University of Maryland
CMSC456 — Introduction to Cryptography
Professor Jonathan Katz

Lecture 13

1 Completing the Proof for the PRG Construction

Recall the PRG construction beginning with any one-way permutation f with hard-core bit
h: we define G(z) = f(z) o h(z). We complete the proof in lecture today; see the lecture
notes for Lecture 12 for the full proof.

2 Increasing the Expansion

In the previous lecture we discussed how to convert a PRG that expands its input by a single
bit to a PRG that expans its input by a larger amount. For completeness, we state the result
of this transformation — applied to our particular construction — here. Recall that the
idea is to form H(z) = G(---G(z)---), where G can be iterated as many times as desired.
Also, we stated that it is not necessary to apply G to the entire string at each intermediate
stage; instead, we can apply G to only the first, say, k bits of every intermediate string.
Applying this methodology to our construction for G, above, gives:

H(z) = () o h(f " (2)) o A(f*(2)) 0 -+~ 0 h(f (2)) o h(2),

where H is now a PRG that increases its input by ¢ bits.

3 PRGs and One-Way Functions

We have discussed in class the construction of a PRG from a one-way permutation, showing
that PRGs exist if one-way permutations exist. Actually, we can state a more general result.

Theorem 1 PRGs exist if and only if one-way functions ezxist.

One direction of the theorem is easy (I would expect you to be able to show, on an exam,
how the existence of a PRG implies the existence of a one-way function). Showing that a
one-way permutation implies a PRG follows the outline of what we showed in class, although
the construction required a difficult theorem by Goldreich and Levin about the existence of
hard-core bits. Showing that a one-way function suffices to construct a PRG is much more
difficult, and we do not discuss it here.

4 Private-Key Encryption, Revisited

PRGs solve completely the problem of private-key encryption when only a single message
1s encrypted; even then, the scheme we gave is secure only against a ciphertext only attack.



Since encryption uses the PRG to generate a string which is used as in the one-time pad
scheme, the scheme is insecure if it is used more than once: if C; = M; & G(sk) and
Cy = My & G(sk) are two ciphertexts that are intercepted by an adversary, the adversary
learns that My & My = C; @ Cs. And, of course, the scheme is completely insecure against
a known plaintext attack: if the adversary knows that C) is an encryption of M, the
adversary learns G(sk) (note that the adversary does not learn sk; but this is not needed
to break the scheme!) and can then decrypt any subsequent ciphertexts that are sent. In
practice, we would like users to be able to encrypt multiple messages; since these messages
might be known (or even chosen!) by an adversary, we would also like an encryption scheme
that is secure against chosen plaintext attacks.

Toward this goal, we are going to eventually have to rigorously define a notion of secu-
rity against chosen plaintext attack (it turns out that this implies security when multiple
messages are encrypted). If we remember our definition of (computational) security against
ciphertext-only attacks, we had: for all PPT adversaries A and all messages my,mo, the
quantity

Pr[sk « {0,1}%;C1 = Eg.(m1) : A(Cy) = 1] — Pr[sk < {0,1}%: Cy = Egx(ma) : A(Cy) = 1]

should be negligible. It seems kind of messy to modify this definition to handle chosen
plaintext attacks. So, what we first need to do is to modify this definition so that it has a
form more convenient to work with and to extend.

To do this, we define the notion of an oracle. An oracle is something that an adversary
interacts with; when the adversary sends some input (a query) to the oracle, the oracle
replies with some output (an answer, or response). The oracle is a “black-box” as far
as the adversary is concerned: the adversary does not see how the outputs of the oracle
are produced, and cannot tamper in any way with the functioning of the oracle. The
adversary’s view of this oracle is restricted to just whatever queries the adversary asks and
the corresponding answers it receives. (Note that we frequently do not need to actually
implement the oracle; it is simply an abstraction that we use in our definitions.)

Oracles can have any functionality one likes — that’s part of what makes them so
useful! The oracle we will be interested in for now is a left-or-right encryption oracle
denoted LRy 4 (-, ), whose exact specification depends on the encryption scheme of interest.
The oracle is indexed by a bit b and a key sk. The oracle takes two inputs mg,m; and
returns the output Eg;(mp); if the encryption scheme is randomized, then oracle chooses
new random bits each time it responds to an input query. The name “left-or-right” comes
from the fact that if b = 0 then the oracle always returns an encryption of the left message,
and if b = 1 then the oracle always returns an encryption of the right message.

Our first notion of security (which we formalize rigorously in a moment) considers the
following game based on any encryption scheme: a random key sk and a random bit b
are chosen. This defines oracle LR, 4 (:,-) (the encryption scheme is implicit here). The
adversary can now submit a single query (mg,m1) to this oracle, which returns answer
Esk(myp). Given this, the adversary now tries to predict the value of b that was used by
the oracle. We say that the encryption scheme is secure if the adversary’s probability of
correctly guessing b is not better than 1/2 by more than a negligible quantity.

More formally, given any encryption scheme Il = (£, D) (secret keys are assumed to be
chosen uniformly at random from {0, 1}¥) and any adversary A, define the success probability



of A in attacking II as:
Succann(k) & Prlsk « {0,1}F;b + {0,1} : ARear () (1k) = p],

where the adversary is allowed to query the LR oracle only once. Again, this is just the
probability that the adversary correctly guesses b. (Note the notation here: ARk ()
denotes an adversary given oracle access to LRy 4x(-,-).) Finally, we say the scheme is secure
if the following is negligible:

|Succa (k) —1/2].

You should convince yourself that this definition is exactly equivalent to our old definition
of computational security.

4.1 Extending the Definition

A nice feature of this new definition is that is easily extends to model security against chosen
plaintext attacks. In the definition thus far, we restricted the adversary to making only a
single query to the LR oracle; this was meant to model ciphertext only attacks. But we
can strengthen the definition by allowing the adversary to query the oracle polynomially-
many times (i.e., as many times as the polynomially-bounded adversary likes). In fact, for
completeness we present this definition in its entirety, and call the new notion security in
the sense of indistinguishability (and call a scheme satisfying the notion indistinguishable).

Definition 1 An encryption scheme I1 = (£,D) is secure in the sense of left-or-right in-
distinguishability (i.e., secure against chosen plaintext attacks) if, for all PPT adversaries
A the following is negligible:

Prsk < {0,1}%;b « {0,1} : AResr()(1F) = p] — 1/2] .

(We no longer restrict the number of times the adversary may query LR; of course, since A
is a PPT algorithm it can query LR at most polynomially-many times.)

You should convince yourself that this definition, in particular, implies security even when
multiple messages are encrypted, and also implies security against chosen plaintext attacks
and (of course) known plaintext attacks.

You should also be able to see that no deterministic (stateless) encryption scheme can
satisfy this definition (why?). So our next challenge will be to consider randomized en-
cryption schemes. It also seems that PRGs are not quite enough to obtain an encryption
scheme satisfying this definition; in the next lecture we will introduce some more powerful
machinery that will enable a solution.



