an oracle π, the verifier
proceeds as follows:

• Perform the linearity test (3 queries to π).

• Perform the consistency test (6 queries to π).

• Perform the satisfiability test (2 queries to π).

• Accept only if all the above tests succeed.

If the system of equations is satisfiable, then there exists a proof string π for which the above test
accepts with probability 1. We claim that if the system of equations is not satisfiable, then the
test will reject with probability at least 1/48 (for any π). There are three cases: (1) π is not within
distance 1/48 of a linear function; (2) π is within distance 1/48 of a (unique) linear function f ,
but f is not consistent; or (3) π is within distance 1/48 of a consistent, linear function f , but f
does not encode a satisfying assignment. In case (1) the linearity test will reject with probability at
least 1/48; in case (2) the consistency test will reject with probability at least 1/8; and in case (3)
the satisfiability test will reject with probability at least 1/8.

Bibliographic Notes

For more on Fourier analysis of boolean functions, see O’Donnell’s lecture notes [2], or the online
textbook he is currently writing [3]. For a reasonably self-contained proof of the full PCP theorem
(including also a proof that NP ⊆ PCP(poly, 1)), see Harsha’s thesis [1].

References

[1] P. Harsha. Robust PCPs of Proximity and Shorter PCPs. PhD thesis, MIT, 2004. Available at
http://www.tcs.tifr.res.in/~prahladh/papers/#theses

[2] R. O’Donnell. Lecture notes for 15-859S: Analysis of Boolean Functions. Available at
http://www.cs.cmu.edu/~odonnell/boolean-analysis.

[3] R. O’Donnell. http://www.contrib.andrew.cmu.edu/~ryanod/?page_id=2

22-9


