University of Maryland
CMSC456 — Introduction to Cryptography
Professor Jonathan Katz

Lecture 19

1 A Secure Message Authentication Code

We saw last time the definition of security for a message authentication scheme: that an
adversary should be unable to forge a valid tag on any message that was not explicitly
validated by the legitimate sender. More formally, the adversary has access to an oracle
MACg (), and can request tags for multiple messages of his choice. The adversary “succeeds”
if it outputs a pair (M,tag) for which Vrfy (M, tag) = 1 and furthermore M was not
submitted to the MAC(-) oracle (if the adversary succeeds in this way, we say that it
has forged a valid tag on message M). A message authentication code is (¢, €)-secure if
any adversary running in time t has success probability less than e (the complete, formal
definition is in the previous lecture notes).

Note that the above definition says nothing about “replay attacks” whereby an adversary
re-sends a message that was previously sent by the legitimate sender. In all the examples
we have discussed so far, the Vrfy algorithm was stateless so that if a pair (M, tag) is
ever accepted by the receiver, then it will be accepted later on if the adversary replays it.
Although preventing replay attacks of this sort is important, the best way to prevent such
attacks is often application-specific (what is the sender supposed to do if he legitimately
wants to repeat a previous message?) and so we do not discuss it much here. For the
record, though, it is not all that difficult to prevent these attacks in practice. For example,
if there is a global clock the sender can authenticate the concatenation of a message and a
timestamp; if the adversary replays the message at some later time it will be evident that
this is a replay because the timestamp will be out of date. This neglects a lot of details
(what of the clocks of the sender and receiver differ by a few seconds?) but gives a hint of
the way replay attacks can be handled.

We actually have all the tools necessary to construct a secure message authentication
code for short messages. Let F : {0,1}* x {0,1}™ — {0,1}" be a (t,¢)-secure PRF. We
can authenticate m-bit messages as follows: the sender and receiver share a secret key
sk € {0,1}%. To authenticate a message M € {0,1}™, the sender computes tag = Fy;(M).
When the receiver receives (M, tag), he outputs 1 iff Fyi(M) = tag. It should be clear, on
an intuitive level, that this is a secure MAC (when n is sufficiently long); for completeness,
we give a proof here.

Theorem 1 The MAC outlined above is (t,e + 27™)-secure.

Proof Let A be an adversary attacking the scheme; i.e., A attempts to forge a valid tag
on a new message. Recall that A interacts with the scheme by requesting a bunch of tags to
be computed on various message, and at some point outputs an attempted forgery (M, tag).

We show how to convert any such adversary into an adversary B that tries to distinguish
F' from a truly random function.

B is given access to a function oracle, where this function is either a completely random
function or else an instance of Fy(-) for randomly-chosen sk. B will simulate an instance
of the MAC for A in the following way: when A requests authentication of a message M’, B
submits M’ to its function oracle and receives back some value tag’ which it then returns
to A. Finally, A outputs (M, tag) and is done. B checks whether A ever requested that
message M be authenticated; if so, B guesses “random function” (i.e., outputs 0) and stops.
Otherwise, B submits M to its oracle and receives back some value tag*. If tag = tag",
then B guesses “pseudorandom function” (i.e., outputs 1); otherwise, B guesses “random
function” (i.e., outputs 0).

Let us analyze Pr[sk « {0,1}* : BFsx() = 1]. In this case, B is given access to a
pseudorandom function, and the simulation for A is exactly equivalent to an execution of
A attacking the actual MAC. So:

Pr[sk « {0,1}F : BFs#() =1
= Prfsk « {0,1}*; (M, tag) « AMACk() . ey, (M, tag) = 1AM ¢ M],

the success probability of A.

