University of Maryland
CMSC456 — Introduction to Cryptography
Professor Jonathan Katz

Problem Set 1

Due at beginning of class on Sept. 23

1. In class we discussed perfect security and gave the following definition: an encryption
scheme for n-bit messages is perfectly secure if, for all distributions over message space
{0,1}™, for all m € {0,1}", and for all ciphertexts ¢ we have: Pr[m|c] = Pr[m] (where
c is an observed ciphertext). Note that this definition only covers security against
ciphertext only attacks.

Formulate a definition of perfect security against known message attacks. You
may consider an adversary who receives only a single (message, ciphertext) pair.

Prove that no deterministic, stateless encryption scheme can be perfectly secure
against known message attacks. (A deterministic encryption scheme is one in
which F is a deterministic function of the key and the message.)

(Graduate students only.) Prove that even a randomized, stateless encryption
scheme cannot be perfectly secure against known message attacks. Suggest a way
to relax the definition so that it might be attainable (you do not need to show a
scheme that attains it).

2. Compute 1014800,000,023 1,64 35 (without using a computer). Show all work. (Hint:
use Chinese remaindering, among other tricks.)

3. Consider the group Zj35 (of course, 35 = 5- 7). Answer the following questions about
this group:

How many elements are in this group?
List the elements of this group.

(Note: The Chinese Remainder Theorem will make the next two problems much
less tedious.) For each element of the group, determine whether it has Jacobi
symbol +1 or —1. How many elements have Jacobi symbol +17

For each element which has Jacobi symbol +1, state whether it is a quadratic
residue or not. How many of the elements with Jacobi symbol +1 are quadratic
residues?

For each element which is a quadratic residue, find all of its square roots.
What is ¢(35)?



4. Assume we have an algorithm A that runs in 5 seconds and can compute square roots
over a composite 1% of the time. More precisely: fix modulus N = pq where p, q are
prime. Let S be the subset of QRx such that A(y) = z and z? = y (i.e., S is that
subset for which A can correctly compute a square root). Then since A is correct 1%

. OR
of the time, we have |S| = %.
(a) Show that if A can compute the square root of y; and also compute the square
root of the product y; - y2 mod N, then we can use A to efficiently compute the
square root of ys.

(b) Suggest how to use A to efficiently compute the square root of any element in
QRN (use randomization). How long will this take, on average?

5. Recall the definition of a pseudorandom generator (PRG) given in class: G : {0,1}* —
{0,1}* is a PRG if its output is larger than its input and, for all efficient (probabilistic
polynomial time) algorithms A we have:

Pr[z < {0,1}";y = G(z) : A(y) = 1] — Prly < {0,1}" : A(y) = 1] < ¢(m). (1)

Discuss whether the functions G which follow are secure under the above definition.
When it is, prove it. When it is not, give an explicit (efficient) algorithm for which
condition (1) does not hold.

(a) G defined by G(z) = z o b where b is the parity of z.

(b) Let G1,G2 be secure PRGs. Define G by G(z) = G1(z) o Ga(z).

(¢) (Graduate students only) Let G1,G2 be secure PRGs. Define G by G(z; o
z9) = G1(z1) o Go(z2). Note the difference between this and the previous prob-
lem.



