Problem Set 2

Due at beginning of class on Oct. 9

- 1. Let p be a prime, let x_1, x_2 be quadratic residues in \mathbb{Z}_p^* , and let y be a quadratic non-residue in \mathbb{Z}_p^* .
 - (a) Prove that x_1x_2 is a quadratic residue.
 - (b) Prove that x_1^{-1} is a quadratic residue.
 - (c) Prove that x_1y is not a quadrate residue.
- 2. Consider the following proposed definition of a one-way function. $f: \{0,1\}^* \to \{0,1\}^*$ is one-way if, for all PPT algorithms A the following is negligible:

$$\Pr[x \leftarrow \{0, 1\}^k; y = f(x) : A(1^k, y) = x].$$

Give a function which satisfies the above definition but does *not* satisfy the definition we gave in class for a one-way function. Do you think the definition proposed here is a good one?

3. Consider the following definition of a perfect pseudorandom generator (PRG). $G: \{0,1\}^k \to \{0,1\}^{k+1}$ is a perfect PRG if, for all algorithms A we have:

$$\Pr[x \leftarrow \{0,1\}^k; y = G(x) : A(y) = 1] = \Pr[y \leftarrow \{0,1\}^{k+1} : A(y) = 1].$$

Show that a perfect PRG does not exist. Namely, for any proposed perfect PRG, give an explicit algorithm A for which the above definition of security is not true.

- 4. Discuss whether the functions G which follow are secure PRGs (in the sense defined in class, not the "perfect" sense described above). When G is a PRG, prove it. When G is not, give an explicit, efficient algorithm which "breaks" the PRG and distinguishes the output of G from random.
 - (a) G defined by $G(x) = x \circ b$ where b is the parity of x.
 - (b) Let G_1, G_2 be secure PRGs. Define G by $G(x) = G_1(x) \circ G_2(x)$ (\circ denotes concatenation).
 - (c) **Graduate students only.** Let G_1, G_2 be secure PRGs. Define G by $G(x_1 \circ x_2) = G_1(x_1) \circ G_2(x_2)$. Note the difference between this and the previous problem.
- 5. **Graduate students only.** You will prove that if G is a secure PRG, then no algorithm can predict the last bit of the output of G. More precisely, assume $G: \{0,1\}^* \to \{0,1\}^*$ is a secure PRG which stretches its input by one bit. For any string y of length ℓ , let $y_1 \cdots y_\ell$ denote the bits of y. We say that G is unpredictable if no PPT algorithm

can predict the last bit of the output of G (with more than probability 1/2), given all the other bits. That is, for any PPT algorithm A the following is negligible:

$$\left| \Pr[x \leftarrow \{0,1\}^k; y = G(x) : A(y_1 \cdots y_k) = y_{k+1}] - 1/2 \right|.$$

The structure of the proof is as follows: We will assume toward a contradiction that there is an efficient algorithm A for which

$$\left| \Pr[x \leftarrow \{0, 1\}^k; y = G(x) : A(y_1 \cdots y_k) = y_{k+1}] - 1/2 \right| > \epsilon(k)$$

and $\epsilon(\cdot)$ is not negligible. We then construct an efficient algorithm A' that can distinguish the output of G from random (i.e., A' "breaks" G) with probability which is not negligible. This contradicts the security of G as a PRG, implying that our original assumption is false, and hence no such A can exist.

We define A' as follows: on input $y = y_1 \cdots y_{k+1}$, A' runs $A(y_1 \cdots y_k)$. If $A(y_1 \cdots y_k)$ outputs y_{k+1} , then A' outputs 1. Otherwise, A' outputs 0.

- What is the probability that A' outputs 1 given that y is a random string?
- What is the probability that A' outputs 1 given that y is an output of G(x) for some x (express your probability in terms of $\epsilon(k)$)?
- Complete the proof that if $\epsilon(\cdot)$ is not negligible, then A' breaks G with probability which is not negligible.