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1 Modes of Encryption

We mentioned last time the concept of modes of encryption which are used to encrypt
arbitrary-length messages, and gave some examples. One thing we did not stress in the last
class was the precise definition of left-or-right indistinguishability where modes of encryption
are concerned. As usual, we allow the adversary to access the left-or-right oracle LR as many
times as it likes. However, we must restrict the adversary as follows: when the adversary
submits a query (Mj, M;) to the LR oracle we require that |My| = |Mi|. (In any of the
encryption schemes given in the previous lecture, it should be clear that it is easy to break
the encryption scheme if this restriction is removed; in fact, it is impossible to construct
any encryption scheme which is secure when the adversary is allowed to submit messages
of different lengths.) We stress that we impose no restriction on the lengths of messages in
different queries; thus, the first query (Mo, M1) and the second query (M}, M{) can have
|Mo| # [ M-

In all of what follows we assume a PRF F : {0,1}* x {0,1}™ — {0,1}™ and the message
M to be encrypted is parsed into a sequence of m-bit blocks My, ..., M,.

Cipher-block chaining (CBC) mode.

Es(M)
Co < {0,1}™
Fori=1to#¢

Ci = Fs(Ci1 ® M;)
Output Cy,C1,...,Cy

D,(Co, -, Ci)
Fori=1to/
M; =C;_1 & F;7HG)
Output My,..., M,

The random block Cj is called an initialization vector, and is chosen randomly each time a
new message is encrypted. Since this is a randomized encryption scheme, it might potentially
be secure in the sense of indistinguishability. In fact, this is a secure mode of encryption;
see reference [1] in the previous lecture notes for details.

The ciphertext here is longer than the message by an additive factor of m bits (as opposed
to the multiplicative factor we had in our initial mode of encryption). This is essentially
optimal (note that a scheme with no ciphertext expansion would be deterministic and hence
insecure). In the CBC mode, decryption needs to compute F, !; thus, F must be a keyed
permutation, and it must be efficient to invert (given a particular key s).



Cipher feedback (CFB) mode.

Es(M)
C"0 — {07 1}m
Fori=1to/

Ci=M;® Fs(Ci_l)
Output C(),Cl,...,Cg

Ds(Cy,...,Cy)
Fori=1to /¢
M; = C; @ Fs(Ci—1)
Output My, ..., M,

Again we have a random initialization vector chosen each time a new message is encrypted.
Like CBC mode, this scheme is secure and the ciphertext is longer than the message by
only m bits. An advantage of this scheme over CBC mode is that F' does not need to be a
keyed permutation (in fact, we never need to invert F' in order to decrypt). This is useful
in some contexts for reasons of efficiency and more importantly allows us to use PRFs F
which are not permutations.

2 Message Authentication

Thus far in this class, the only cryptographic application we have considered is encryption;
i.e., keeping the contents of a transmitted message (or messages) hidden from an eavesdrop-
ping adversary. For this application — at least thus far — the adversary has been passive
(even though our definition of security allowed an adversary to mount chosen plaintext
attacks and interact repeatedly with a LR oracle, this was meant to model potential eaves-
dropping of multiple ciphertexts). But there are other important applications which seek to
protect against an active adversary who tries to interfere with the communication between
the sender and receiver. (Again, in the case of encryption the adversary was assumed only
to eavesdrop, but never to interfere in any other way with transmissions.) This brings us
to the important application of message authentication.

Informally, a message authentication scheme (or MAC — message authentication code)
allows a receiver to be convinced that the message(s) he receives are actually sent by the
claimed sender. In other words, imagine a sender S and a receiver R who wish to com-
municate in such a way that R is guaranteed that messages he receives are unaltered, and
were actually sent by S. As a real world example, imagine a general who wants the ability
to send commands to her soldiers in such a way that the soldiers can be convinced that the
orders originated from her. Or you can imagine a bank which needs to ensure that messages
it receives from clients were actually issued by those clients. MACs allow them to do this.

It is important to recognize that encryption is completely orthogonal to message au-
thentication. You can — and often do — have one without the other. It should also be
clear that encryption generally provides no message authentication whatsoever. As an ex-
ample, consider the one-time pad which provides perfect secrecy when a single message is
encrypted. But even when § and R share a key s, an adversary can send any “message”
C to the receiver and this will be interpreted by R as a real message C' @ s that was sent
by S. Even worse, if the sender encrypts message M and sends it (i.e., sends C = M & s),



an adversary can flip the last bit of C — giving C’ — and then the receiver will obtain a
message M' which differs from M in the final bit. Imagine the damage this could cause if
C were an encryption of, say, the amount of a bank withdrawal!

Before continuing, we give a formal definition of our goal (always an important thing to
do). A message authentication code consists of two algorithms: the MAC algorithm which
takes a secret key s and a message M and returns a “tag” tag; and the verification algorithm
Vrfy which takes a key s, a message M, and a “tag” tag and returns 1 if the tag is valid and
0 otherwise. The scheme is used as follows: the sender and receiver secretly share a random
key s. When the sender wishes to send message M to the receiver, the sender computes
tag < MAC4(M) and sends (M,tag). When the receiver gets transmission (M’ tag'), the
receiver will not accept the message (i.e., will not be convinced that the message was sent
by the sender) unless Vrfy,(M’,tag') = 1. Of course, we require that the scheme be correct,
so that if MAC;(M) outputs tag, then Vrfy (M, tag) should always output 1.

With this in mind, we can define an appropriate notion of security. Informally, an
adversary should be unable to “forge” a valid tag on any message that was not sent by S.
That is, an adversary should be unable to “fool” the receiver into accepting any message
M which did not come from §. Optimally, we would like to prevent the adversary from
“fooling” the receiver even after the adversary sees multiple tags computed on many different
messages. In fact, we will require something even stronger: that the adversary be unable
to “fool” the receive, even after seeing tags for multiple messages of the adversary’s choice.

A little more formally, we will define an oracle MAC,(-) which takes as input a message
M and returns as output the tag for that message, computed with respect to key s (one
can think of this oracle as representing the sender). We will allow an adversary to interact
with this oracle as many times as it likes, submitting multiple messages of its choice and
receiving in return the correspoding tags. We say the adversary “breaks” the scheme if
it can forge a valid tag for a message M that it never submitted to its oracle; i.e., if the
adversary can output a pair (M, tag) (where M was never submitted to MAG,(-)) such that
Vrfy,(M,tag) = 1. We say the scheme is secure if no adversary can “break” the scheme
with high probability. The formal definition follows.

Definition 1 A message authentication scheme (MAC,Vrfy) is (t,¢€)-secure if, for all ad-
versaries A running in time at most t, we have:

Pr[s « {0,1}*; (M, tag) < AMACO) . vify (M, tag) = 1AM ¢ M] < ¢,
where M is the set of messages that A submitted to its oracle MAC,(+).

Just to give some practice with the definition, we first examine an insecure scheme: the
one-time pad example from above. In this case, we may view the function MAC,(M) as
returning M @ s; algorithm Vrfy, (M, tag) returns 1 if and only if M @ tag = s. Of course,
this scheme is not secure, and an adversary can forge a valid tag on any message M of its
choice as follows: the adversary first submits M’ (where M’ # M) to its oracle, and receives
in return tag. The adversary then outputs its forgery (M,tag ® M @ M'). To see that this
fools the receiver, note that

(tagOMOM)OM =tag® M' = s,

where this is true since tag was a valid tag for message M'.



