
University of Maryland
CMSC456 — Introduction to Cryptography
Professor Jonathan Katz

Lecture 25

1 Algorithmic Number Theory

Before turning to public-key cryptography, it will be useful to re-examine some elements of
number theory. Until now, we have mainly presented number-theoretic results from a very
“theoretical” point of view, rather than from a “practical” point of view. To give a specific
example, we discussed in class that if p is an odd prime then exactly half the elements in

�
∗

p are quadratic residues; but we did not really discuss how to tell when a given element
is a quadratic residue nor did we discuss how to find a square root of a quadratic residue.
Of course, from a purely abstract point of view the problem is (typically) easy: given a
quadratic residue y ∈

�
∗

p we can always exhaustively search through all elements of
�

∗

p

until we find a correct square root. But such an answer is unsatisfying in our case, since
we will only be interested in algorithms running in polynomial time; thus, the question
becomes (e.g., in the case of the above example): how can we compute square roots in

�
∗

p

in polynomial time.
Before continuing, a word is in order regarding “polynomial time”. Note that this

always means polynomial time in the length of the input (i.e., |p| in the case above) and not

polynomial time in the magnitude of the input (i.e., p). This distinction is crucial in the
case of designing efficient algorithms (note that |p| = dlog2 pe = O(log p)). The numbers
that are used for cryptography are typically huge (say, 512 bits long) and the difference
between an algorithm running in time linear in p = 2512 and one running in time linear in
|p| = 512 is enormous!

1.1 Simple Arithmetic Operations

Since we will be dealing with such large numbers, it is worth verifying that the “simple”
arithmetic operations we are used to can actually be evaluated in polynomial time. We state
the following facts without proof (in the following, a, b are positive integers with a ≥ b):

1. Addition/subtraction of a and b can be done in time O(|a|).

2. Multiplication of a and b can be done in time O(|a| · |b|). In fact, this can be improved
to O(|a| · log |a| · log log |a|) using the discrete Fourier transform (DFT); we do not
give details here.

3. Division of a by b (returning both the quotient and the remainder) can be done in
time O(|a| · |b|). Note this means that we can compute a mod b in time O(|a| · |b|).
This can be also improved using the DFT.

1

4. Modular exponentiation (i.e., computing ab mod N) can be done using O(|b|) mul-
tiplications modulo N . Since each multiplication modulo N (including the modular
reduction) can be done in time O(|N |2), this gives an O(|b| · |N |2) algorithm for expo-
nentiation. (Of course, if the complexity of multiplication is improved using the DFT
then the total complexity of exponentiation also improves.) We discuss an efficient
algorithm for exponentiation below.

Addition, subtraction, and multiplication can all be done using the simple, “grade-
school” algorithms for these operations. But we elaborate for the case of exponentiation.
A naive way of computing ab mod N is to compute a2 = a · a; a3 = a · a2, . . . , ab = a · ab−1

and then finally reduce ab modulo N (what is the time required for this approach?). A
somewhat less naive method is to reduce the value at each step; i.e., compute a2 mod N =
a · a mod N ; a3 mod N = a · a2 mod N, Note, however, that this algorithm has b steps
so the running time will be exponential in |b|!

A more careful algorithm — repeated squaring — is needed. Pseudocode for this algo-
rithm follows (we assume b > 0 for simplicity).

Input: a, b,N
if (b = 0) return 1
ans = a, tmp = 1
// we maintain the invariant that our solution is tmp ∗ ansb mod N
while (b > 1) {
if (b is odd) {
tmp = tmp ∗ ans mod N
b = b − 1 }

ans = ans ∗ ans mod N
b = b/2 }

return (tmp ∗ ans mod N)

Note that this algorithm performs at most 2|b| multiplications and each multiplication
takes time O(|N |2) (we assume here that a < N — if this is not the case we reduce a before
starting). So the total running time of the algorithm is O(|b| · |N |2), as claimed above.

1.2 The Euclidean and Extended Euclidean Algorithms

Very frequently, it is necessary to compute gcd(a, b) for two integers a and b. We now
discuss an algorithm — the Euclidean algorithm — that can compute this in polynomial
time.

