Notes on Complexity Theory Last updated: December, 2011

Lecture 28
Jonathan Katz

1 Circuit Lower Bounds

Recall that one motivation for studying non-uniform computation is the hope that it might be easier
to prove lower bounds in that setting. (This is somewhat paradoxical, as non-uniform algorithms
are more powerful than uniform algorithms; nevertheless, since circuits are more “combinatorial”
in nature than uniform algorithms, there may still be justification for such hope.) The ultimate
goal here would be to prove that NP ¢ P /polys which would imply P # NP. Unfortunately, after
over two decades of attempts we are unable to prove anything close to this. Here, we show one
example of a lower bound that we have been able to prove; we then discuss one “barrier” that
partly explains why we have been unable to prove stronger bounds.

2 Parity Cannot be Solved by AC’ Circuits

Recall that AC is the set of languages /problems decided by constant-depth, polynomial-size circuits
(with gates of unbounded fan-in). We consider the basis consisting of AND, OR, and NOT gates,
though we do not count NOT gates when measuring the depth or size of the circuit. The parity
function is given by f(x1---x,) = 21 ® --- @ z,,. In this lecture we give the “polynomial proof”
that parity cannot be computed in ACY. We will actually prove something stronger:

Theorem 1 For sufficiently large n, any depth-d circuit that computes parity on n-bit inputs must
have at least % . 90-5n!/2d gates.

Thus, for any fixed depth-bound d, any circuit family computing parity grows as 2" for some & > 0.

Proof Fix a circuit C of depth d that computes parity on inputs of length n. Let z1,...,x,
denote the inputs to the circuit. We will assume that C has only OR gates and NOT gates; this
assumption is without loss of generality since we may convert any AND gate to a combination of
OR and NOT gates using De Morgan’s laws (by setting A, a; = —\/,;(—a;)) without affecting the
size or depth of the circuit.

Let F3 = {—1,0,1} be the field of size 3. Say a polynomial p € Fs[z1,...,x,]| is proper
if p(x1,...,zy,) € {0,1} whenever z1,...,2, € {0,1}. Note that any proper polynomial can be
viewed as a boolean function in the natural way.

The proof hinges on two lemmas: we first show that any circuit in AC® can be approximated
fairly well by a (proper) low-degree polynomial, and then show that parity cannot be approximated
well by any low-degree polynomial.

Lemma 2 For every integer t > 0, there exists a (proper) polynomial of total degree (2t)¢ that
differs with C on at most size(C) - 2" inputs.

28-1

Proof We will associate a proper polynomial with each wire of the circuit, and then bound the
error introduced. Begin at the input wires and associate the monomial x; to the input z;. Now
consider the output wire of some gate g, all of whose input wires have already been associated with
polynomials. Then:

o If g is a NOT gate, and its input wire is associated with the polynomial p, then associate its
output wire with 1 — p. Note that this does not increase the degree of the polynomial.

e If g is an OR gate with k input wires associated with the polynomials py, ..., pg, then do the
following:

Choose sets S1,...,S; C [k] (see below for how these sets are chosen), and define
2
¢ = (Zjesi pj> fori=1,...,t. Thenset p=1— Hle(l — Q).

(Note that p is just the OR of the ¢;.) If the maximum (total) degree of the {p;} is b, then
the (total) degree of polynomial p is at most 2tb. Note further that p is proper.

For a given wire with associated polynomial p, an error is an input zi,...,2, on which the
value of the wire and the value of p differ. We now bound the fraction of errors in the polynomial
p* associated with the output wire of the circuit. No errors are introduced at input wires or at
NOT gates. Looking at any OR gate with k input wires associated with the polynomials py, ..., pg,

we claim that there is some choice of subsets Si,...,S; C [k] that will not introduce too many
errors. On any input where all the p;’s evaluate to 0, the resulting polynomial p will also evaluate
to 0. Consider any input where at least one of the p;’s evaluates to 1, and let S1,...,.S; be random

subsets of [k]. With probability at least half over choice of subset S, polynomial ¢; will evaluate
to 1. If any of the g; evaluate to 1 then so does p. So the probability that p does not evaluate to 1
is at most 27¢. By an averaging argument, this implies the existence of some collection of subsets
that introduces errors on at most a 27! fraction of the inputs at this gate.

Taking a union bound, we conclude that p* is a polynomial of degree at most (2t)¢ having at
most size(C) - 2"t errors with respect to C. [|

Setting ¢t = nl!/24 /2 we get a polynomial of degree at most /n that differs from C on at most
size(C) - 2"t inputs.

Lemma 3 Letp € F3[x1,...,x,] be a proper polynomial of degree at most /n. Then for sufficiently
large n the polynomial p differs from the parity function on at least 2" /50 inputs.

