University of Maryland
CMSC456 — Introduction to Cryptography
Professor Jonathan Katz

Lecture 3

1 The One-Time Pad

1.1 Proof of Security for the One-Time Pad

Recall the definition of perfect security (or secrecy) we had last time:

Definition 1 An encryption scheme over message space M is perfectly secure if, for all
distributions over M, for all m € M, and for all ciphertexts ¢ we have Pr[m|c] = Pr[m)].
In other words, the a postiori probability that a message m was sent, given that we observe
ciphertext c, is exactly equal to the a priori probability that message m is sent.

We now give a full proof that the one-time pad encryption scheme is secure (last time
we only gave a proof for the uniform distribution over M).

Theorem 1 The one-time pad is a perfectly-secure encryption scheme.

Proof Assume M = {0,1}". For any m € M and any c we have:

Prim A]
Pric]
Prlc|m] - Pr[m)|

= T (1

Prim|c] =

using two applications of the definition of conditional probability. Conditioning over all
messages gives Pr[c] =)\ Prc|m] - Pr[m]. But, for any m,c we have:

Pricim] = Prlk = (c®m)]
= 27"

so that Pr[c] = 27" -3 .\ Pr[m] = 27". Plugging into (1) shows that Pr[m|c] = Pr[m]
and we are done. [|

1.2 Optimality of the One-Time Pad

The one-time pad isn’t a very good encryption scheme. For one thing, it cannot be used
to send more than one message. Furthermore, you need to share n bits to send an n-bit
message; but if you can meet in secret and agree on n bits, why not just meet in secret and
hand over your message! A natural question is whether we can do better.

In fact, we cannot. The next theorem shows (roughly) that to perfectly encrypt n bits,
you need to share at least n bits.

Theorem 2 If (K,&,D) is a perfectly secure encryption scheme over message space M,
then we must have |K| > |M| (or, roughly speaking, if M = {0,1}" then we must have
|K| > 2™ and the length of any particular key is n bits).

Proof Say we observe ciphertext c. We can play the part of the receiver and decrypt ¢
using every possible key k € K. This gives us at most |K| different messages which could
possibly have resulted in ciphertext ¢ (note: this argument holds even for a randomized
encryption scheme, as long as we assume correctness of the decryption algorithm). But if
|| < |M| then there is at least one message m € M for which Pr[m|c] = 0. Thus, the
scheme will be insecure if the a priori probability of m is non-zero (which we can assure by
choosing the distribution over M appropriately). |

1.3 Stronger Attack Models

We mentioned earlier that the one-time pad is insecure if used twice (well, obviously...).
We can rephrase this as follows. Imagine an arbitrary encryption scheme that is used to
encrypt two messages from Alice to Bob (call these two messages m; and ms). Certainly,
it might happen that an eavesdropper knows what m; is (or at least, has some information
about m1): for example, m; might be an ACK message, or might be in English, or might
represent a yes/no answer. A property we might desire from our encryption scheme is that
even if the adversary knows mj and sees c¢;, the encryption of mgy should remain secure
(i.e., observing ¢z should give no information about ms). Note that, although reasonable,
this is not the case for the one-time pad. If the adversary knows m; and then sees c;, the
adversary can immediately compute the key as k = m1 @ ¢;. Now any future ciphertexts
that are observed by the adversary can be decrypted immediately!

Informally, then, we can define security against known plaintezt attacks as follows (we
will give a formal definition in a few weeks):

Definition 2 A scheme is secure against known plaintext attacks if it is secure even when
the adversary is given a sequence of pairs (my,c1 = Eg(m1)), ..., (mg,ce = Ex(my)), where
mi,..., myg are randomly chosen. (Note that the same key is used throughout, and this same
key is used for the ciphertext observed by the adversary that it is trying to decrypt.)

The basic level of security achieved by the one-time pad is often refered to as security
against ciphertezt only attacks. I.e., the adversary gets no plaintext/ciphertext pairs before
being asked to “decrypt” a particular ciphertext.

We can imagine an even more insidious type of attack than the above: how about a
chosen plaintezt attack where the adversary gets to choose which plaintexts are encrypted
by Alice. What might this correspond to in real life? Well, the adversary might control an
application-level protocol that is feeding data to Alice to be encrypted. Or, the adversary
might be able to impersonate Bob and thereby force (or otherwise cause) Alice to encrypt
certain things. Again, it would be nice if an encryption scheme could be secure for future
messages even under this sort of attack. Informally (we give a more formal definition later
on in the course):

Definition 3 A scheme is secure against chosen plaintext attacks if it is secure even
when the adversary chooses messages mq,...,mg and then gets to see ciphertexts ¢ =
Ek(cr), ... cp. (Again, the same key is used throughout, and this same key will be used for
the “challenge” ciphertext observed by the adversary later on.)

