University of Maryland
CMSC456 — Introduction to Cryptography
Professor Jonathan Katz

Lecture 10

1 Note on the Squaring One-Way Function

I previously claimed in class that the Rabin “squaring” function f : Z}, =+ QRy is a
permutation when its domain is restricted to QR . This is actually not quite true (as you
saw on homework 1 in the group Zj;). Rather, f : QRy — QRy is a permutation only
when N = pq and p = ¢ = 3 mod 4. See the updated notes for Lecture 7 for further details.

2 Pseudorandom Generators

Remember that our goal is to design a secure encryption scheme which beats the one-time
pad; namely, that allows us to securely encrypt messages longer than the shared key. One
proposal we had (reviewed below) used the notion of a pseudorandom generator (PRG):
this is a function G : {0,1}* — {0,1}* which (for now) has the property that its output is
1 bit longer than its input. (So if |z| = k — 1, then |G(z)| = k.) We need the following
two properties from G (informally, for now): (1) G should be efficiently computable; (2)
the output of G should “look random”.

The encryption scheme we suggested worked as follows. Alice and Bob share a key sk of
length k£ — 1. When Alice wants to communicate message m € {0, 1}* to Bob, she computes
C = m & G(sk) and sends C to Bob. To decrypt, Bob computes m = C & G(sk). Note the
analogy to the one-time pad scheme: G(sk) results in a “shared key” of length k which is
then used as a one-time pad. The hope is that if we define G appropriately, then we can
prove security for this construction.

Overall, then, we need to do two things: First, we will have to propose a rigorous
definition of what it means for the output of G to “look random” and then verify that G
satisfying this definition will indeed result in the above encryption scheme being secure.
Second, we need to construct a PRG satisfying this definition! We handle the first of these
concerns today.

What does it mean for the output of G to “look random”? One could require, say, that
the last bit of G(z) have equal probability of being 0 or 1, or that the fraction of 1s in
G(z) should be roughly 1/2. But these are just particular conditions, and don’t seem to
capture everything about what it means to be random. What we would like to say is that
no possible (efficient) test can distinguish between G(z) and a random value. The formal
way we do this is as follows:

Definition 1 G (as described above) is a pseudorandom generator (PRG) if it is efficiently
computable and for all PPT distinguishing algorithms D the following is negligible:

Pr[z « {0, l}k_l;y = G(z) : D(y) = 1] — Pr[y « {0, 1}’c : D(y) =1]].

(In words: in the first experiment we pick a random “seed” of length k — 1, apply G to this
seed to get y of length k, and give y to D. In the second experiment we pick a completely
random y of length k and give this to D. We require that D not be able to distinguish between
these two scenarios with more than negligible probability. Note that when D outputs “1” we
can view this as D’s guess that y is pseudorandom and when D outputs “0” we can view
this as D’s guess than y is random.)

Now let’s recall our definition of a secure encryption scheme. An encryption scheme
(K,E,D) is secure if, for all PPT algorithms A and all messages mg, m1, the following is
negligible:

Pr[sk « K(1%); C « Eg(mo) : A(C) = 0] — Pr[sk « K(1¥); C « £ (m1) : A(C) =0]].

(Note: the notation here is a little different from what I used in class — in class I used m1, mo
at first — but otherwise is the same.) Restating this for the encryption scheme described
above (in which XC(1¥) simply picks a random sk of length (k—1) and encryption/decryption
are as specified above), gives the following: For all PPT algorithms A and all messages myg, m;
the following is negligible:

Pr[sk < {0,1}* Ly = G(sk);C = mg @y : A(C) = 0]
— Pr[sk « {0,1}f7L;y = G(sk); C =mi @y : A(C) =0]]. (1)

With this in mind, we now prove the following theorem:

Theorem 1 If G is a PRG then the encryption scheme described above is secure.

Proof We prove this via the following methodology: Assume (toward a contradiction)
that the encryption scheme given above is not secure. Then there exists some algorithm
PPT A that “breaks” it; i.e., for which (1) is not negligible. We show how to use any such
algorithm to construct a PPT distinguisher D which can distinguish the output of G from
a random string with non-negligible probability. This will contradict the fact that G is a
PRG, hence our original assumption is false and the encryption scheme must be secure.

