University of Maryland
CMSC456 — Introduction to Cryptography
Professor Jonathan Katz

Lecture 11

1 Improving the Stretch of a PRG

Last time we saw that a PRG was enough to construct an encryption scheme which is secure
yet beats the one-time pad. In particular, if we have a PRG that “stretches” its input by
one bit (i.e., on k-bit inputs, G returns a k + 1-bit output) then we can construct a secure
encryption scheme in which the parties share £ — 1 bits but can encrypt messages of length
k.

While this is good, it would be even better if we could improve the efficiency and
construct encryption schemes where we save more than just a single bit. To do so, it seems
that what we need is a PRG that stretches its input by more than just a single bit (the
encryption scheme will then use this PRG exactly as it was used in the last lecture). So the
question becomes: can we take a PRG that stretches its input by a single bit, and use it to
build a PRG that stretches its input even more?

In class, a number of suggestions were proposed for constructing a PRG H that stretches
its input by two bits (here, G : {0,1}* — {0,1}* is a PRG that stretches its input by one
bit):

1. H(z) = G(G(=))
2. H(z) = G(z o 1) (where o denotes concatenation).
3. H(z10x9) = G(z1) o G(z2) (where |z1| = |z2| = 1/2|z1 0 x9|)

(Note that in each case H stretches its input by two bits.) In fact, the second proposal
above does not work: a proof of security does not go through because the input to G is no
longer random (the last bit is fixed) and the security of a PRG depends on its seed being
random. Even more so, it is possible to give an ezplicit PRG G such that H is demonstrably
insecure as a PRG (i.e., even though G is a PRG, we can give an explicit algorithm A which
“breaks” H). It is a nice challenge (and might pop up as a test question) to show this.
The other two proposals do yield an H which is a PRG. You are asked to analyze the
third proposal on the homework (grad students only). We analyze the first proposal now.

Theorem 1 Let G : {0,1}* — {0,1}* be a PRG that stretches its input by one bit and
define H(z) = G(G(z)). Then H is a PRG that stretches its input by two bits.

Proof The proof follows a standard form (that you should get used to):

1. Assume (toward a contradiction) that H is not a PRG.

2. This means that there exists a PPT algorithm A that “breaks” H; i.e.,
Prlz « {0, 1}%y = H(x) : Aly) = 1] - Prly « {0,112 : A(y) = 1)| = (), (1)

and d(-) is not negligible.

3. We use A to construct a PPT algorithm A’ that “breaks” G. This will be a contradic-

tion, since G is a PRG. Thus, our original assumption in step 1 must be wrong, and
in fact H is a PRG.

We now give the details.

Construct algorithm A’ (which gets input z and must decide whether z is pseudorandom
[i.e., an output of G] or random) as follows: A'(z) computes y = G(z) and runs A(y). If A
outputs 1 (which may be viewed as a guess by A that y is pseudorandom [i.e., an output
of HJ), then A’ guesses that z is pseudorandom. If A outputs 0, then A’ guesses that z is
random. We let a guess of “pseudorandom” correspond to an output of 1 and a guess of
“random” correspond to an output of 0.

Let’s analyze the success of A’ in “breaking” G. We are interested in the following:

Prz < {0,1}%;2 = G(z) : A'(2) = 1] — Pr[z « {0,1}F1: A'(2) = 1]].

Let P & Prz « {0,1};2 = G(z) : A'(z) = 1] and let P, & Pr[z {0,1}5+1 : A'(z) = 1],
We can re-write Py, using the definition of algorithm A’, as follows:

P =Prlz + {0,1}*; 2 = G(z);y = G(2) : A(y) = 1]

(this is true because A’ outputs 1 exactly when A does). Now, the experiment “z <
{0,1}*: 2 = G(z);y = G(2)” is exactly the experiment “z + {0,1}¥;y = H(x)”; giving:

Py =Prlz < {0,1}*;y = H(x) : A(y) = 1].

This is one of the terms in (1) so we must be making progress!
Let’s look at P,. Using the definition of algorithm A gives:

Py =Pr[z + {0,1}f Ly = G(2) : A(y) = 1].

Hmm. .. this is not quite what we need because this expression does not correspond directly
to one of the terms in (1). Let’s see how to get around this. The term to which we need to
relate P, is Pr[y < {0,1}¥2: A(y) = 1]. Consider the difference between these terms:

[P = Prly « {0,112 : A(y) = 1]

Pr[z < {0, 1}k+1;y = G(z) : A(y) = 1] — Pr[y + {0, l}lH'2 s Ay) =1]1.

But we know what this is! This is the success probability of A in “breaking” G. And since
G is a PRG, this difference is negligible; call it e(k).

Recall we are interested in the difference |P; — P|. We have:

|P1 — Py
Pr[z « {0, 1}k;y = H(z) : A(y) = 1] — Pr[z < {0, 1}k+1;y =G(z): A(y) = 1]‘

Pr(z < {0,1}*;y = H(z) : A(y) = 1] — Prly « {0,1}¥"2 : A(y) = 1]

+ Prly {0,112 A(y) = 1] = Prfz {0,1}*" 5y = G(2) : Aly) = 1]]

Y

Pr[z « {0, 1}k;y = H(z) : A(y) = 1] — Pr[y « {0, 1}’“"’2 cAy) = 1]‘

Pry + {0, 1}’“"’2 : A(y) = 1] — Pr[z « {0, 1}k+1;y =G(z): A(y) = 1]‘
= (k) —e(k),

Thus, A" “breaks” G with probability 6(k) — e(k). If §(-) is not negligible, then (since €(-)
is negligible) neither is d(-) — €(-). In other words, if A “breaks” H with non-negligible
probability, then A’ “breaks” G with non-negligible probability, a contradiction. |

