## Problem Set 4

## Due at beginning of class on Nov. 8

1. Consider the following modification of the XOR-MAC. Let  $F: \{0,1\}^k \times \{0,1\}^m \to \{0,1\}^n$  be a  $(t,\epsilon)$ -PRF. The sender and receiver share a random key  $s \in \{0,1\}^k$  and fix a parameter  $\ell$ . Let  $\langle i \rangle$  denote the  $\ell$ -bit representation of integer i. To authenticate message M, the sender parses M as a sequence of  $(m-\ell)$ -bit blocks  $M_1, \ldots, M_t$  (assume that message lengths are always a multiple of  $(m-\ell)$ ), chooses a random  $r \in \{0,1\}^m$  and computes:

$$\mathsf{tag} = F_s(r) \oplus F_s(\langle 1 \rangle \circ M_1) \oplus \cdots \oplus F_s(\langle t \rangle \circ M_t).$$

The sender sends both tag and r as the authentication code for M. Note that this is different from XOR-MAC because the random block is not prefixed by 0 and the message blocks are not prefixed by 1.

- (a) How can the receiver verify correctness of a tag (tag, r) on message M?
- (b) Say an adversary (who has access to the MAC oracle, as always) knows that a sender and receiver are using the above scheme, but does not know the value of  $\ell$ . How can the adversary determine the value of  $\ell$ ? Assume that the MAC oracle returns an error if the message length is not a multiple of  $(m \ell)$ .
- (c) In the XOR-MAC scheme, an adversary asking q MAC queries was unable to forge a new tag with probability better than  $2q^2 \cdot 2^{-m} + 2^{-n} + \epsilon$ . Suggest how an adversary can do better for the scheme presented here. (*Hint*: I am aware of one attack in which the adversary can forge a new tag with probability  $O(q^2 \cdot 2^{-\ell})$ , which is better since  $\ell < m$ . Someone in the class suggested an even better attack. Anything better than  $O(q^2/2^m)$  is ok.)
- 2. Assume that  $(\mathcal{E}, \mathcal{D})$  is an indistinguishable private-key encryption scheme (for arbitrary-length messages) and (MAC, Vrfy) is a secure message-authentication scheme (for arbitrary-length messages). We want to achieve simultaneous private-key encryption and message authentication.

One possible approach is to separately encrypt and authenticate. Here, the sender and receiver share two random, independent keys  $k_1, k_2$  and every time the sender wants to transmit message M, he computes  $C \leftarrow \mathcal{E}_{k_1}(M)$  and  $\mathsf{tag} \leftarrow \mathsf{MAC}_{k_2}(M)$  and sends C,  $\mathsf{tag}$ .

- (a) How would the receiver perform decryption and verification in this new scheme?
- (b) Is this scheme secure as a message authentication code? Briefly state why or why not.

- (c) Is this scheme secure in the sense of left-or-right indistinguishability? Give a proof or sketch of proof if it is, or an explicit attack if it is not.
- (d) **Graduate students only.** The sender and receiver want to store a shorter key so they decide to use the same key k for both encryption and authentication; i.e., the sender now computes  $C \leftarrow \mathcal{E}_k(M)$  and tag  $\leftarrow \text{MAC}_k(M)$  and sends C, tag. Is this secure (as a message authentication code and in the sense of indistinguishability) in general? Give a proof or an explicit attack in each case depending on your answer.
- 3. Let p be a prime such that  $p = 3 \mod 4$ . Let  $x \in \mathbb{Z}_p$  be a quadratic residue.
  - (a) Show that (p+1)/4 is an integer, and argue that therefore  $x^{(p+1)/4} \mod p$  can be efficiently computed. (Efficient here means polynomial in |p|).
  - (b) Show that  $x^{(p+1)/4}$  gives a square root of x. (Hint: use the fact that  $y^{p-1} = 1 \mod p$  for  $any \ y \in \mathbb{Z}_p$  and the fact that x is a quadratic residue).
  - (c) How would you find both square roots of x?
- 4. In this problem we will construct a collision-resistant hash function based on the hardness of computing discrete logarithms. Let  $\mathbb G$  be a cyclic group of order q, where q is prime. Recall that such groups have the property that any element  $g \in \mathbb G$  (with  $g \neq 1$ ) is a generator, so that  $\{g^0, g^1, \ldots, g^{q-1}\}$  is all of  $\mathbb G$ . Thus, if g is a generator then for any  $h \in \mathbb G$  we can define the discrete logarithm of h with respect to g (denoted  $\log_g h$ ) as the unique number  $x \in \mathbb Z_q$  for which  $g^x = h$ .

The discrete logarithm assumption states that given random generator g and random  $h \in \mathbb{G}$ , it is hard to compute  $\log_g h$ . Let g, h be generators of  $\mathbb{G}$ , and define hash function  $H_{g,h}: \mathbb{Z}_q \times \mathbb{Z}_q \to \mathbb{G}$  as follows:  $H_{g,h}(x,y) = g^x h^y$ .

- (a) Show that for any  $h' \in \mathbb{G}$  there is at least one pair (x,y) such that  $g^x h^y = h'$ .
- (b) Show that for any  $h' \in \mathbb{G}$  there are at least two distinct pairs  $(x_1, y_1)$ ,  $(x_2, y_2)$  such that  $g^{x_1}h^{y_1} = g^{x_2}h^{y_2} = h'$ .

The remaining questions are for **graduate students only**, but undergraduates may answer them for extra credit.

- (c) Show that for any  $h' \in \mathbb{G}$ , there are exactly q distinct solutions (x, y) for which  $g^x h^y = h'$ .
- (d) Show that, given  $(x_1, y_1)$  and  $(x_2, y_2)$  such that  $(x_1, y_1) \neq (x_2, y_2)$  and  $g^{x_1} h^{y_1} = g^{x_2} h^{y_2}$  it is possible to efficiently compute  $\log_g h$ . Use the fact that  $\mathbb{Z}_q$  is a field since q is prime.
- (e) Argue that when g and h are randomly chosen,  $H_{g,h}$  is a collision-resistant hash function. (Hint: what happens if an algorithm can find a collision?)