A proof of this sort is known as a reduction: we reduce the security of the encryption
scheme to that of G. We saw another proof of this form when we reduced the hardness of
inverting the Rabin squaring function to the hardness of factoring.

So, assume we have an algorithm A and messages mg, m; for which:

Pr[sk «+ {0,1}* Ly = G(sk); C =mo @y : A(C) = 0]

— Pr[sk «+ {0,1}f71;y = G(sk); C =my @y : A(C) = 0]| = y(k),

where (k) is not negligible. We construct an algorithm D as follows: D — which gets
input y and has to guess whether y is random or pseudorandom — first picks a random bit
b € {0,1}. D then sets C = m; @ y and runs A(C) to get a bit b'. This b’ represents A’s
guess as to what message was encrypted. If b = b (i.e., A guessed correctly) then D guesses

“pseudorandom” (which we will denote by having D output “1”). If b # b’ (i.e., A did not
guess correctly) then D guesses “random” (which we will denote by having D output “0”).

We want to know how well D does at distinguishing outputs of G' from random strings.
The quantity we are interested in is:

Prlz « {0,1}*"y = G(z) : D(y) = 1] - Prly + {0,1}* : D(y) = 1]|. (2)

(See Definition 1.)

Let’s look at each of these terms individually. Let P, def Priz < {0,1}f 1y = G(z) :
D(y) = 1]. Just by looking at what D does, we can write:

Py =Pr[z « {0,1}* 7Ly = G(2);b < {0,150 + A(mp @ y) : b = b]

because D only outputs 1 when A guesses the bit b correctly. Conditioning on the value of
b gives:

P = Prfz+ {0,1}* 1y = G(z) :+ A(mo @ y) = 0] - Pr[b = 0]
+ Prz + {0,1}"Ly = G(z) : A(m1 @ y) =1]-Prb=1].
Using the fact that Pr[b = 0] = Pr[b = 1] = 1/2 and that
Prlz « {0,1}7;y = G(2) : A1 @ y) = 1]
= 1-Prlz+ {0,1}) 1y =G(z) : A(m1 ®y) = 0]
gives:
P
= 1/2+1/2- (Pr[m {0,111y = G(z) : A(mo ®y) = 0]
— Prlz « {0,1}* Ly =G(z): A(m, @ y) = O]) .
But we have seen the quantity in parentheses before! This is exactly £y(k) (recall that
the absolute value of the expression in parentheses is y(k)), the “success probability” of A
when attacking our encryption scheme. The key point here is that when the input y given

to D is pseudorandom, then the view of A is exactly the view A has when attacking our
encryption scheme.

We now look at the second term in (2) (whew!). Let P, o Prly < {0,1}* : D(y) = 1].
Just as before, we can express this in terms of how we constructed D:

Py, = Prly « {0,1}%;b < {0,1};0' «+ A(my @ y) : b’ = b).
Just as before (here we omit the details), we eventually get:
Py=1/2+1/2- (Pr[y « {0,1}% : A(mg @ y) = 0] — Py « {0,1}% : A(my @ y) = O]) .

And we have seen the expression in parentheses before also! This is just the “success
probability” of A when attacking the one-time pad (since y is now completely random).

And we know that the one-time pad provides perfect secrecy, so that the expression in
parentheses has value exactly 0, and P, = 1/2!
Putting everything together from (2) gives:

Pr[z + {0,1}*"Ly = G(z) : D(y) = 1] — Pr[y < {0,1}* : D(y) = 1]
[P — P
= [1/2+~(k)/2—1/2|
= [£v(k)/2|
= (k)/2.

In particular, if y(k) was not negligible (i.e., A had non-negligible advantage in “breaking”
the encryption scheme) then «y(k)/2 is not negligible and therefore D has non-negligible
advantage in “breaking” the pseudorandom generator (i.e., distinguishing output of G from
random). But this contradicts the fact that G is a PRG (note that if A is a PPT algorithm
than so is D). So our original assumption must be wrong and no such A can exist; hence,
the encryption scheme is secure. |

