University of Maryland
CMSC456 — Introduction to Cryptography
Professor Jonathan Katz

Lecture 23

1 Collision-Resistant Hash Functions

We continue with our discussion from last time on the Hash-and-MAC paradigm for au-
thentication of arbitrarily-long messages. Recall the definition of a collision-resistant hash
function: Let H : {0,1}* — {0,1}" be a function taking arbitrary-length inputs and re-
turning n-bit output. A pair (z,z') is a collision in H if H(z) = H(z') but z # z'. We
say that H is (¢, €)-collision resistant if, for all algorithms A running in time at most ¢, the
probability that A will output a collision is less than e.

We noted last time that collision-resistant hash functions cannot be constructed from
arbitrary one-way functions or permutations. However, they can be constructed based on
specific assumptions including the hardness of factoring, the RSA problem, or the hardness
of computing discrete logarithms. Also, there are some practical constructions of functions
which seem to be collision resistant; best-known among these are SHA-1 and MD5.

It is interesting to examine the minimum output length n necessary for a hash function to
be (t, €)-collision resistant. The following analysis will be informal, but can easily be made
more exact. For any hash function H : {0,1}* — {0,1}" we can consider the following
algorithm running in time roughly equal to ¢:

Pick random z and compute y = H(x)
For:=1tot:

Pick random z; different from x

If y = H(x;) then output (z,z;) and stop

Note that if this algorithm outputs anything, then it outputs a collision. What is the
probability that this algorithm finds a collision? Well, if the output of H is spread roughly
uniformly in {0,1}", then picking a random z; and computing y; = H(z;) is roughly akin
to picking random y; € {0,1}". For a particular 7, then, the probability that y; = y is about
27" And therefore, roughly speaking, the probability that at least one of y1, ...,y is equal
to y is O(t/2™). What this means is that if we want H to be (¢,€)-collision resistant, we
must at least have t/2" < ¢, or 2" > t/e.

But in fact we can give an algorithm running in time ¢ which is much better at finding
collisions:

Pick distinct, random z1,...,x;
Compute y1 = H(z1),...,ys = H(zt)
If any of the y;’s are equal, output the corresponding z;’s

What is the probability of finding a collision now? If the output of H is again assumed to
be roughly uniform in {0, 1}", then picking random z; and computing y; = H(z;) is akin to
picking random y; € {0,1}". For fixed 7, j (with 4 # j), the probability that y; = y; is then



roughly 27". Since there are (;) = O(t?) pairs 1 < 4,5 < t, the means that the probability
that y; = y; for at least one pair is roughly O(t?/2"). (This is again an application of the
“birthday problem” that we have encountered before — we are picking ¢ random elements
from {0,1}" and want to find the probability that at least two of these are equal.) This
means that if we want H to be (,€)-collision resistant, we must at least have #2/2" < ¢, or
2" > 12 /e.

Since t & 2% is currently considered feasible, this explain why the hash functions MD5
has 128-bit output and SHA-1 has 160-bit output. On the other hand, block ciphers can
be secure with much shorter key-sizes (to prevent exhaustive search in time ¢, we need the
key-length k to satisfy ¢t < 2 or k > logt — compare this to the case of hash functions
which need the output length n to satisfy 2 < 2" or n > 2logt). This explain why the
output length of a hash function is about twice the length of a typical key length for a block
cipher (at least for the case of DES and other ciphers constructed before a few years ago).

Finally, we stress that these values for n are a necessary, but not sufficient, requirement.
That is, it is certainly possible for a function to have “large” output length n > 128 and
yet still not be collision resistant.

2 Hash-and-MAC

Our motivation for introducing collision-resistant hash functions was to use them to achieve
message authentication for arbitrarily-long messages. Let (MAC,Vrfy) be a (¢, ¢€)-secure
message authentication code for n-bit messages, and let H : {0,1}* — {0,1}" be a
(t,€’)-collision resistant hash function. We can define a new message authentication code
(MAC', Vrfy') for arbitrary-length messages as follows: the sender and receiver share a key
s as in the original scheme. To authenticate a message M € {0,1}*, the sender computes
MAC,(M) = MACs;(H(M)). When the receiver gets a message/tag pair (M,tag), the re-
ceiver verifies the tag by computing Vrfy, (M, tag) = Vrfy,(H(M),tag). We stress that H is
part of the definition of the scheme, and is fixed and known to the adversary attacking the
scheme. (Only the key s is unknown to the adversary.)

Theorem 1 (MAC',Vrfy') is a (t,e+€')-secure message authentication scheme for arbitrary-
length messages.

Proof We sketch the proof here. Assume we have some adversary A attacking (MAC', Vrfy')
and running in time . We want to bound the success probability of this adversary (recall
that this is the probability that A successfully forges a valid message/tag pair on a new

message that was never explicitly authenticated by the sender). Letting M denote the
messages that A submits to its oracle MAC', we then want to bound:

Succ; & Prfs {0, 1}*; (M, tag) « AMACO) : Vrfy (M, tag) = 1A M ¢ M].

