University of Maryland
CMSC456 — Introduction to Cryptography
Professor Jonathan Katz

Lecture 26

1 Generating Primes and Testing Primality

We have seen already a number of examples in which it was necessary to generate large prime
numbers. Examples include the RSA cryptosystem (in which it is necessary to generate two,
random primes and multiply them to obtain a modulus) and perfect message authentication
(in which generating one prime p — and not necessarily random — was sufficient). However,
we have not yet mentioned whether it is possible to generate such primes efficiently. We
explore this issue here. (We only give a high-level overview of this topic, and refer the
interested reader to [1] for a very readable and more in-depth treatment of the issues here.)

Assume we have some algorithm PrimalityTest which takes as input an integer p and
returns “prime” if p is prime and “composite” otherwise (we will discuss examples of such
algorithms below). This does not necessarily enable us to generate large (random) primes
unless we can say something about the distribution of primes. Let 7(z) denote the number
of primes less than or equal to z. It is known (informally) that 7(z) = 5 = 5 ng ~. We can
generate a random k-bit prime using the following algorithm:

GeneratePrime(1%)
Repeat until successful:
Choose random p + {0, 1}*
If Primality Test(p) outputs “prime” then output p and exit

How many different p will we need to test until we find one which is prime? Well, since
m(x) =~ ﬁ, the fraction of primes is (z/logy x)/z = 1/logy z and hence the fraction of
k-bit integers which are prime is roughly 1/k. So we will need to test — on average — k
numbers until we find one which is prime. Thus, assuming Primality Test runs in polynomial

time, the entire GeneratePrime algorithm runs in polynomial time.

1.1 Primality Testing

To complete our algorithm for generating primes, we need to specify a PrimalityTest algo-
rithm. Early in the semester, Prof. Gasarch gave a guest lecture discussing a (very recent)
deterministic algorithm for testing primality. Unfortunately, this algorithm is slow; in prac-
tice, faster randomized algorithms are used. As we will see, however, these randomized
algorithms have a small probability of returning the wrong answer.

First try. The first algorithm we consider will not completely solve our problem, but
will be a good initial step. Before we present this algorithm, let’s step back and see what
properties we will want our Primality Test algorithm to have. Optimally (once we are willing
to accept a small probability of error) we would like that for all primes, the probability that

Primality Test returns “prime” should be high; conversely, for all composite numbers, the
probability that PrimalityTest returns “composite” should be high. Consider the following
algorithm:

Primality Test(p)
fori=1toT pick randoma € {1,...,p—1}
if ged(a, p) # 1 return “composite” and exit
if a?~! # 1 mod p, return “composite” and exit
if p has passed all the above tests, return “prime”

Note that if T is a constant (or, in general, polynomial in |p|) the above algorithm runs in
polynomial time. We may note the following features of this algorithm:

Claim If p is prime, the above algorithm always returns “prime”.

Proof If p is prime, then for all a € Z; we have a?~! = 1 mod p. Thus, p passes every
iteration of the above algorithm and therefore the algorithm always outputs “prime”. H

What can we say when p is prime? Unfortunately, there are composite numbers p for which
aP~! = 1 modp for all a € Zy; these numbers are called Carmichael numbers. For such
numbers, PrimalityTest will output the (incorrect) answer “prime” unless it happens to pick
an a for which ged(a,p) # 1; this will happen with low probability. For non-Carmichael
numbers, we can claim the following without proof:

Claim If p is composite and there exists at least one a € Zy for which a?~! # 1 mod
p (i.e., p is not a Carmichael number), then each iteration of PrimalityTest(p) outputs
“composite” with probability at least 1/2.
Thus, iterating 7" times (as done above) ensures that the probability that Primality Test will
return the wrong answer in this case is at most 1/27. This probability can be made as
small as desired by increasing 7T'.

In summary, the above algorithm has the following properties:

1. If p is prime, then Primality Test always returns “prime”.

2. If p is a Carmichael number, then Primality Test (almost) always returns the incorrect
answer “prime”.

3. If p is composite and not a Carmichael number, then Primality Test returns the correct
answer “composite” except with probability at most 1/27.

As a practical matter, Carmichael numbers are relatively rare (although there are infinitely
many). So, if trying to generate a random prime (using GeneratePrime as discussed above),
the probability of picking a Carmichael number in the first place is low. Still, we would prefer
an algorithm with low failure probability for all composite numbers. The next algorithm
will achieve this.

Improved algorithm. The next algorithm — known as the Miller-Rabin algorithm —
will have the properties we desire.

MillerRabin(p)
Write p — 1 as 2%r for odd r
fori=1toT
pick random a € {1,...,p — 1}
if gcd(a, p) # 1 return “composite” and exit
if a” # 1 mod p and Ak € [0,e — 1] such that a2 = —1 mod p
return “composite” and exit
output “prime” and exit

First, it is important to note that this algorithm runs in polynomial time. Step 1 does not
involve factoring (p — 1); all we are doing is pulling out factors of 2, which is easy. Secondly,
checking whether there exists a k£ € [0,e — 1] such that a?" = —1 mod p requires checking
at most e such values; but e is at most log, p so this is still polynomial time (of course,
computing the exponentiation can also be done in polynomial time as the exponent never
gets bigger than p — 1).

Claim If p passes an iteration of the Miller-Rabin test for a particular value of a, then
a?~' =1 mod p and hence p would pass an iteration of PrimalityTest for that same a.

Proof Note that a?~! = a?" mod p. If p passes an iteration of the Miller-Rabin test
. . k

then either a” = 1 mod p or else there exists a k € [0,e — 1] such that > " = —1 mod p.

In the first case, we have a®>" = (a")* = 12 = 1 mod p. In the second case, we have

a®" = (a2)27" = (=1)> " mod p. Since e > k, we can write this as ((—1)2)2 "'
123—k—1

=1 mod p.

In fact, as was the case with PrimalityTest, the Miller-Rabin test always outputs “prime”
when given a prime as input.

Claim If p is prime, the Miller- Rabin algorithm always returns “prime”.

Proof We show that for all @ € {1,...,p — 1} = Zj, an iteration of the Miller-Rabin
test using this value of a succeeds. Fix a. Consider the sequence (zg = a”, 11 = a*", 29 =
a22r, ..., Ze = a®’") (where all values are taken modulo p). Since 2°r = p — 1, we know that
the last term in this sequence is 1. Now, if a” = 1 mod p we are done, since this implies
that the iteration succeeds. Otherwise, there must be a rightmost element of the sequence
(say, z;) which is not 1. But since z;11 = 2?7 mod p, and since (by assumption) z;11 = 1,
we must have z; = +1 (since p is prime). Thus, z; = —1 mod p and, since z; = a®'", this
implies that the iteration succeeds. |

We state the following without proof.

Claim If p is composite — even if p is Carmichael — then each iteration of the Miller-
Rabin test outputs “composite” with probability at least 3/4.
Thus, in addition to fixing the problem of falsely identifying Carmichael numbers, the
Miller-Rabin test also achieves a lower failure probability per iteration!

As above, by adjusting T we can achieve as low an error probability as we desire.

References

[1] L.N. Childs. A Concrete Introduction to Higher Algebra (2nd Edition). Springer, 1995.

