University of Maryland
CMSC456 — Introduction to Cryptography
Professor Jonathan Katz

Problem Set 4

Due at beginning of class on Nov. 8

1. Consider the following modification of the XOR-MAC. Let F : {0,1}* x {0,1}™ —
{0,1}" be a (t,¢)-PRF. The sender and receiver share a random key s € {0,1}* and
fix a parameter £. Let (i) denote the £-bit representation of integer 7. To authenticate
message M, the sender parses M as a sequence of (m — £)-bit blocks Mj,..., M;
(assume that message lengths are always a multiple of (m — £)), chooses a random
r € {0,1}™ and computes:

tag = Fy(r) @ Fs((1) o M1) @ --- @ F((t) o My).

The sender sends both tag and r as the authentication code for M. Note that this
is different from XOR-MAC because the random block is not prefixed by 0 and the
message blocks are not prefixed by 1.

(a) How can the receiver verify correctness of a tag (tag,r) on message M?

(b) Say an adversary (who has access to the MAC oracle, as always) knows that a
sender and receiver are using the above scheme, but does not know the value of
£. How can the adversary determine the value of £7 Assume that the MAC oracle
returns an error if the message length is not a multiple of (m — £).

(¢) In the XOR-MAC scheme, an adversary asking ¢ MAC queries was unable to
forge a new tag with probability better than 2¢?-2™ 427" 4 €. Suggest how an
adversary can do better for the scheme presented here. (Hint: I am aware of one
attack in which the adversary can forge a new tag with probability O(g? - 27%),
which is better since ¢ < m. Someone in the class suggested an even better
attack. Anything better than O(¢?/2™) is ok.)

2. Assume that (£, D) is an indistinguishable private-key encryption scheme (for arbitrary-
length messages) and (MAC, Vrfy) is a secure message-authentication scheme (for
arbitrary-length messages). We want to achieve simultaneous private-key encryption
and message authentication.

One possible approach is to separately encrypt and authenticate. Here, the sender
and receiver share two random, independent keys k1, k2 and every time the sender
wants to transmit message M, he computes C <+ &, (M) and tag < MACy, (M) and
sends C, tag.

(a) How would the receiver perform decryption and verification in this new scheme?

(b) Is this scheme secure as a message authentication code? Briefly state why or
why not.

(c) Is this scheme secure in the sense of left-or-right indistinguishability? Give a
proof or sketch of proof if it is, or an explicit attack if it is not.

(d) Graduate students only. The sender and receiver want to store a shorter key
so they decide to use the same key k for both encryption and authentication;
i.e., the sender now computes C + & (M) and tag < MACk(M) and sends
C,tag. Is this secure (as a message authentication code and in the sense of
indistinguishability) in general? Give a proof or an explicit attack in each case
depending on your answer.

3. Let p be a prime such that p = 3 mod 4. Let x € Z, be a quadratic residue.

(a) Show that (p + 1)/4 is an integer, and argue that therefore z(®*+1/4 mod p can
be efficiently computed. (Efficient here means polynomial in |p|).

(b) Show that z(P+1)/% gives a square root of z. (Hint: use the fact that yP~! =
1 mod p for any y € Z, and the fact that z is a quadratic residue).

(¢c) How would you find both square roots of z?

4. In this problem we will construct a collision-resistant hash function based on the
hardness of computing discrete logarithms. Let G be a cyclic group of order ¢, where
q is prime. Recall that such groups have the property that any element g € G (with
g # 1) is a generator, so that {g°, ¢*,...,¢9" '} is all of G. Thus, if g is a generator
then for any h € G we can define the discrete logarithm of h with respect to g (denoted
log, h) as the unique number z € Z, for which g* = h.

The discrete logarithm assumption states that given random generator g and random
h € G, it is hard to compute log, h. Let g,h be generators of G, and define hash
function Hy, : Zg x Zg — G as follows: Hg p(z,y) = g"hY.

(a) Show that for any h' € G there is at least one pair (z,y) such that g*h¥Y = h'.

(b) Show that for any h’' € G there are at least two distinct pairs (z1,y1), (Z2,¥2)
such that g% h¥' = g¥2h¥2 = }'.

The remaining questions are for graduate students only, but undergraduates may
answer them for extra credit.

(c) Show that for any h' € G, there are exactly ¢ distinct solutions (z,y) for which
ghY = B

(d) Show that, given (z1,y1) and (z2,y2) such that (z1,y1) # (z2,y2) and g**h¥* =

g”*h¥? it is possible to efficiently compute log, h. Use the fact that Z, is a field
since ¢ is prime.

(e) Argue that when g and h are randomly chosen, Hy j, is a collision-resistant hash
function. (Hint: what happens if an algorithm can find a collision?)