Proof Consider the “translated” parity function parity’ : {—1,1}" — {—1,1} defined as

parity’(z1,...,2,) = H:C’
i

Since parity’(z1,...,x,) = parity(ry — 1,...,2, — 1) + 1, there exists a polynomial p’ of degree at
most y/n that agrees with parity’ on the same number of inputs for which p agrees with parity.

Let S C {—1,1}" be the set of inputs on which p’ and parity’ agree, and let F denote the set of
all functions from S to F3. Note that |F| = 3!, Now, for every function f € F we can associate
a polynomial py € F3[z1,...,x,] that agrees with f for all z € S: just set

pi(as,) = =S F) - [+1).

yes i=1

28-2

Although py, as constructed, has degree 1 in each input variable, the total degree of p; may be as
large as n. We claim that, in fact, we can associate with each f a polynomial p; whose degree is
at most n/2+ /n. To see this, fix f and py and look at some monomial & [[, . z; appearing in py
where |T'| > n/2 + y/n. For any x € S C {—1,1}" we have

n

:I:Hxl- = :EH%H%

ieT i=1 igT
= 4p'(x)- H .
T

Since p’ has degree at most /1, we see that we can re-write py as a polynomial p; that agrees with
pr on S and has degree at most n/2 + /n.

The number of monomials whose total degree is at most n/2 + \/n is Zf:/ ?)J“/E (), which is
less than 49 - 2" /50 for large enough n. So the total number of polynomials whose degree is at
most n/2 + y/n is upper bounded by 3%92"/50_ Given that |F| = 35|, this means we must have
|S] < 49-2"/50 as claimed. []

To complete the proof, we just combine the two lemmas. The first lemma gives a polynomial
p of degree at most /n that differs from parity on at most size(C) - gn—n'/2/2 inputs. The second
lemma tells us that, for large enough n, we must have size(C') - gn—n'/21/2 > on /50. We conclude

that size(C) > = - 90.5:n1/24

% , completing the proof. |

3 Limits of Proving Lower Bounds: Natural Proofs

The lower bound proved in the previous section is, to a rough approximation, about the best we
are able to show. Why is that? We explore one reason here.

We formalize a notion of proving lower bounds using “natural” proof techniques. We then show
that natural proofs cannot be used to prove strong lower bounds assuming some (widely believed)
cryptographic assumptions hold.!

3.1 Defining Natural Proofs

Let Cy,Cy1 denote classes of predicates. (Cp,C1 need to satisfy certain technical restrictions, but
these conditions are not very restrictive.) For example, Cy or C; could be AC® or P /poly, OT even
something more specific like “depth-5 circuits having at most n? gates”. Say we want to show
that some function f : {0,1}* — {0,1} is not in Cy. One way to prove this would be to define a
“hardness predicate” P on functions such that, for n large enough, P(f,) = 1 (where f, denotes
the restriction of f to m-bit inputs) but for any g € Cy and n large enough, P(g,) = 0. (Here we
view P as taking the truth table of f,, as input. Note that the truth table of f, has size 2", and
we measure complexity of P in terms of that length.) A proof of this form is called a Ci-natural
against Cy if P satisfies two conditions: (1) P is in C; (this is called the constructiveness condition),

!This is an interesting situation, as it means that one way to make progress on proving lower bounds (i.e., to prove
that some function is “hard”) would be to show better upper bounds (namely, to show that certain cryptographic
problems are actually “easy”.)

28-3

and (2) for n sufficiently large, a random predicate g, : {0,1}" — {0, 1} satisfies P(g,) = 1 with
probability at least 1/n (this is called the largeness condition).

Why are these properties “natural”? There are two types of answers here. The first is just to
observe that (almost?) all known lower bounds do, in fact, satisfy these properties. For example,
in the lower bound for parity that we showed in the previous section, the predicate P corresponds
informally to

P(fn) =0< f, can be “well approximated” by a “low-degree” polynomial.

A random function cannot be approximated by a low-degree polynomial, with high probability.
Constructiveness is more difficult to show, and actually requires us to consider a slightly different
predicate P’ (for which the largeness condition still holds); we refer to [4] for details. All-in-all, it is
possible to show that the parity lower bound is NC?-natural against ACY. (Interestingly, previous
lower bounds for parity were AC’-natural against ACY.)

The second argument in favor of our definition of “natural” is to appeal to intuition. This
argument is somewhat harder to make (which gives hope that we can circumvent the barrier imposed
by natural proofs, and find new proof techniques for showing lower bounds). Constructiveness is
motivated by the fact that, as part of any lower-bound proof of the above form, we must show
that P(f,) = 1; it seems that any “constructive” proof of this fact should involve some “efficient”
computation involving the truth table of f,. The largeness condition is perhaps more natural.
For starters, random functions are typically hardest. Moreover, every proof that a given function
fn + {0,1}" — {0,1} cannot be computed by a circuit of S also proves that at least half the
functions on n bits cannot be computed by a circuit of size ~ S/2. If not, then write

fn(x) = (fn @ gn) @ gn

for a random function g, : {0,1}" — {0, 1}; with probability strictly greater than 0, both g, and
fn @ gn can be computed by a circuit of size ~ S/2 (note that both g, and f, ® g, are random
functions), but then f, can be computed by a circuit of size S.

