University of Maryland
CMSC456 — Introduction to Cryptography
Professor Jonathan Katz

Lecture 16

1 Private-Key Encryption Using PRFs

PRFs and PRPs alone are not enough to immediately give secure encryption schemes; some
care is needed. For example, consider the “natural” encryption scheme in which P is a PRP
(with efficient inversion) and the sender and receiver share a key s in advance. To encrypt
message m, the sender computes C = P;(m) and sends this to the receiver. To decrypt,
the receiver computes m = P, }(C) (since P is a permutation, decryption always succeeds).
However, while this is secure against ciphertext only attacks (when a single message is
encrypted) it does not satisfy our notion of indistinguishability (in fact, it cannot since this
encryption scheme is deterministic).

1.1 An Indistinguishable Encryption Scheme

Here is one possible solution: Let F : {0,1}¥ x {0,1}™ — {0,1}". We construct an
encryption scheme for messages of length n where the shared key is of length £ (note that
even if £ > n we are constructing a scheme that has stronger security properties than the
one-time pad). The sender and receiver share a random key s € {0, 1}*. To encrypt message
M, the sender chooses a random r € {0,1}™, computes C = M & Fy(r), and sends (r,C).
To decrypt ciphertext (r, C'), the receiver computes M = C & F;(r) (note that we need not
be able to invert F' — in fact, F; need not even be a permutation).

Note the parallel with the encryption scheme from the previous lecture in which the

shared key s was viewed as s1,...,sy. Letting s; def fs(i), it is as if the sender and receiver
are sharing 2™ secrets si,...,som (since there are 2™ different possible values for r) and
using them in a completely analogous manner. However, they each only store k bits and
they can each efficiently compute s; for any i — these properties are exactly what PRFs
allow. One difference with the scheme from the previous lecture was that, previously all
the keys were completely random whereas now they are all generated using a PRF. We will
prove below that this does not ruin the security of the scheme.

Theorem 1 If F is a PRF, then the scheme above is indistinguishable (i.e., secure against
an adversary who can query the LR oracle any polynomial number of times). In particular,
if Fis a (t,e)-PRF then for all adversaries A running in time t and making at most £
queries to the LR oracle we have:

2

Prls < {0,1}%:b « {0,1} : A"ResC) = p] —1/2| < e+ O(f—m).

(Note that if e(-) were a negligible function, and £(-) were at most polynomial in k, and
m = O(k) then e(k) + O(f—i) is negligible.)

Note that since the adversary is limited to running in time at most ¢, we must have ¢ < .

Proof Assume that F is a (t,€)-PRF, and assume we have an adversary A attacking
the encryption scheme above in the sense of left-or-right indistinguishability. We construct
an adversary B which tries to distinguish F' from a random function. Recall that B is
given oracle access to some function which is either a completely random function or else a
function F; where s is chosen at random. B runs as follows:
BFO)
Choose random b € {0,1}
Run A, simulating the LR oracle calls of A as follows:
On input (mg,my) from A, pick random r € {0,1}"
Query oracle F' on input 7 to get output y
Return the answer y @ my to A
When A outputs its guess b’ for b:
if ¥ = b then guess “pseudorandom” (i.e., return 1)
if o’ # b then guess “random (i.e., return 0)

Note that the running time of B is essentially ¢, which is the running time of A. Since F' is
a (t,€)-PRF, we know that:

Pr[s < {0,1}* : BF*() = 1] — Pr[F « Rand™>" : BF() = 1]| < e. (1)

When does B output 17 Exactly when A outputs the correct guess for b. Also note that
when B’s oracle is pseudorandom, then B provides A with an exact simulation of the real
LR oracle. These observations imply:

Prls « {0,1} : BF() = 1] = Pr[s « {0,1}*;b « {0,1} : ALResC) —), (2)

Let Succy & Pr[s < {0,1}%;b < {0,1} : A'Re.s(~) = p] denote the success of adversary A
(in the real experiment). Equations (1) and (2) show that

|Succy — 1/2] < |Pr[F < Rand™>™; b« {0,1} : A'Rer() —p) —1/2| + ¢

(where the notation LRy (-, -) refers to an imaginary instantiation of the encryption scheme
in which a completely random F' is shared instead of a seed for a PRF).

Define event Coll as follows: we say Coll occurs (a collision occurs) if any of the r values
used throughout the experiment are the same. Conditioning on this event gives:

Pr[F + Rand™ ™ b « {0,1} : AtRer () —p) —1/2

Pr[F < Rand™ " b + {0,1} : AYRe.r() = p | Coll] Pr[Coll]

+ Pr[F + Rand™™";b « {0,1} : A*Re.r() — p | Coll] Pr[Coll] — 1/2|.

Now, the key point is the following: if a collision never occurs, then (because we assume
the sender/receiver share a completely random function) the adversary A has absolutely no

information about bit b (and its probability of guessing b correctly is exactly 1/2). Therefore:

Pr[F < Rand™";b < {0,1} : AtRer(:) =] —1 /2‘

- ‘(Pr[F ¢ Rand™ ;b « {0,1} : ASRar() = b | Coll] - 1/2) -Pr[CoII]‘
< 1/2- Pr[Coll

(where we also use the fact that Pr[Coll] = 1 — Pr[Coll]).

Finally, we need to bound Pr[Coll]. This is the probability that I get a match if T pick
¢ items at random from a set of size {0,1}™. This problem is the well-known “birthday
problem” (see the notes on probability) from which it is known that Pr[Coll] = O(£2/2™).

Plugging everything in gives the final result:

|Succq — 1/2]
< 1/2-Pr[Coll] + €
V2