Assume that a > b. The first thing to notice is that gcd(a, b) = gcd(b, a− b) (verify this
yourself). This suggests the following algorithm:

gcd(a, b)
if b > a then return gcd(b, a)
if b divides a then return b
return gcd(b, a − b)

This recursive algorithm will certainly return the correct answer (the arguments to the gcd
function always decrease but remain greater than 0, so the algorithm will terminate; when

2

the algorithm terminates it always returns the correct answer). But what is the running time
of this algorithm? Well, we can’t really say much other than the fact that the largest input
to gcd drops by O(1) each time a recursive call is made. Thus, O(a) recursive calls might be
necessary to evaluate gcd(a, b). (In fact, the algorithm may take this long. Let a be odd and
consider the computation gcd(a, 2). This will recursively evaluate gcd(a−2, 2), . . . , gcd(3, 2)
which is roughly a/2 recursive evaluations.) But this is not polynomial time!

In fact, a better algorithm is possible. Instead of recursively calling gcd(a − b, b), why
not subtract off as many multiples of b as we can? In other words, we may recursively
call gcd(a mod b, b). The algorithm then becomes the following (known as the Euclidean

algorithm):

gcd(a, b)
if b divides a then return b
return gcd(b, a mod b) (note that a mod b < b)

We can bound the number of recursive calls via the following claim.

Claim The value of the smallest argument to the gcd algorithm drops by at least a factor

of 2 in every two recursive calls.

Proof Let the initial call be gcd(a, b). Assuming this is not the final call (i.e., assuming
that b does not divide a) the next recursive call will be gcd(b, a′ = a mod b). If a′ ≤ b/2 then
we are done. Otherwise, the next recursive call will be gcd(a′, b − a′). But since a′ > b/2
then b − a′ < b/2 and we have proved the claim.

The claim indicates that the algorithm makes at most 2 log b = 2|b| recursive calls, and
since a mod b can be computed in time |a| · |b| the total running time is O(|a| · |b|2) (and,
in particular, the algorithm runs in polynomial time).

It is also true (we do not prove it here) that if gcd(a, b) = r then there exist two
(possibly negative) integers X,Y with |X| ≤ b/2 and |Y | ≤ a/2 such that Xa + Y b = r.
In the particular case when gcd(a, b) = 1 we get Xa + Y b = 1. Computing such X and
Y will be very useful (we show why below), and in fact can be done using the Extended

Euclidean algorithm. While we do not give pseudocode for this algorithm, we hope the
following example and discussion will allow the reader to develop the algorithm on their
own.

Note that every time the Euclidean algorithm recurses, we evaluate a mod b. Instead
of just keeping track of the remainder, we may also keep track of the number of times b
divided a. Thus, besides recursively calling gcd(b, a mod b) we can imagine also recording
the fact that a − nb = a mod b (where n = b a

b
c).

Now, If gcd(a, b) = 1 then the final recursive call of the algorithm will be something like
gcd(a′, 1). Let the second to last call to the algorithm be gcd(b′, a′). Then we know that
b′ mod a′ = 1 and moreover that

b′ − n′a′ = 1

for some integer n′. Let the third-to-last call be gcd(a′′, b′). We again know that a′′ mod b′ =
a′ and furthermore that

a′′ − n′′b′ = a′

3

for some integers n′′. Here is the key to the algorithm: substituting for a′ gives:

b′ − n′(a′′ − n′′b′) = 1

⇒ (1 + n′n′′)b′ − n′a′′ = 1.

Continuing in this manner (substituting each time) yields, for each recursive call gcd(ai, bi),
integers ni, n

′

i for which niai + n′

ibi = 1. Ultimately, working backward to the first (initial)
function call, we get integers X and Y for which Xa + Y b = 1.

We conclude with an example. Consider gcd(55, 19). The Euclidean algorithm will run
as follows:

gcd(55, 19) 55 − 2 · (19) = 17

gcd(19, 17) 19 − 17 = 2

gcd(17, 2) 17 − 8 · (2) = 1

gcd(2, 1) output 1.

Working backwards, we see that 17 − 8 · (2) = 1. Substituting for 2 gives:

17 − 8 · (19 − 17) = 1

⇒ 9 · (17) − 8 · (19) = 1

Substituting for 17 gives: 9 · (55 − 2 · (19)) − 8 · (19) = 1 or:

9 · (55) − 26 · (19) = 1,

the desired answer.

4