Imagine for a moment how you would construct a scheme secure against a single known
plaintext attack (i.e., where the adversary gets to see a single pair (m1,c1 = Ex(m1)).
A little thought shows that perfect security in this setting is difficult to achieve; in fact,
we can “prove” a theorem of the following form (of course, we can’t really prove such a
theorem until we give a rigorous version of definition 2; furthermore, under some reasonable
definitions security against a single known plaintext attack is possible):

Theorem 3 No (stateless) encryption scheme can be perfectly secure against known plain-
text attacks. This is true even if the encryption scheme is randomized.

You are asked to prove a version of this theorem on the homework.

2 Where do we go From Here?

So far we have seen two negative results, informally summarized here:
e To perfectly encrypt n-bit messages, we need to share n-bit keys.

e We can never achieve perfect security against known plaintext attacks (or, for that
matter, chosen plaintext attacks) using a stateless encryption scheme. A consequence
of this is that we cannot achieve perfect secrecy when encrypting multiple messages
unless we use a stateful encryption scheme.

I will just mention that, in general, we want to avoid stateful encryption since this causes
problems in case the sender and receiver get “out of sync”. Also, it is a general rule that
the less state the better (avoids tying up memory).

So, do we just give up? Is this the end of cryptography as we know it?! Well, if the
definition is too hard to achieve, let’s just relax the definition. ..

Before we relax the definition, let’s look at some alternate ways of presenting Defintion
1. The following is nice because of its simplicity:

Definition 4 An encryption scheme over message space M is perfectly secure if, for the
uniform distribution over any set {mi,ma} C M of two messages and for all ciphertexts c
we have: Pr[mi|c] = Pr[ma|c]. Le., if mi and mqo are the only possible messages, and these
are equiprobable a priori, then they remain equiprobable even after observing c.

Since we use the term perfect security, we had better hope that Definitions 4 and 1 are
equivalent. In fact, the following proof shows that they are:

Proof One direction is easy. Clearly, if a scheme satisfies Definition 1 then choosing the
distribution over M as the uniform distribution over some two-message subset immediately
gives Definition 4.

Now, assume we have a scheme satisfying Definition 4. Fix m1, ma,c. Since Pr[mq|c] +
Pr[mg|c] = 1 we have Pr[mi|c] = Pr[mg|c] = 1/2 (where these probabilities are in the
experiment appropriate to Definition 4). Now,

Prlc|mq] - Pr[m]
Pr[c]
1/2 - Prc|m1]
1/2 - (Pr[c¢|m1] + Pr[c|/ms])
Pr[c|m]
Prlc|m1] + Prlclmg]

Prmi|c] =

Since this equation holds true for arbitrary mi,mge we must have Pr[cjm;] = Pr[c|mg] for
any mi,ms.
Now, take an arbitrary distribution over M and arbitrary m,c. We have:

Pr[c|m] - Pr[m)]
Pr[c]
Pr[c|m] - Pr[m)]
Y mrem Prle|m/] Pr[m/]
= Pr[m]a

Pr[mlc] =

where we use the fact that Prc|m'] = Pr[c|m] for all m’, and the fact that }° .\, Pr[m/] =
1. But this is exactly as required by Definition 1. |

We introduce one more equivalent definition before our main modification:

Definition 5 An encryption scheme over message space M is perfectly secure if, for any
two messages mi,mo € M and for any algorithm A we have:

Pr[A(C) = m1|C = & (m1)] = Pr[A(C) = my|C = Ex(m2)].

A word about this definition. What we have is an adversary (algorithm) A who is trying
to “guess” which of two possible messages is being sent. The notation “A(C)” refers to the
output of the algorithm when it is run on input C. Thus, we require that the probability
that A guesses m; when it is given an encryption of m; should be exactly the same as the
probability that A guesses m; when it is given an encryption of my. In other words, A is
just randomly guessing and is not doing any better at guessing regardless of whether it is
given an encryption of one message or the other.

It is not too hard (but it is a little tedious) to show that this definition is equivalent to
the one before, and hence to Definition 1. Thus, it is as difficult to obtain as the original
definition. But we now modify it in two crucial ways. First, we do not require security
against any algorithm, but instead against efficient algorithms (we say more about this
next lecture). Second, we do not require that the algorithm (adversary) have exactly equal
probabilities of guessing the message in each case; we only require that they be close (we
say more about how close next lecture). Thus:

Definition 6 An encryption scheme over message space M is secure (however, no longer
perfectly secure) if, for any two messages my, mo € M and any efficient algorithm A we
have:

IPr[A(C) = m1|C = Ek(m1)] — Pr[A(C) = m1|C = Ek(ma)]| < e.