3.2 Ruling Out Natural Proofs of Lower Bounds

For simplicity, let us fix some n instead of working asymptotically. Then we can view Cy, C; as classes
of functions on n-bit and 2"-bit inputs, respectively. Say we have a function f : {0,1}" — {0,1}
and want to prove that f is not in Cy using a Cj-natural proof. This means that we want to define
a predicate P € Cy such that P(f) =1 but P(g) =0 for all g € Cy.

Let F denote a keyed function mapping inputs of length n to boolean outputs, and having a
key of length m, i.e., F = {F : {0,1}" — {0,1}}3cq0,1ym- We say that F can be computed in Co
if, for any key k € {0,1}™, the function Fy : {0,1}" — {0,1} is in Cy. (Note in particular that the
function F'(k, x) def Fj(x) may have complexity “higher” than Cy.) Informally, F is a pseudorandom
function (PRF) if it is hard to distinguish whether a given function h : {0,1}" — {0,1} is equal
to Fj, for a random key k € {0,1}™, or whether A is a random boolean function on n-bit inputs.
Our notion of distinguishing will be very strong: rather than considering distinguishers that make
oracle queries to h, we simply provide the distinguisher with the entire truth table of h.2 Formally,

2For those used to thinking about polynomial-time distinguishers of cryptographic PRFs this may seem strange. If
it helps, one can think of m as the security parameter and consider, for example, the case where n = O(log2 m). Then

we are just requiring security against slightly super-polynomial distinguishers running in time poly(2™) = mOUoem),

28-4

then, we say that F is pseudorandom against Cy if for every distinguisher D € C; we have

P D(F,)=1—- P Dh) =1 1
L Pr D) =1 Pr [D(h)=1] <1/n.
where Func,, denote the space of all predicates on n-bit inputs.
We can now state the main result:

Theorem 4 Assume there exists an F that can be computed in Cy and is pseudorandom against Cy.
Then there is no Ci-natural proof against Cy.

Proof A C; natural proof against Cy would imply the existence of a predicate P € C; such that
P(g) = 0 for all g € Cy, while Prjpunc, [P(h) = 1] > 1/n. But then P acts as a distinguisher
for F, using the fact that Fj, € Cy for every key k. |

Under suitable cryptographic hardness assumptions (e.g., the assumption that the discrete
logarithm problem has hardness 2" for some € > 0, or an analogous assumption for hardness of
subset sum) there are pseudorandom functions that can be computed in NC! (or even® TCY) and are
pseudorandom against P. Thus, if these cryptographic conjectures are true, there are no P-natural
proofs even against weak classes like NC! or TC?. This helps explain why current circuit lower
bounds are “stuck” at AC® and* ACCC.

Bibliographic Notes

This proof given here that parity is not in ACY is due to Razborov [3] and Smolensky [5] (who
proves a more general result); earlier proofs (using a different approach) were given by Furst, Saxe,
and Sipser, by Yao, and by Hastad. Good surveys of circuit lower bounds include the (old) article
by Boppana and Sipser [1] and the (new) book by Jukna [2]. Natural proofs were introduced by
Razborov and Rudich [4].

References

[1] R. Boppana and M. Sipser. The Complexity of Finite Functions. In Handbook of Theoretical
Computer Science, vol. A: Algorithms and Complexity, J. van Leeuwen, ed., MIT Press, 1990.

[2] S. Jukna. Boolean Function Complexity: Advances and Frontiers. Springer, 2012.

[3] A. Razborov. Lower Bounds on the Size of Bounded Depth Networks Over a Complete Basis
with Logical Addition. Matematicheskie Zametki 41:598—607, 1987.

[4] A. Razborov and S. Rudich. Natural Proofs. J. Computer and System Sciences 55(1): 24-35,
1997.

[5] R. Smolensky. Algebraic Methods in the Theory of Lower Bounds for Boolean Circuit Com-
plexity. STOC 1987.

3TCO is the class of predicates that can be computed by constant-depth circuits of polynomial size, over a basis of
unbounded fan-in threshold gates. Note that AC® C TC® C NC.

4ACCO is the class of predicates that can be computed by constant-depth circuits of polynomial size, over a basis
of unbounded fan-in AND, OR, and mod m gates (for any fixed constant m). Note that AC® C ACC® C TC°.

28-5

