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Lecture 27

1 Generating Primes and Testing Primality

See notes for Lecture 26.

2 Public-Key Cryptography

Thus far in the class, we have only discussed the private-key (also known as “secret-key”
or “symmetric-key”) setting. Here, two parties who wanted to communicate securely had
to somehow share in advance a random key; furthermore, the complete secrecy of this key
needed to be maintained at all time. This approach to cryptography has a number of
disadvantages which we sketch here:

1. The parties must be able to somehow share a random key in a secure manner. But
if they can do this, they might just as well share their message in the same secure
manner! (Of course, this is not always possible. For example, the parties may be able
to securely share a key mow but will want to communicate tomorrow when secure
transmission is no longer possible.)

2. Along the same lines, note that in some cases even meeting a single time to securely
agree upon a key is not possible. What if our sender and receiver are in a crowded
room (or are always monitored) so that they cannot share a secret key?

3. In the private-key model, you always need to know (in advance) the parties with whom
you want to communicate. Accepting communication from anybody is essentially
impossible in the secret-key setting. (Examples of where you might want to accept
communication from anyone might include: a company that wants to accept credit
card numbers from anyone, or a government agency that wants anyone to be able to
submit suggestions)

4. Finally, if we want to secure a network with n parties (representing, say, n people
working for the same company) then we need everyone to share a key with everyone
else, for a total of (3) = O(n?) keys overall.

This motivates the introduction of public-key cryptography. Since we will begin with
a discussion of public-key encryption, we discuss this example now. Here, a party who
wishes to receive communication generates two keys: a public-key and a corresponding
secret key (or private key). We will denote these by PK and SK, respectively. The public-
key is widely distributed: everyone (including an adversary) is assumed to know about this



person’s public key. Now, anyone can communicate with this party using only this public
key; the receiver can decrypt using only his secret key.

Note that we can view this encryption in two different, but equivalent, ways. First,
imagine that A and B want to communicate, but have not set up a shared key in advance.
They can do the following:

1. B generates a public-key/private-key pair (PK, SK).
2. B sends PK to A. The secret key remains secret.

3. A obtains PK and encrypts message M as: C < Epx(M) (note that encryption
might be randomized). A sends C to B.

4. B obtains C and decrypts it as: M = Dgg(C) (typically, decryption will be deter-
ministic).

Now (informally), the security we desire from such a scheme is the following: an adver-
sary who passively eavesdrops on all communication between A and B (in particular, who
sees PK and C) should be unable to determine anything about the message M. (We will
rigorously formalize a notion of security for this setting over the next few lectures.) Note
carefully what this means if we can achieve this: it means that two people in a crowded
room — who have not even shared any information in advance — can shout information
to each other and keep the contents of their conversation hidden from everyone else in the
room!

We may also view the encryption as happenning in two, distinct stages. In stage one:

1. B generates a public-key/private-key pair (PK, SK).

2. B widely publicizes PK to anyone who might ever want to communicate with him.
He makes sure to keep SK secret.

At some later point in time, A wants to communicate with B; she does so as follows:
1. A finds that she indeed knows PK, the public key of B.
2. A encrypts message M as above: C < Epg(M). A sends C to B.
3. B obtains C and decrypts it as: M = Dgg(C).

Here (again, informally), the security we desire from such a scheme is that an adversary
eavesdropping on all communication between A and B should be unable to determine M.
But in this setting, the only communication between A and B is the ciphertext C, so this
seems to be a weaker requirement than before! In fact, we should have more carefully
stated our security goal: an adversary who is assumed to know PK and who eavesdrops on
all communication between A and B should still be unable to determine M. We stress that
we assume the adversary knows PK because B makes no effort to prevent its widespread
dissemination; it is only fair to assume the adversary knows PK. It should be clear that
this definition of security is now equivalent to the previous one.

Let’s briefly see how public-key cryptography can address some of our concerns with
private-ley cryptography.



1. Parties wishing to communicate do not have to share keys in a secret manner. Note,
however, that they do need to exchange information in some “authenticated” manner
(we assumed a passive adversary above but it should be clear that an adversary who
can interfere with the communication can completely ruin the security of the scheme).
We will return to this issue (briefly) below, and may discuss this point later in the
semester as well.

2. The party publishing his public key does not need to have any idea who will use the
key to communicate with him. Anyone who learns the public key (and B tries to
publicize it so that as many people as possible leanr it) can communicate with B.

3. In a network of n people, each party now needs only distribute his public key to the
other n — 1 people in the network. The total number of keys is now n (rather than
O(n?) as before).

Having given these arguments in favor of public-key encryption, what are the drawbacks?
(If there are no drawbacks then why bother learning about private-key cryptography at all!)
We mention a few here:

1. From a practical point of view, public-key cryptography is much less efficient than
private-key cryptography. To give a rough example, encrypting short messages is
about 1000 times faster using private-key cryptography than using public-key cryp-
tography. Of course, a lot of research has been and continues to be focused on making
public-key operations as efficient as possible (we discuss some of these methods later
in the semester).

2. From a theoretical point of view, public-key cryptography sometimes requires stronger
assumptions than private-key cryptography. As an example, we noted that indistin-
guishable private-key encryption can be achieved under the assumption of one-way
functions. Public-key encryption cannot be achieved under this same assumption.

3. Public-key cryptography relies strongly on some system for reliably distributing public
keys. Note that it is not always so easy to publicize a public key in a reliable manner.
As an example, one way of publicizing a public key is to list it in the newspaper.
Well, what if I put my public key (for which I know the associated secret key) in the
newspaper and claim that this is really someone else’s (say, Amazon’s) key? In this
case, I will be able to read all messages (including credit card numbers, etc.) which
were intended for Amazon. Resolving this issue turns out the be — perhaps — the
biggest drawback to using public-key cryptography in practice.

4. Finally, we note that in the case of private-key cryptography both parties “know” (in
some sense) exactly to whom they are speaking (if two parties share an encryption
key, then [informally speaking] messages sent by any other party will be unintelligible
anyway). On the other hand, if someone publishes their public key and receives a
message, they have no way of reliably telling who sent that message. (Of course, the
sender can claim some identity in the message itself, but how do we know he is not

lying?)