Let Collision denote the event that H(M) = H(M') for some M' € M. (Le., this denotes
the event that A was able to find a collision in H.) We then have:

Succy; = Pr[A succeeds A Collision] 4+ Pr[A succeeds A Collision]



(where Collision means that a collision does not occur).
We may now note the following:

1. When A succeeds and there is a collision, then we know that H(M) = H(M') for
some M' € M. Furthermore, M # M' since A cannot succeed if this is true (recall
that A can only succeed if M ¢ M) So, this means that A has found a collision in
H (note that event Collision as defined above was not exactly the same as finding a
collision in H — we need to additionally ensure that M and M’ are different). Since
H is (t, €')-collision resistant, we have Pr[4 succeeds A Collision] < €.

2. When A succeeds and there is not a collision, let M dof {HM)| M € M} (ie.,

this is the set of hashes of all elements in M). Since A succeeded, we know that
Vrfy!,(M, tag) = 1 and hence Vrfy,(H(M),tag) = 1. On the other hand, since Collision
did not occur we know that H(M) ¢ M. But then A has essentially forged a valid
message/tag pair in scheme (MAC, Vrfy) on a new message H(M). Since we are given

that (MAC, Vrfy) is (¢, €)-secure, this means that Pr[A succeeds A Collision] < e.

Putting everything together shows that Succy < € + €, proving the theorem. |

3 Perfect Message Authentication

Thus far, all our schemes have been secure against a computationally-bounded adversary
only, and our schemes only ensure that an adversary has a small (but non-zero) probability
of success. In the case of encryption we were able to define (and achieve) a notion of perfect
secrecy; can we do the same for message authentication?

What might a definition of perfect message authentication look like? Well, seemingly we
would require that a computationally-unbounded algorithm cannot possibly forge a valid
tag on a new message; that is: a message authentication code is perfectly secure if for all
algorithms A we have:

Prfs + {0,1}%; (M, tag) « AMACSO) . vy (M, tag) = 1A M ¢ M] = 0.

However, this definition is unachievable. For any message authentication scheme, an adver-
sary can always do the following: guess a random key s’ € {0, 1}* and output (M, MAC, (M))
(and ask no queries to the MAC oracle). Note that if the adversary guesses correctly (and
s’ = s) then the adversary succeeds; thus, the adversary’s probablity of success is at least
1/2* (and hence not 0).

As a side point, we note that this sort of attack (i.e., guessing the key) does not contradict
the fact that the one-time pad encryption scheme is perfectly secure. This is partly due
to our definition of perfect secrecy in the case of encryption, but is also due to the fact
that the goal of secrecy is fundamentally different from the goal of message authentication.
In the case of message authentication, guessing the key incorrectly does not diminish the
adversary’s total probability of success; i.e., the adversary succeeds with probability at least
1/2F regardless of what happens whenever it guesses the incorrect key. So:

Pr[Succ] = Pr[Succ A correct guess| + Pr[Succ A incorrect guess]

> Pr[Succ A correct guess] = 27,



On the other hand, in the case of encryption guessing the wrong key can hurt the adversary’s
total probability of success; i.e., if the adversary is trying to determine whether a ciphertext
C represents an encryption of message My, or M; in the one-time pad scheme, the adversary
essentially has to guess whether the key was so = C @ My or s; = C & M;. When it
guesses correctly, it correctly determines which message was encrypted. But when it guesses
incorrectly, it wrongly determines which message was encrypted. So:

Pr[Succ] —1/2 = Pr[Succ A correct guess| + Pr[Succ A incorrect guess] — 1/2
= 1/240-1/2=0.

(And the adversary would have been “better off” guessing randomly when it did not guess
the correct key — of course, it has no way of knowing when this has occured!)

We showed above that no message authentication scheme can prevent an adversary from
succeeding (without even making any queries to the MAC oracle!) with probability 27,
where k is the key-length. It is also true that no scheme can prevent an adversary from
succeeding with probability 27", where n is the length of the tag: consider an adversary
who guesses a random string r € {0,1}" and outputs as its forgery (M,r). Since we know
that M has at least one valid tag in {0,1}", the probability that r is a valid tag is at least
27", Thus, for any message authentication scheme with key length k and tag length n, an
adversary can always forge a valid message/tag pair on a new message with probability at
least max{27% 27"}

So, can we construct a message authentication scheme in which an unbounded adver-
sary’s success is limited to max{27%,27"}? In fact, we cannot achieve this if we allow
the adversary to interact with the MAC oracle (can you construct a [trivial] scheme which
achieves this level of security against an adversary who never interacts with the MAC or-
acle?). Of course, prohibiting the adversary from interacting with the MAC oracle makes
the problem no longer very interesting! What we will do instead is bound the number of
times the adversary can interact with the oracle and see what we can achieve then (this
is analogous to the case of perfect secrecy, which we can achieve only when we limit the
adversary to interacting a single time with the LR oracle).



