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1 Perfectly-Secure Message Authentication

We consider our goal — briefly introduced last time — more carefully now. Recall that we
want to construct MACs which are secure against an unbounded adversary. This will have the
advantage of achieving secure message authentication without any unproven assumptions;
note that the use PRFs (as we did in previous constructions) we need to assume that
some one-way function exists. We noted last time that full security against an unbounded
adversary is not really possible: for one thing, it is impossible to prevent an adversary from
succeeding with probability at least max{27%,27"}, where k is the key-length and n the
tag-length of the scheme. Furthermore, it becomes impractical to achieve security unless
we bound the number of queries the adversary can make to the MAC oracle. So, the best
we can hope is to achieve the following level of security:

Definition 1 A message authentication scheme is said to be e-secure after £ uses if, for
any adversary submitting at most £ messages to its MAC oracle, the probability that the
adversary can then output a valid tag on a new message is less than e.

An alternate way of phrasing this definition is to require the following: let s represent
a key for the message authentication scheme, and assume without loss of generality that
the scheme is deterministic. Let M = {my4,...,my} be a set of messages and let T =
{tagy,.-.,tag,} be the corresponding set of tags for these messages (i.e., tag; = MAC;(m1),
etc.). Then for all M and 7, and for any m ¢ M and any tag, we should have:

Pr[MACs(m) = tag | M,T| < e.

Do you see why this is equivalent to Definition 17
We will give constructions of schemes achieving this level of security. Before doing so,
however, we take a brief digression and discuss finite fields.

2 Finite Fields

The notion of a field extends the notion of a group, by considering sets for which two types
of operations are defined.

Definition 2 A field (F,+, x) is a set F with special elements 0 and 1, along with two
operations (+, X) defined on pairs of elements of F' such that the following conditions hold:

1. (F,+) is a commutative group, with identity 0.



The X operation is associative; for all a,b,c € F, a X (bx ¢) = (a X b) X c.
The x operation is commutative: for all a,b € F, a X b=b X a.
The element 1 is an identity for x; for alla € F, 1 xa=ax1=a.

The distributive law is satisfied; for all a,b,c € F, a x (b+¢) = (a x b) + (a x ¢).

S v o

All nonzero elements in F' have an inverse under X; for all a € F,a # 0, there exists
an element a=! € F such that a x a™! = 1.

For any field F', we denote by F* the set of invertible elements of F' (note that the usage
corresponds to our prior usage for Z};). In the case of a field, F* is simply all nonzero
elements.

Typical example of fields are the real numbers or the complex numbers. These are
both examples of infinite fields (i.e., fields with an infinite number of elements). Of interest
in cryptography are finite fields. As an example, note that Zs is a field under addition
and multiplication (modulo 5). We have already seen that Zj is a group under addition.
Furthermore, we can check that requirements 2-5 are satisfied (since they hold over the set
{1,...,5} considered as a subset of the integers). The non-trivial one to check is condition
6, but this can be verified on a case-by-case basis (i.e., the inverse of 2 is 3; 4 is its own
inverse). On the other hand, note that Zg is not a field. For example, 4 has no multiplicative
inverse (try to find one!).

In fact, we can state the following lemma showing the existence of many finite fields:

Lemma 1 Let p be a prime number. Then Zy is a field under addition and multiplication
modulo p.

The proof of this is simple. As above, it is clear that Z, is a commutative group under
addition, and that conditions 2-5 hold. That condition 6 holds is easy to show, using the fact
(discussed previously in class) that Zj, is a cyclic group under multiplication (for prime p).
Recall that this means there exists some generator g € Z for which Z3 = {¢°,¢*,...,¢" 7%}
(we may stop here, since g ! = 1 = ¢° and the cycle repeats). Consider any element
a € Z,. We know that we can write a as ¢g* for some z € {0,...,p — 2}. But then
g®gP~% 1 = gP~1 =1 and hence a~! = gP~*"!; since a was arbitrary this means that every
nonzero element has an inverse and we are done.

For completeness we note that other finite fields exist; however, we will not use these in
this class.

3 Constructing a Perfect MAC

Armed with the machinery of finite fields, we can now give a construction of a message
authentication scheme that is e-secure after 1 use. We will extend this below to give schemes
secure after ¢ uses, for arbitrary £.

Assume our message space is a finite field F' (of course, all we really need is to be able
to efficiently map messages — in a one-to-one manner — to elements of F'). The sender
and receiver share a key of the form a,b, where a and b are randomly chosen in F. The



authentication tag on a message m will be tag = am + b. (Note that it is easy for the
receiver to verify correctness of a given tag on a given message.)

Lemma 2 The message authentication scheme above is 1/|F|-secure after 1 use.

Proof Using the reformulation of Definition 1, we show that for any m and any tag t,

and for any m' # m and any tag t', we have Pr[MAC,;(m') = t' | MAC, p(m) = t] < 1/|F]|.

Note that:

Pr[MAC, 4(m') =t/ A MAC,3(m) = 1]
Pr[MAC,4(m) = ]

PrMAC,(m') =t | MAG,5(m) = t] =

Let us first count the number of possible keys. Since a,b € F, the total number of keys
is |F|2. Of these keys, we claim that exactly F satisfy MAC,,(m) = ¢. Indeed, this is
equivalent to requiring that am +b = t, or b =t — am. So, plugging in any value for a
yields a possible solution for b; since there are |F| choices for a, this means that there are
|F'| solutions in total. We have just shown that Pr[MAC,;(m) = t] = |F|/|F|?> = 1/|F| (note
that this holds for arbitrary m,t).

We claim further that for any m' # m and any ¢, exactly one key satisfies MAC, 3(m') =
t' AMAG, p(m) = t. Note that this is equivalent to requiring that am+b = ¢ and am'+b = t'.
Solving these equations gives a = (t—#')(m—m')~! and b = t—ma (note it is crucial here that
m' # m — otherwise, (m—m’) does not have an inverse!). Thus there is exactly one solution
to this equation, and we have shown that Pr[MAC, p(m') =t/ A MAC, 4(m) = t] = 1/|F|%.

Plugging in to the equation above shows that Pr[MAC,;(m') = t' | MAC,s(m) = t] =
1/|F|, and we are done. [ |

So, given a particular message space with M messages (representing all possible messages
we might send), we can efficiently authenticate these as follows: Pick a prime p such that
p > M. This will define a field Z, in which we can embed our message space.! The scheme
above then achieves 1/p-security after one use.

This is all well and good...but what if our message space is small? Does this mean that
we are then restricted to achieving security 1/p ~ 1/2M (which might not be acceptable if
M is too small)??? Not at all. We can choose p as large as we like (subject to p > M) and
then embed our (small) message space within the (larger) field Z,. In this way we obtain
security 1/p and, by setting p large enough, can achieve whatever level of security we desire.

3.1 Achieving security after ¢ uses

The scheme above used a degree-1 (i.e., linear) polynomial am + b to achieve security after
one use. This suggests the following extension of the scheme for security after £ uses: Let
F be a finite field. The sender and receiver share £+ 1 random elements ag,...,as € F. To
authenticate a message m € F, the sender computes tag = ag + a1m + aam? + - - - aymt. We
leave it to the reader to verify that this gives a scheme which is 1/|F|-secure after £ uses
(the proof proceeds as above, and uses the fact that a degree-£ polynomial over a field is
uniquely defined by its values on any £+ 1 distinct points).

!Note also that we will not have to pick a p too large — a theorem from number theory states that for
all M there exists a prime in the interval [M, 2M].