On the other hand, consider Pr[F < Rand™™" : BFO) = 1]. This is exactly the
probability that A can forge a valid tag on a previously-unqueried message, when the
MAC is instantiated with a completely random function. A little thought should show that
since F' is competely random, A cannot possible predict the correct tag on a non-queried
message with probability better than 27" (since n is the output length of the function). So,
Pr[F « Rand™?": BF() = 1] <277

Since we know that F' is a (¢, €)-PRF, we have:

Prlsk + {0,1}% : BF+() = 1] — Pr[F « Rand™™" : B¥0) = 1]| < e.
This immediately implies that
Pr[sk « {0,1}%; (M, tag) « AMACHO) . vrfy , (M tag) = 1AM ¢ M] < e+27",

which proves the theorem. |

2 MACs for Arbitrary-Length Messages

The scheme of the previous section was secure, but only allowed authentication of short,
fixed-length messages. As in the case of encryption, we would like to extend this to allow
authentication of longer messages. It is much more difficult to do so here. To see this,
recall that in the case of encryption we could always use the scheme in which we simply
break the message into blocks and encrypt each block separately (using an indistinguishable
encryption scheme) — this approach may not be the most efficient, but at least it will be
secure! But this does not work in the case of authentication. Consider extending the
scheme of the previous section in this way. So when an attacker requests an authentication

of M = M o M the sender computes and returns tag = tag; o tagy, where tag; = Fi (M)
and tagy, = Fi,(My). But it is easy to forge a new tag in this scheme: note that tag, o tag;
is a valid tag on M' = My o My # M!

Hmm. . . this scheme was no good since it allowed an adversary to “reshuffle” message
blocks. So maybe we can enforce some ordering on these blocks'? For example, we might
compute MACg,(My 0 Ms) as follows: Fyy({(1)oM;)oFy((2) M2). (Where (i) represents some
fixed-length encoding of the integer i, and M;, My are of the appropriate lengths.) This
certainly prevents the re-ordering attack of the previous scheme. But is it secure? Definitely
not. An adversary who obtains the tag tag; o tag, for message M; o M can immediately
forge a valid tag for message M; (it should be obvious how). It should also be clear that
an adversary who obtains multiple tags on different messages can “piece together” different
parts of these messages to create a valid tag on some new message.

It seems that a basic flaw in these schemes is that the tags are computed and transmitted
in a blockwise fashion, which gives the adversary too much to play with. Maybe a variation
on the last scheme will work. Specifically, instead of outputting the concatenation of tag;
and tag,, why not output their xor? In this case, we have MACz (M1 o My) = Fg((1) o
M) @ Fg((2) o M) (and verification is performed in the obvious way). It certainly seems
harder to attack this scheme than either of our previous schemes.

But of course we should never be satisfied with a construction that “looks secure” (it
seems that adversaries are always more clever than designers...). We prefer a scheme that
is provably secure! And for good reason: this last scheme is in fact not secure, via the
following attack. Say an adversary obtains tag tag; for message M, tag tag, for message
M o My, and tag tags for message M|. Then the adversary has learned the following:

tag;, = Fsk(<1> OMl)
tagy, = Fsk(<1> OMI) EBFS]C(<2> OM2)
tags = Fu((1) o M)).

Since tag; @ tagy = Fy;((2) o My), the adversary can forge the valid tag tag, & tag, & tags
on the (new) message M| o My, and the scheme is not secure.

This brings us to a scheme (the XOR-MAC) for arbitrary-length messages which is
provably secure. It is very close to this last scheme, except that it is randomized. As above,
let F:{0,1}*¥ x {0,1}™ — {0,1}" be a (t,¢)-PRF. The notation (i) will denote the m/2-
bit representation of integer i in binary (we will be limited to messages at most 2/2 — 1
blocks long, not a serious restriction in practice). To authenticate a messgae M, parse M
as My o --- o My, where |M;| = m/2. Choose a random value r € {0,1}"! and compute:

tag' = Fop(007) ® Fo((1) o M1) @ -+ @ Fipe((£) 0 Mpy).

The complete tag is tag = (r,tag’). Specifying the verification algorithm is left as an exercise
for the reader. For a detailed description of the XOR-MAC and a proof of security, see [1].

!The discussion in the next few paragraphs is informal, until we get to a scheme which is actually secure.

References

[1] M. Bellare, R. Guerin, and P. Rogaway. XOR MACs: New Methods for Mes-
sage Authentication Using Finite Pseudorandom Functions. Crypto ’95. Available at
http://www-cse.ucsd.edu/users/mihir/papers/xormacs.html.

